The standard construction

- We want to show that any regular expression has an \(\text{NFA}_\varepsilon \)
- We do this by always creating \(\text{NFA}_\varepsilon \)'s that have a SINGLE FINAL STATE that is different from \(q_0 \)
- We show how to combine them to build larger regular expressions
- The basic regular expressions are \(\emptyset \), \(\varepsilon \), and \(a \) and the simplest \(\text{NFA}_\varepsilon \)'s with a single initial and final state are:

NFA\(_\varepsilon \)'s for the basic regular expressions

\(\emptyset \)

\(\varepsilon \)

\(a \)

The NFA\(_\varepsilon \) for a sum of regular expressions

- If we have constructed the NFA\(_\varepsilon \)'s (each with a single final state) for two regular expressions \(r_1 \) and \(r_2 \) then the NFA\(_\varepsilon \) for \(r_1 + r_2 \) is shown next
- The two final states from \(r_1 \) and \(r_2 \) are no longer final. A new single final state is added with \(\varepsilon \)-transitions from the old final state
The NFAϵ for a *sum* of regular expressions - II

- What were final states in the graphs of r_1 and r_2 are no longer final states (they are shown with dotted lines around them).
- There is only one final state.

The NFAϵ for a *concatenation* of regular expressions

- If we have constructed the NFAϵ's (each with a single final state) for two regular expressions r_1 and r_2 then the NFAϵ for r_1r_2 is shown next.
The NFA\(\varepsilon\) for the *Kleene closure* of a reg. expr.

- If we have constructed the NFA\(\varepsilon\) (each with a single final state) for the regular expression \(r\) then the NFA\(\varepsilon\) for \(r^*\) is shown next

Simplifying the construction

- The problem with the \(r^*\) construction is that it generates a lot of states and a lot of \(\varepsilon\)-transitions
- Two simplifications are often *but not always* possible

No transitions into the initial state

- If there are no transitions *into* the initial state in the original graph for \(r\), we can make the simplification above

No transitions out of the final state

- If there are no transitions *out of* the final state in the original graph for \(r\), we can make the simplification above
Combination of the simplifications

- If there are no transitions into the initial state or out of the final state, then the simplified picture is:

Simplification is not always possible

- We have examples to show that you cannot always make these simplifications, first a simple case where everything works OK
 - $a \rightarrow \varepsilon \rightarrow a$
 - $a^* \rightarrow \varepsilon \rightarrow a$

But it can be simpler

- Simpler a^*

Case where only partial simplification is impossible

- $a(ba)^*$
 - $b \rightarrow a$

- $(a(ba)^*)^*$
 - $b, \varepsilon \rightarrow a \rightarrow \varepsilon \rightarrow \varepsilon \rightarrow \varepsilon$
Other automata are possible

- alternative for \((a(ba)^*)\)

Final state simplification fails

- Merging the final states in the figure on slide 3-62 gives an NFA for
 \(\varepsilon + (\varepsilon + b)(a + ab)^*a\)
- This language includes \(ba\), which is wrong

Initial state simplification fails

- Merging the initial states in the figure on slide 3-62 produces an NFA for
 \((a + ab)^*(\varepsilon + a)\) (includes \(ab\))

Merging on both sides also fails

- The effect of merging initial states and final states:
 \((a + b + ab)^*(\varepsilon + a)\)
Other examples

- Some on-line notes explore an NFA\(\epsilon\) for \((ab)^*\)^*, where merging the final states changes the language accepted (notes3.html).
- Regular expressions are used in several tools in UNIX. Some of the on-line notes give examples. (notes2.html), e.g.
- pp. 124-7 -> pp. 124-27

Pumping Lemma

- We postpone showing how to convert an NFA\(\epsilon\) to a regular expression and how to minimize an automaton.
- Instead we show how to prove a language is not regular.
- We need the pumping lemma for regular languages (PL4RL).
- The PL4RL is *not* used to prove languages *are* regular.

Statement of theorem

The PL4RL states that if \(L\) is a regular language, then there is an integer \(n\) such that when we take any \(z \in L\) with \(|z| \geq n\) (if any such \(z\) exist), we must be able to write \(z = uvw\), where
- \(|uv| \leq n\)
- \(|v| > 0\)
- \(uv^k w \in L\) for all \(k \geq 0\).
- In particular, if one such \(z\) exists, \(L\) is infinite.

More general PL4RL

- The PL4RL can be understood with a few graphics, which will be our proof.
- Also we might as well prove a more general form:
More general PL4RL

- For any regular language L there is an n (for that L) such that if $z = uw_1w_2...w_nv \in L$, where u, w_1, w_2, ..., w_n, v are all strings, then there is a loop among the w’s and $uw_1w_2...(w_{i+1}...w_j)^k...w_nv \in L$ for all $k \geq 0$

The string z

- If $z = uw_1w_2...w_nv \in L$, where n is the number of states in a DFA for L, then there is a path in the DFA from q_0 to a final state:

How many p_i?

- Now, even if $u = \varepsilon$ and $v = \varepsilon$, in which case $q_0 = p_0$ and p_n is final, there are $n + 1$ states from p_0 to p_n inclusive

Pigeon-hole principle

- BUT the DFA only has n states so two of the p’s are the same
- Suppose $p_i = p_j$ for some i, j, with $0 \leq i < j \leq n$
The loop - I

- Concentrate on the loop
- The path shown from \(q_0 \) to a final state, continues to reach the final state independent of the number of times the loop is traversed

Skip the loop

Repeat the loop

- Loop omitted
- Loop repeated several times
The string can be pumped

- The string \(uw_1w_2... (w_{i+1}... w_j)^k... w_n v \)
describes a path from the initial state to a final state for all \(k \geq 0 \)
- Hence all these strings are in \(L \)
- The version of the PL4RL announced at the beginning follows from the
general result by setting \(z = a_1a_2...a_nx \), where \(a_1, a_2, ..., a_n \) are the
first \(n \) symbols in the string \(z \)

Example

- Consider \(L = \{ww^R : w \in (0 + 1)^*\} \),
where \(w^R \) denotes the string \(w \) written in reverse
- \(L \) is the set of even-length palindromes

Applying the PL4RL

- If \(L \) is regular there is an \(n \) as in the PL4RL
- Pick \(z = (01)^n(10)^n = w_1w_2...w_nv \), so \(u = \varepsilon \), \(w_1 = w_2 = ... = w_n = 01 \), \(v = (10)^n \)
- Then there are \(i \) and \(j \) so that
\(w_1w_2...(w_{i+1}... w_j)^k... w_n v \) is in \(L \) for all \(k \)
- Now, \(w_1w_2...(w_{i+1}... w_j)^0... w_n v = w_1w_2...w_iw_{i+1}... w_n v = (01)^{n-j+i}(10)^n \)
- The mid-point of string needs 00 or 11 but that pattern is not at center

Example 1

- Consider \(L = \{0^a1^{2b} : 3a > 2b\} \) where \(a, b \) are some integers.
- Prove that this is not regular.
- We Prove this by contradiction, using PL4RL
Details of the exponents and conditions

- The notation 1^{2b} indicates that there is an even number of 1’s.
- $3a$ has to be greater than b (3 times number of 0’s has to be greater than number of 1’s).

Applying the PL4RL

- If L is regular there is an n as in the PL4RL.
- Pick $z = 0^{2n+1}1^n = uvw$, where $|uv| < n$, $|v| > 1$ and
- uv^kw should belong to L for all k greater than or equal to zero.

Pump down

- Now we have $z = 0000...00011111111...111$

 $2n + 1 \quad 6n$

- So uv contains only 0’s (since $|uv| < n$)
- v contains only 0’s
- $uv^0w = uw = 0^{2n+1-|v|}1^n$
- Since, $|v| \geq 1$, $3(2n + 1 - |v|) \leq 6n$

Conclusion

- Hence $uv^kw \notin L$ for $k = 0$
- Thus, L violates the PL4RL
- So L cannot be regular
Example 2

- Consider $L = \{ 0^p : p \text{ prime} \}$.
- Prove that this is not regular.
- *We Prove this by contradiction, using PL4RL*

About prime numbers

- Theorem: There are an infinite number of primes. (this means, given a number, we can always find a prime number greater than it).
- We can prove this easily by contradiction...
 - if p_1, p_2, \ldots, p_k was the finite sequence of all primes, then $p_1p_2\ldots p_k+1$ is a new prime (none of the other p_j’s is a factor of this new number) -- contradiction

Applying the PL4RL

- If L is regular there is an n as in the PL4RL
- Take any prime $p > n$
- Pick $z = 0^p = uvw$
 - where $|uv| < n$, $|v| > 1$ and
 - uv^kw should belong to L for all k greater than or equal to zero.

Pump up

- Now in uv^kw, take $k = p+1$
- $z = uvvvvv\ldots vvvvww$
 - $p+1$ copies of v
- $z = 0^{p+p/|v|}$ since we added p extra v’s
 - $= 0^{p(1+|v|)}$
Pump up

- Is \(p(1+|v|) \) a prime number ???

- No, \((1+|v|) \geq 2 \)

 so, \(p(1+|v|) \) is a composite number

- Hence \(uv^k w \notin L \) for \(k = p + 1 \)

- Thus, \(L \) violates the PL4RL. So \(L \) cannot be regular

Example 3

- Consider \(L = \{ 0^a1^b2^c : 2a < c, b > 0 \} \).

- Prove that this is not regular

 - We prove this by contradiction, using PL4RL

Details of the exponents and conditions

- \(2a \) has to be less than \(c \) (2 times number of 0’s has to be less than number of 2’s).

- There has to be one or more 1’s \((b>0)\).

Applying the PL4RL

- If \(L \) is regular there is an \(n \) as in the PL4RL

 - Pick \(z = 0^n1^22^{(n+1)} = uvw \), where \(|uv| < n, |v| \geq 1 \) and

 - \(uv^kw \) should belong to \(L \) for all \(k \) greater than or equal to zero
Applying PL4RL

- $z = 000\ldots000111\ldots111122222\ldots22$

 \[n \quad n \quad 2n+2\]

- Since $|uv| \leq n$, so from above uv contains only 0’s
- Therefore, v contains only 0’s

Pump up

- $uv^3w = 0^{n+2}v^12^{2n+2}$
- Let’s see if it belongs to L, that is, if it satisfies the condition $2(n + 2|v|) < 2n + 2$
- Since $|v| \geq 1$, the above is clearly false
- Hence $uv^kw \notin L$ for $k = 3$
- Thus, L violates the PL4RL. So L cannot be regular