Recall how we are encoding Chapter 8 TM's

- The textbook discusses the example:
 \[q_1 \ 1 \ q_3 \ 0 \ r \]
 \[q_3 \ 0 \ q_1 \ 1 \ r \]
 \[q_3 \ 1 \ q_2 \ 0 \ r \]
 \[q_3 \ B \ q_3 \ 1 \ 1 \]

- Taking the transitions in this order:
 \[11101001000101001100010101001001 \]
 \[0111 \]
 \[= 268,724,253,279,934,515,351 \]

A non-rec. enum. language

- We write \(w_j \) for the \(j \)-th word and \(M_j \) for the TM whose binary encoding is \(j \) (written in binary)
- \(L_d = \{ w_j : M_j \) does not accept \(w_j \} \)
- How about the complement? \(\overline{L_d} = \{ w_j : M_j \) accepts \(w_j \} \)
- It turns out that this language is recursively enumerable
stating the obvious?

- If M_j accepts w_j, we can verify the fact by running M_j on input w_j
- However, if M_j does not accept w_j, we will never verify this fact by running M_j on input w_j if M_j runs forever on input w_j

Universal TM - i

- The more general context for this study is a universal Turing machine
- Our Java program is a sort of Universal TM: it simulates the execution of any other TM on any input string

Universal TM - ii

- We want to build a TM that can simulate any other TM executing on an input string
- We assume the TM that will be simulated is of the Chapter 8 form
- We assume the input string is binary

Universal TM - iii

- First, let M be a Chapter 8-style TM, then any encoding of M as a binary string as described earlier is denoted $\langle M \rangle$
- Usually $\langle M \rangle$ is not unique for a specific M
- Let $\langle M, w \rangle$ denote binary encoding of M, concatenated with a binary input string w
For example, \(w \) might be 1100010101:

\[
11101001000101010001000101010000100110010001010011000100010001001001010011000100010001000100100111111010101
\]

A universal TM takes as input a binary string \(<M, w>\):

- Any universal TM accepts \(<M, w>\) if \(M\) accepts \(w\), otherwise \(<M, w>\) is not accepted.

We build a 3 tape machine:

- Tape 1 is the input containing \(<M, w>\).
- Tape 2 will simulate the tape of \(M\).
- Tape 3 stores the control state of \(M\) in unary encoding.

Start:

- Contains \(<M, w>\).
- Blank but will contain \(w\).
- Blank but will contain 0.

Go through a few states, checking format, copy \(w\) to tape 2, put 0 (= \(q_1\)) on tape 3, the \(c\) is for convenience.

Return to start of tapes.
通用TM - viii

- 重复以下操作：检查磁带3是否包含00，如果包含，则停止并成功。

通用TM - ix

- 如果磁带3包含0^i, $i \neq 2$，且磁带2的读头正在读取X_i (X_1是0，X_2是1，X_3是B)，则在磁带1中搜索模式$110^i10^j10^k10^l10^m11$。

通用TM - x

- 模拟确切的移动到磁带2和3：在磁带3上放k个0，在磁带2的读头上放X_l，然后移动方向D_m（D_1=L, D_2=R)。

The machine halts if M does

- 我们正在模拟M，通过读取其磁带1上的过渡，并在磁带2上执行它们，将当前状态（编码）存储在磁带3上。

- 如果M在w上停止，该模拟器将停止，要么是因为M到达q_2（由磁带3上的00识别）或因为没有下一个过渡，M未能接受（模拟也是如此）。

Class 13 - 18 © L. Lander, 2000 18CS 573

Class 13 - 19 © L. Lander, 2000 19CS 573

Class 13 - 20 © L. Lander, 2000 20CS 573

Class 13 - 21 © L. Lander, 2000 21CS 573
The universal machine can run for ever

- If M runs for ever on input w without reaching q_2 then the simulation will also run for ever
- The **UNIVERSAL LANGUAGE** is $L_u = \{<M, w>: M \text{ accepts } w\}$
- A **UNIVERSAL TURING MACHINE**, M_u such as the one just built, is any TM whose language is L_u
- Assume M_u is converted to the Chapter 8 format

L_u is not recursive

- We use the fact the L_d is not recursively enumerable to prove L_u is not recursive
- We need to prove Theorem 8.1: The complement of a recursive language is also recursive

Proof of Theorem 8.1

- Suppose we have a TM M that halts on all inputs and recognizes the recursive language L. Assume no transitions from final states.
- Build a complementary TM M' to recognize the complement of L:
- Make all the final states non-final, add one new state p and make it final, for every undefined transition $\delta(q, X)$, where q was not final, add a transition $\delta(q, X) = (p, X, R)$

Fixing up the left end of the tape

- Add more transitions to M' so that it initially moves the input one cell to the right and puts a marker “¢” at the left-hand end of the tape
- Add the transition $\delta(q, \) = (p, \, R)$ for all states
- M' starts simulating M with the tape-head on the 2nd cell (start of original input)
- M would have failed if we reach “¢” but M' succeeds in this case
M' is the complementary machine

- The result is a machine that rejects the strings that M accepted.
- Further, when M halted and failed, we have now added a transition to a final state p, so M' accepts.
- Similarly, if M fails by coming off the tape at the left end, M' succeeds.
- This M' halts on all inputs and accepts the complement of L.

Proof that L_u is not recursive

- We prove that L_u is not recursive by contradiction.
- We show that if L_u is recursive then $\overline{L_d}$ is recursive.
- By Theorem 8.1, it would follow that the complement of $\overline{L_d}$, i.e. L_d is recursive.
- But L_u is not even recursive, so it is certainly not recursive.
- Hence L_u cannot be recursive.

The connection between L_u and $\overline{L_d}$

- The only missing piece is to show that if L_u is recursive then $\overline{L_d}$ is recursive.
- Suppose M is a halting TM for the language L_u.
- Create a halting TM for $\overline{L_d}$ as follows:
 - The input to the new TM M' is a string w.

Find where w is in canonical order

- On separate tapes generate:
 - the numbers $j = 1, 2, 3, 4, 5, \ldots$ in binary and
 - the strings over $\{0, 1\}$ in canonical order $w_j = \varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots$
- each time you generate a new j or w_j, replace the previous one and
- check if w_j is equal to the input w.
you already have j, so form jw and run M

- As soon as you find $w_j = w$ (which must occur), we copy the binary integer j onto a tape followed by w_j
- This is exactly the string $<M_j, w_j>$
- We then run M on this input
- M always halts by hypothesis
- If M accepts then M_j accepts w_j and $w = w_j$ is in $\overline{L_d}$
- If M rejects then M_j rejects w_j and $w = w_j$ is not in $\overline{L_d}$

M does not exist

- Actually if we just reversed the accept/reject outputs of M at this point we would get a halting TM for L_d
- Since L_d cannot be recursive, nor can $\overline{L_d}$ be recursive. This M' does not exist
- But M' exists if M does, so...
- M does not exist: L_u is not recursive

However $\overline{L_d}$ is rec. enum.

- Instead of working with the fictitious machine M, use any universal TM M_u for L_u
- Form the machine M', which begins as before to discover the j and w_j, such that $w_j = w$
- Then run M_u on $<M_j, w_j>$
- M_u accepts if and only if M_j accepts w_j, i.e. w is in $\overline{L_d}$
- M' is a TM for $\overline{L_d}$, which is rec. enum.

we will identify a “recursive” language

- L_d
- $\overline{L_u}$
- $\{0^n1^n : n > 0\}$
- Σ^*
- regular
- 0^*1^*

Recursively enumerable

Recursive

Context-free

Class 13 - 30 © L. Lander, 2000 30CS 573

Class 13 - 31 © L. Lander, 2000 31CS 573

Class 13 - 32 © L. Lander, 2000 32CS 573

Class 13 - 33 © L. Lander, 2000 33CS 573
Another piece of the puzzle

- We will need the Theorem 8.3:
 If a language \(L\) is rec. enum. and if the complement \(\overline{L}\) is also rec. enum., then both \(L\) and \(\overline{L}\) are recursive

Proof of Theorem 8.3

- Suppose \(M_1\) is the TM for \(L\) and \(M_2\) is the TM for \(\overline{L}\) (perhaps neither machine halts on all inputs)
- Create a combined TM that takes input string \(w\) and simulates \(M_1\) and \(M_2\) simultaneously, using one tape for each and keeping track of the states of each separately \([q_1, q_2]\)

- The machine always halts

 tape for \(M_1\) \(X_1\)
 tape for \(M_2\) \(X_2\)

 \([q_1, q_2]\)

- (1) If we reach a final state in the \(q_1\) component, halt and ACCEPT (\(M_1\) accepts: in \(L\))
- (2) If we reach a final state in the \(q_2\) component, halt and REJECT (\(M_2\) accepts: \(w\) is in the complement of \(L\))
- (3) \(M_1\) halts in a non-final (rejecting) state or passes the left end of its tape, then halt and fail (\(M_1\) rejects: \(w\) is in the complement of \(L\))
- (4) \(M_2\) halts in a non-final (rejecting) state or passes the left end of its tape, then halt and accept (\(M_2\) rejects: \(w\) is in the \(L\))
Everything covered

- There are no other possibilities because, even if one machine were to run for ever on w (hence not accept), the other would have to accept (hence halt)

Turing Machines-cont’d

Recursively enumerable languages that are not recursive

Textbook Example 8.2

- Consider two other languages:
 \[L_e = \{ <M> : L(M) = \emptyset \} \]
 \[L_{ne} = \{ <M> : L(M) \neq \emptyset \} = L_e \]
- The textbook shows that is \(L_{ne} \) rec. enum. but not recursive and is not \(L_e \) rec. enum.

The intuition

- We can find out if a TM recognizes something (\(L_{ne} \) case) by looking for the string that it accepts, halting as soon as we find it
- However, in \(L_e \) how can we tell a machine does not accept a string? If we just keep testing strings, we will test for ever
Proof for L_{ne}

- (I use the deterministic version: it seems more convincing)
- The input is a binary encoding of a Turing machine $<M>$

Setting up for an iteration

- Put n 0’s on Tape 1 (start with two 0’s and keep adding one zero on each iteration)
- For each new n, start with one 0 on Tape 2 and $(n - 1)$ 0’s on Tape 3
- Keep the n on Tape 1 fixed through the following steps

One step during the iteration

- Suppose we have reached j 0’s on Tape 2 and $(n - j)$ 0’s on Tape 3
- Generate the j-th word w_j in the canonical order
- Simulate M on w_j for $(n - j)$ steps only

When to halt

- If M accepts w_j within $(n - j)$ steps, halt and accept
- If not, increase the number of 0’s on Tape 2 (to $j + 1$) and decrease the 0’s on Tape 3 (to $n - j - 1$)
- When j reaches n, add another 0 on Tape 1 (to get $n + 1$) and set Tapes 2 and 3 back to 0 and 0^n
- Keep iterating until M accepts
We recognize L_{ne}

- Obviously, if M accepts a string, our procedure will eventually recognize that, otherwise our procedure fails to halt.
- Why didn’t we just generate the w_j on one tape and simulate M on each one until we find string M accepts?
- Because somewhere along the way we might get a w_j on which M runs for ever...before we reach the string that M does accept.

What about L_e?

- To prove that L_e is not rec. enum., we show that if it were, then L_u would be recursive (which it is not).
- Suppose L_e were rec. enum., then L_e and its complement L_{ne} would both be rec. enum.
- By theorem 8.3, that would mean that both L_e and L_{ne} were recursive.

Construct a strange machine

- Suppose we take the typical input for L_u, which is a pair $<M, w>$
- Construct a new Turing machine M', using the input $<M, w>$, that has the following property:
 - $L(M') = \emptyset$ if and only if $<M, w> \notin L_u$
 - $L(M') = \{0, 1\}^*$ if and only if $<M, w> \in L_u$

Constructing M'

- The transitions are given in the textbook but here is the idea:
- Whatever the input given to M' may be (say the input is x), all the TM does is simulate M on w
- M' accepts x if M accepts w
If M does not accept w or if M runs for ever, then M' does not accept x.

Clearly if M accepts w, then M' accepts every x, i.e. $L(M') = (0+1)^*$.

If M does not accept w, then M' accepts nothing, i.e. $L(M') = \emptyset$.

Suppose there is a halting TM M_e (an algorithm) that recognizes L_e.

Then we use Theorem 7.10 to convert the TM M' to M'', which has the Chapter 8 form.

Convert M'' to one of its binary representations $<M''>$.

Feed $<M''>$ to M_e.

Get the contradiction.

If M_e accepts $<M''>$ then $L(M'') = \emptyset$ so that M does not accept w, i.e. $<M, w>$ is not in L_u.

If M_e rejects $<M''>$ then $L(M'') = (0+1)^*$ so that M accepts w, i.e. $<M, w>$ is in L_u.

Overall we have an algorithm for L_u.

We have a contradiction: L_e recursive (since L_{ne} recursive enum.) \Rightarrow L_u recursive (false).
Recall

- Do you remember why L_u is not recursive?
- It is because if it were, then L_d would be recursive
- In that case, L_d would be recursively enumerable, which it is not
- The proof that L_d is not recursively enumerable is the foundation of all the other proofs

Remember that clever paradox?

- We ask if w_k is in L_d
 - w_k is in L_d
 - if and only if
 - w_k is accepted by any TM for L_d
 - if and only if
 - w_k is accepted M_k
 - if and only if
 - w_k is not in L_d