machines with output

- We need to discuss automata with outputs before demonstrating that there really is a unique minimal DFA.
- The easier one is the one we will use: Moore machines.
- Simply rethink the DFA: let each state give an output in an alphabet Γ.
- We could also allow an NFA ϵ.

Moore machines

- After processing an input string w in Σ^*, we reach a state q which outputs g in Γ.
- For example, take $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, 2\}$ and a Moore machine that determines the remainder modulo 3 of any positive number n, where n is expressed in binary:

 0, 11, 110, 1001 return 0
 1, 100, 111, 1010 return 1
 10, 101, 1000, 1011 return 2
Example: modulo 3 machine

- To simplify things, let input ε return output 0.
- Adding a 0 at the right-hand end is a left-shift, i.e. the number is doubled.
- A remainder of 0 is unchanged:

\[q_0/0 \quad q_1/1 \quad q_2/2 \]

\[\xrightarrow{0} \]

Doubling

- If you double a number, a remainder of 1 becomes a remainder of 2 and a remainder of 2 becomes a remainder of 1 (= 4 modulo 3).

\[q_0/0 \quad q_1/1 \quad q_2/2 \]

\[\xrightarrow{0} \]

Doubling plus 1

- If you add a 1 at the right-hand end of the input, you are doubling the number and adding 1.
- Remainder 0 becomes remainder 1.
- Remainder 1 becomes remainder 0.
- Remainder 2 stays remainder 2.

\[q_0/0 \quad q_1/1 \quad q_2/2 \]

\[\xrightarrow{1} \quad \xrightarrow{0} \]

Another way to view an automaton

- An automaton can be regarded as a Moore machine, where final states output “y” and the non-final states output “n”.
- We expect a full automaton.
Mealy machine

- In a Mealy machine, the output is generated by the transition, not by the state
- An input \(w = a_1 a_2 \ldots a_n \) in \(\Sigma^* \) generates an output \(g_1 g_2 \ldots g_n \) in \(\Gamma^* \)

Mealy machine

- Note that the same input at a different state can generate a different output

Transducer

- A more general idea is that every input symbol can generate a string output, including the empty string

Encoding

- Such a transducer is an excellent machine to describe encoding and decoding: input: \(aababa \), output: \(x_1g g x_1 x_2 x_3 \)
decoding?

- The hard thing is to ensure there is another transducer so that input $x_1gx_1x_2x_3$ produces output $aababa$

Down to business

- Take a given language L over Σ
- We speculate on the existence of a machine M that allows the input of any string w in Σ^* and has the following ability:
 - If w is in L, the machine outputs “y”
 - If w is not in L, the machine outputs “n”
- If L is regular this is like our new version of a DFA on slide 8-13

We do not know how M looks inside

We can only speculate on how M works and if it has well-defined states.

However, assuming there are states inside M, we want to tell whether two input strings w_1 and w_2 take the machine to the same state
Do \(w_1 \) and \(w_2 \) have the same effect?

- Does \(q_1 = q_2 \) ?

\[
\begin{align*}
\text{\(M \) reaches } q_1 & \quad \text{\(y/n \)} \\
\text{\(M \) reaches } q_2 & \quad \text{\(y/n \)}
\end{align*}
\]

Who knows?

- We cannot say, but perhaps we can say that, for all practical purposes \(w_1 \) and \(w_2 \) take \(M \) to the same state

- All we can perhaps tell is whether \(w_1 \) and \(w_2 \) take the machine to states \(q_1 \) and \(q_2 \) that will appear to be the same according to their behavior

The states \(q_1 \) and \(q_2 \) have the same behavior if any string \(z \) applied to \(q_1 \) and \(q_2 \) reaches a state or states that give the same “\(y/n \)” output

\[
\begin{align*}
\text{\(q_1 \) \(\to \) } q_1' & \quad \text{\(y/n \)} \\
\text{\(q_2 \) \(\to \) } q_2' & \quad \text{\(y/n \)}
\end{align*}
\]

The question is: “do \(w_1z \) and \(w_2z \) always agree?”

- As is clear from the diagram, we are simply asking if \(w_1z \) and \(w_2z \) give the same \(y/n \) output for all \(z \)

- Now forget \(M \), there is a special relationship between \(w_1 \) and \(w_2 \) :
 - if \(w_1z \) and \(w_2z \) are either both in \(L \)
 - or both not in \(L \)
 - for all \(z \)
Unique Minimal DFA?

- Why is there a *unique* minimal DFA?
- This is derived from the Myhill-Nerode Theorem, which we demonstrate later
- We will demonstrate the minimal automaton by building a DFA, whose *states are languages!!!*

preamble to equivalence relations

- Relations
 - A relation on a set is a rule R that relates elements of the set: $x R y$
 - On the set of integers we have the relations: $=, <, <=, >, >=, |x - y| > 0$
 - $5 < 10, 6 <= 6, 9 = 9, |8 - 4| > 0$

reflexive relation, symmetric relation

- Relations may be *reflexive*: $x R x$
 - $=, <=, >=$ are reflexive, $>, <$ are not
- Relations may be *symmetric*:
 - IF $x R y$ THEN (ALWAYS) $y R x$
 - (i.e. for all x and y)
 - Among the example relations above, only $=$ and $|x - y|$ are symmetric

transitive relation

- Relations may be *transitive*:
 - IF $x R y$ AND $y R z$
 - THEN (ALWAYS) $x R z$
 - (i.e. for all x, y and z)
 - All the relations we gave as examples are transitive, except for $|x - y|$: $|6 - 8| > 0$ and $|8 - 6| > 0$ but $|6 - 6| = 0$
An equivalence relation is one that has the properties of reflexive, symmetric, and transitive.

An equivalence relation on a set is used to divide the set into equivalence classes.

Suppose S is a set and R is an equivalence relation on the set.

Divide S into subsets using R.

Two elements x and y of S are in the same subset if (and only if) $x \sim y$.

Because R is an equivalence relation, any x in S can only be in ONE subset, called an equivalence class.

We denote it by $[x]$. Hence, if $x \sim y$ then y is in $[x]$.

Is it possible that an element z in S could be in two classes $[x]$ and $[y]$, without $[x]$ being identical to $[y]$? i.e. could $[x]$ and $[y]$ overlap without being equal? No, if $z \sim x$ and $z \sim y$, then by symmetry $x \sim z$ and by transitivity $x \sim y$.

x and everything related to x is in $[y]$. Hence $x \sim y$ means $[x] = [y]$.

Each x belongs to a unique class.

Change the notation to \(\sim \)

- We will use \(\sim \) as the notation for an equivalence relation in place of \(R \)
- These ideas get really exciting when the set \(S \) is \(\Sigma^* \)

The relation \(\sim_L \)

- Given a language \(L \), we let \(\sim_L \) be the strange-looking relation from before
- \(w_1 \sim_L w_2 \) if and only if, for every \(z \) in \(\Sigma^* \), \(w_1z \) and \(w_2z \) are either BOTH in \(L \) or BOTH not in \(L \)
- There is a practical problem (not a theoretical one): there are infinitely many \(z \) so, for a general \(L \), we could never actually finish checking if \(w_1 \sim_L w_2 \)

It is an equivalence relation

- The relation \(\sim_L \) is an equivalence relation
- Reflexive: take any \(w \) in \(\Sigma^* \), then \(w \sim_L w \):
 - for any \(z \) in \(\Sigma^* \), it is obvious that \(wz \) and \(wz \) are always the same, so they are both in \(L \) or both not in \(L \)

Symmetry

- Symmetric: take any \(w_1 \) and \(w_2 \) in \(\Sigma^* \), then \(w_1 \sim_L w_2 \) implies \(w_2 \sim_L w_1 \)
 - for any \(z \) in \(\Sigma^* \), it is obvious that
 - IF \(w_1z \) and \(w_2z \) are always both in \(L \) or both not in \(L \)
 - THEN \(w_2z \) and \(w_1z \) are always both in \(L \) or both not in \(L \)
transitivity

- Transitive: take any w_1, w_2 and w_3 in Σ^*, then $w_1 \sim_L w_2$ and $w_2 \sim_L w_3$ imply $w_1 \sim_L w_3$

- for any z in Σ^*, it is obvious that IF w_1z and w_2z are always both in L or both not in L
 AND w_2z and w_3z are always both in L or both not in L

- THEN w_1z and w_3z are always both in L or both not in L

Equivalence classes

- We are very interested in the equivalence classes defined by the relation \sim_L

- Let $[w]_L$ be the equivalence class of w under the relation \sim_L

- Thus, w_1 is in $[w]_L$ if and only if, for all z in Σ^*, wz and w_1z are either both in L or both not in L

Go back to our magic machine

- Given a language L we can now think about a machine M_L that can recognize L

- Populate M_L with states $[w]_L$, where w can be any string in Σ^*

- The number of states can be infinite

Transitions

- Transitions in this machine are easy:
 $\delta([w]_L, a) = [wa]_L$

- The initial state is easy, it is $[\epsilon]_L$

- The “yes/no” outputs are easy: $[w]_L$ gives “y” if and only if w is in L

- The problem is the number of states may be infinite
Is δ OK?

- We have to ask if δ is well-defined, i.e. if $[w_1]_L = [w_2]_L$, do we really get the same answer for $\delta([w_1]_L, a)$ and $\delta([w_2]_L, a)$. Does $[w_1 a]_L = [w_2 a]_L$?
- We need $w_1 a z$ and $w_2 a z$ both in L or both not in L for all z in Σ^*
- But, since $[w_1]_L = [w_2]_L$, we know $w_1 z'$ and $w_2 z'$ are both in L or both not in L for all z' in Σ^* and az is just a special case of z'

$L(M_L) = L$?

- Does the machine M_L recognize L?
- Suppose we give input $w = a_1 a_2 \ldots a_n$ at the start state $[\varepsilon]_L$
- The first δ transition takes us to $[a_1]_L$, the second to $[a_1 a_2]_L$, the third to $[a_1 a_2 a_3]_L$ and so on
- Hence input w takes us to state $[w]_L$
- The output is “y” if and only if w is in L

Myhill-Nerode

- The problem is the number of states (equivalence classes of strings) may be infinite
- The Myhill-Nerode theorem states that L is regular if and only if the number of states in M_L is finite

Two more results

- Further, if L is regular, the machine M_L we just constructed is the minimal complete DFA for L
- Also, by a version of the pumping lemma, we will be able to check if $w_1 \sim_L w_2$
Proof of Myhill-Nerode-easy parts

- If the number of states is finite then we have built a DFA for L.
- The final states are those that output "y", i.e. all $[w]_L$ where w is in L, e.g.

Example

- For this language $[aa]_L = [ab]_L, [a]_L = [ba]_L, [b]_L = [aaab]_L$ and so on.
- The language looks horrible but it is regular.

The converse

- Suppose L is regular language over Σ and has a DFA $M = (Q, \Sigma, \delta, q_0, F)$ (which probably is not minimal).
- Define a relation \sim_M on Σ^* by $w_1 \sim_M w_2$ if $\delta^*(q_0, w_1) = \delta^*(q_0, w_2)$.

\sim_M is reflexive

- Reflexive: take any w in Σ^*, then $w \sim_M w$:
 obviously $\delta^*(q_0, w) = \delta^*(q_0, w)$.
\(\sim_M\) is symmetric

- Symmetry: take any \(w_1\) and \(w_2\) in \(\Sigma^*\):
 if \(w_1 \sim_M w_2\) then \(w_2 \sim_M w_1\):
 obviously if \(\delta^*(q_0, w_1) = \delta^*(q_0, w_2)\) then
 \(\delta^*(q_0, w_2) = \delta^*(q_0, w_1)\)

\(\sim_M\) is transitive

- Transitive: take any \(w_1, w_2\) and \(w_3\) in \(\Sigma^*\), then \(w_1 \sim_M w_2\) and \(w_2 \sim_M w_3\) imply
 \(w_1 \sim_M w_3\):
 IF \(\delta^*(q_0, w_1) = \delta^*(q_0, w_2)\)
 AND \(\delta^*(q_0, w_2) = \delta^*(q_0, w_3)\)
 THEN \(\delta^*(q_0, w_1) = \delta^*(q_0, w_3)\)

\(\sim_M\) defines finitely many classes

- How many equivalence classes are there?
- There is exactly one equivalence class for each reachable state in \(M\):
- Take \(w\) in \(\Sigma^*\), then \(\delta^*(q_0, w) = q_i\) for some reachable state \(q_i\), then
 \([w]_M = \{w' \in \Sigma^* : \delta^*(q_0, w') = q_i\}\)

The relation \(\sim_L\) has, at most, the same number of equivalence classes as \(\sim_M\)

- We claim that if \(w_1 \sim_M w_2\) then \(w_1 \sim_L w_2\), hence \([w]_M \subseteq [w]_L\) for every \(w\)
proof of key step

- If \(w_1 \sim_M w_2 \) then \(\delta^*(q_0, w_1) = \delta^*(q_0, w_2) \), hence \(\delta^*(q_0, w_1z) = \delta^*(q_0, w_2z) \) for any \(z \) in \(\Sigma^* \)
- It follows that \(\delta^*(q_0, w_1z) \) is final if and only if \(\delta^*(q_0, w_2z) \) because they are the same state!
- In other words, for any \(z \) in \(\Sigma^* \), \(w_1z \) is in \(L \) if and only if \(w_2z \) is in \(L \), i.e. \(w_1 \sim_L w_2 \)

finitely many classes

- If there are \(n \) reachable states in \(M \) there are at most \(n \) classes \([w]_M\)
- Since \([w]_M \subseteq [w]_L\) for every \(w \) in \(\Sigma^* \), there are at most \(n \) classes \([w]_L\)

conclusions-I

- If \(L \) is regular, there are finitely many equivalence classes \([w]_L\)
- Note the corollary: \(M_L \) is also a DFA and the number of states in \(M_L \) is equal to the number of equivalence classes for the relation \(\sim_L \)

conclusions-II

- We have just seen that the number of equivalence classes for the relation \(\sim_L \) is the minimum of the number of equivalence classes for the relation \(\sim_M \) for all the DFA’s \(M \) for the language \(L \)
- Thus, \(M_L \) is a minimal DFA