
Integrating Priority Inheritance Algorithms
in the Real-Time Specification for Java

Andy Wellings, Alan Burns, Osmar Marchi dos Santos∗

University of York – UK
{andy, burns, osantos}@cs.york.ac.uk

Benjamin M. Brosgol
AdaCore – USA

brosgol@adacore.com

Abstract

Priority inversion and priority inheritance protocols for
bounding blocking time are well-understood topics in real-
time systems research. The two most commonly used prior-
ity inheritance protocols are basic priority inheritance and
priority ceiling emulation. Although both are supported
in POSIX, Ada and the Real-Time Specification for Java
(RTSJ), little has been written about the consequences of
using both protocols concurrently in the same program. The
assumption is usually that only one is in force at any par-
ticular time. For large real-time systems, this assumption
may not be valid. This paper provides motivation for why
a mixture of the two can occur and illustrates that this can
result in the raising of unwanted asynchronous exception.
This has led the Technical Interpretation Committee for the
RTSJ to propose a new version of the priority ceiling emu-
lation protocol that will enable it to work in harmony with
basic priority inheritance. The protocol is described and
we use the UPPAAL tool to explore formal properties using
model checking.

1. Introduction

In priority-based systems, unbounded blocking time and
deadlock situations may rise from having lower prior-
ity threads executing (with mutually exclusive) shared re-
sources whilst higher priority threads are trying to gain ac-
cess to the same resources. This is a well-known problem,
called priority inversion [7], and several protocols for boost-
ing the priority of lower priority threads, when accessing
shared resources, have been proposed to bound the block-
ing. For uniprocessor systems, the most popular protocols
are [6]: basic priority inheritance and priority ceiling em-
ulation. Whilst use of the individual protocols is well un-
derstood [5], little work has been done on the properties of
systems that contain a mixture of inheritance protocols. Al-

∗This author is partially sponsored by CAPES-Brazil.

though the POSIX standard allows both priority inheritance
and priority ceiling emulation (called the priority protect
protocol), nothing is specified about the interaction between
the two. The Ada language supports priority ceiling emu-
lation (called immediate priority ceiling inheritance) and a
weak form of priority inheritance. However, as the prior-
ity inheritance support is so limited, it is not possible for
interactions to occur. Most Real-Time Operating Systems
(RTOSs) support just priority inheritance.

The Real-Time Specification for Java (RTSJ) augments
the semantics of the Java programming language and virtual
machine in order to make it suitable for real-time computing
[2]. The initial version of the RTSJ [3] followed POSIX’s
and Ada’s lead and provided support for the two main pri-
ority inheritance algorithms. A real-time Java virtual ma-
chine must support priority-ordered queues and perform ba-
sic priority inheritance1 whenever high priority threads are
blocked by low priority real-time threads. There are many
locks that are held by the virtual machine (for example, in
order to implement real-time garbage collection) that are in-
visible to the application. Priority inheritance automatically
occurs when using these locks. Furthermore, the RTSJ al-
lows the Java application locks (associated with any object
that has a synchronized method or that is used in a synchro-
nized statement) to be supported by priority inheritance or
priority ceiling emulation. The default is priority inheri-
tance. The result is that an application can consist of threads
that use nested locks that might be controlled by a mixture
of the two inheritance protocols. As with POSIX, little at-
tention was paid to the semantics of any interactions.

This paper is organized as follows. In Section 2 we intro-
duce the changes that the RTSJ has made to Java synchro-
nization semantics and present the details of the approach
to controlling priority inversions. We illustrate some of the
problems that will be encountered when the priority inheri-
tance protocol is used in conjunction with priority ceiling
emulation. The main problem is that a thread executing

1From now on we will use the term priority inheritance rather than basic
priority inheritance.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

inside a synchronized method (or statement) protected by
priority ceiling emulation can suddenly find itself executing
above the ceiling priority as a result of priority inheritance.
Under these circumstances, the priority ceiling emulation
protocol requires an asynchronous exception to be raised.
We define2 a new version of the priority ceiling emulation
protocol that removes this problem. This protocol forms
the basis of the most recent versions of the RTSJ’s Prior-
ityCeilingEmulation monitor control policy. In Section 3
we present the modelling architecture proposed for formal-
ising the synchronization protocol. Section 4 then analyzes
certain formal properties of the protocol. Conclusions and
final remarks are presented in Section 5.

2. The RTSJ Synchronisation Protocol

The RTSJ enhances several areas of the Java program-
ming language and virtual machine [9]. For our purposes,
the changes to the scheduling model are the most important.
Both real-time threads and asynchronous event handlers are
defined (collectively called schedulable objects). All imple-
mentations must support priority-based scheduling. Each
thread3 has a base and an active priority. The base prior-
ity is the priority allocated by the programmer. The active
priority is the priority that the scheduler uses to order the
run queue. As mentioned before, the real-time Java Virtual
Machine (JVM) must support priority-ordered queues and
perform priority inheritance whenever high priority threads
are blocked by low priority ones. The active priority of a
thread is, therefore, the maximum of its base priority and
the priority it has inherited.

In order to allow the programmer to specify an appropri-
ate priority inheritance algorithm for its application-defined
locks (those associated with any objects that have synchro-
nized methods or that are used in a synchronized statement),
three classes are defined. The abstract class MonitorCon-
trol defines a static method that allows the default priority
inheritance algorithm to be set along with a static method
that allows a particular object to have the default overrid-
den. Two subclasses of MonitorControl are provided: Pri-
orityInheritance and PriorityCeilingEmulation, which al-
low the programmer to specify the priority inheritance and
the priority ceiling emulation algorithm respectively.

The Technical Interpretation Committee for the RTSJ
was set up in 2001 to respond to questions about the spec-
ification. It was clear that whilst the initial designers’ had
done a good job in addressing the weaknesses of Java, Ver-
sion 1.0 was under specified, and the designers intentions

2Wellings and Brosgol are members of the RTSJ Technical Interpre-
tation Committee. The research reported in this paper is a result of that
committee rewriting the Version 1.0 specification to be more rigorous.

3For the remainder of this paper we will use the term thread to include
both types of schedulable objects.

were not clear in many places. Consequently, it was nec-
essary to undertake a major rewrite in order to tighten up
the semantics. During this process, it became clear that we
did not fully understand the implications of allowing ap-
plications to have both inheritance protocols in operation
at the same time – let alone what would happen when the
programmer dynamically changed priorities and even proto-
cols. Furthermore, when we reviewed the literature we were
unable to find any help. One of the goals of the RTSJ is to
support large real-time systems with a mixture of hard, soft
and non-real-time threads. We had to assume that such ap-
plications would make full use to the bountiful pre-written
Java libraries. This software will inevitable obtain locks,
as will the underlying JVM. Some of the JVM locks may
actually be RTOS locks, which will usually be priority in-
heritance locks. Consequently, we either had to remove our
support for priority ceiling emulation (to the detriment of
the hard real-time threads), or we had to accept that applica-
tions may have the two locking protocols executing concur-
rently and that nested locks governed by different protocols
is possible. We adopted the latter position.

2.1. Mixing Priority Inheritance and Prior-
ity Ceiling Emulation

Priority inheritance (PI) is an appropriate synchroniza-
tion protocol in large real-time systems where it is often
difficult to determine the pattern of indirect synchroniza-
tion between threads. In PI, a thread holding a lock inherits
the highest priority of all threads attempting to acquire the
lock. Its main advantages are that it is widely supported by
RTOSs, priority changes only occur when needed (there is
no cost in the common case when the lock is not in use). Its
main disadvantages are that a thread may be blocked sepa-
rately for each lock that it needs (and, therefore, deadlock
can occur), “chained blocking” may occur when threads are
waiting for locks that are held by other threads that are wait-
ing for locks held by different threads, and implementation
may be expensive because of nested (recursive) inheritance
and the fact that a thread’s priority can be changed by an
action external to the thread.

The priority ceiling emulation (PCE) protocol allocates
each lock a ceiling priority. This ceiling is set to the max-
imum active priority that a thread requesting the lock can
acquire. When a thread acquires the lock, its active priority
is immediately raised to (if it is not already at) the ceiling.
If the thread’s current active priority is already greater than
the ceiling, a run-time exception is thrown. The protocol’s
main advantages are: if no thread can block while holding
the lock then a queue is not needed for that lock (the pro-
cessor is the lock), “nested monitor” deadlock is prevented,
a thread can be blocked at most once during each release by
some lower priority thread holding the lock. The disadvan-

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

tages are: computation of ceilings needs careful analysis,
especially if thread priorities and ceiling values can change
dynamically; it requires a check and priority change at each
call4 (used to prevent unbounded priority inversion); there
is overhead even if an object is not locked.

When PI or PCE locking protocols are mixed, asyn-
chronous exceptions are possible. Consider the following
scenario. Thread TB (priority medium) shares PCE lock
LX with thread TA (priority low). The ceiling priority of
LX is, therefore, set to medium. TB executes and acquires
LX (there is no change to the active priority because the
ceiling of LX is medium), it then performs some action that
requires the JVM to acquire an internal PI lock LY . Thread
TB is now preempted by a high priority thread TC that ex-
ecutes a JVM operation that requires lock LY . This is a PI
lock and, consequently, priority inheritance occurs. Thread
TB has the lock so its priority is asynchronously boosted to
the high priority. TB is now executing within lock LX at an
active priority greater than the ceiling priority of LX . Ac-
cording to the PCE protocol this is an error condition and
an asynchronous exception is raised in thread TB. If fact,
as thread TB will release lock LY before it tries to acquire
another lock, no problems would have been encountered by
the application. Further examples are given in [4].

In the general case, if an application allows both PI and
PCE locks, problems will occur if the locks are nested. The
chain blocking that occurs with PI means that it is very dif-
ficult to analyse a large program to determine the correct
ceiling if a PCE lock is acquired by a thread that already
holds a PI lock. Further complications occur when threads
can dynamically change priorities, ceilings and protocols.
To circumvent the above problems, a new version of the pri-
ority ceiling emulation protocol is proposed. The following
summarizes the approach.

Objects (and their associated locks) that are gov-
erned by PCE have ceilings. However, the ceiling
of an object O is set to the maximum of: (1) the
highest base priority for any thread that can lock
O, and (2) the highest ceiling of any object al-
ready locked by a thread that is attempting to lock
O. Now instead of using a thread’s active priority
for a ceiling check, the maximum of its base pri-
ority and the ceiling of already held PCE locks is
used.

For instance, consider threads TA and TB with, re-
spectively, low and medium priorities. Both threads share
two PCE locks LX and LY , with ceiling priorities set to
medium. TA start executing and acquires LX , having its ac-
tive priority boosted to the ceiling (medium) priority, even-
tually acquiring LY . During entrance in LX , only the base

4Although lazy priority changing is possible, where the JVM keeps
track of the ceilings but only performs the change if contention occurs.
This is particularly effective if the priority change requires an RTOS call.

priority of TA (low) is checked. Then, when entering in LY ,
both base priority of TA (low) and its previous entered lock
LX (medium ceiling) are checked.

2.2. The Full Priority Inheritance Model

Every thread has a base and active priority. The base
priority for thread t is set by the programmer and is the pri-
ority it is created with, but it can be changed dynamically5.
If t does not hold any locks, then t’s base priority equals t’s
active priority. However, when t holds one or more locks, it
is said that t has a set of priority sources. Indeed, the active
priority for t (at any time) is the maximum of the priorities
associated with all t’s priority sources. The rules for defin-
ing the active priority for t, based on its priority sources,
are defined for when t enters a lock. If the priority sources
consists of:

1. Only the thread t itself: the active priority for t is its
base priority;

2. Each object locked by t (and governed by a PCE pol-
icy): the active priority for t is the maximum value of
the ceiling priorities of the locked objects. If t already
holds other PCE locks, the ceiling value of the previ-
ous lock has to be always lower or equal to the ceiling
of the current lock, otherwise a CeilingViolationEx-
ception is thrown. This exception also is thrown when
the base priority of t is greater than the ceiling value
of the current lock;

3. Each thread attempting to synchronise on an object
locked by t (and governed by a PI policy): the active
priority for t is the maximum active priority of all such
threads;

4. Each thread attempting to synchronise on an object
locked by t (and governed by a PCE-based policy): the
active priority for t is the maximum active priority of
all such threads.

Rule 1. presents the case where no locks have been ac-
quired and, therefore, no change of priority is needed. In
rule 2. we have the modified definition of the PCE protocol,
whereas in rule 3. defines the normal PI protocol. However,
in order to cope with possible implementations where both
PCE and PI protocols might be interacting, rule 4. is de-
fined. Indeed, this rule makes the PCE policy work as a PI
policy. This is defined to avoid the priority inversions that
could otherwise occur in the presence of nested synchro-
nization involving a mixture of PCE and PI policies.

The RTSJ also defines specific rules, regarding the addi-
tion and removal of priority sources, for the priority-based
scheduler when both PI and PCE policies are supported:

5As a result, changing the priority of t immediately removes t from the
current execution queue and places t at the tail of its new priority.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

1. Addition of a priority source: either increases or leaves
unchanged t’s priority. If increased, t is placed at the
tail of its new priority queue;

2. Removal of a priority source: either decreases or
leaves unchanged t’s priority. If decreased, t is placed
at the head of its new priority queue.

An implementation of the RTSJ must perform the fol-
lowing checks when a thread t attempts to synchronize on a
object governed by a PCE policy with ceiling ceil6:

• Thread t’s base priority does not exceed ceil;

• The highest ceiling priority of already locked objects
by t (if t is holding any other PCE locks) does not ex-
ceed ceil.

More formally, if a thread t whose base priority is p1

attempts to synchronize on an object governed by a PCE
policy with ceiling p2, where p1 > p2, then a CeilingVio-
lationException is thrown in t. A CeilingViolationExcep-
tion is likewise thrown in t if t is holding a PCE lock that
has a ceiling priority exceeding p2. Changes to base pri-
ority and changes between the PI and PCE policy (via the
method setMonitorControl()) occur immediately. How-
ever, to change the policy requires the caller to have ac-
quired the lock.

It is a consequence of the above rules that, when a
thread t attempts to synchronize on an object obj
governed by a PriorityCeilingEmulation policy
with ceiling ceil, t’s active priority may exceed
ceil but t’s base priority must not. In contrast,
once t has successfully synchronized on obj then
t’s base priority may also exceed obj’s monitor
control policy’s ceiling. Finally it should be noted
that when PCE is combined with PI then the over-
all system will exhibit the same characteristic as
a PI system.

Consider again the example used in Section 2.1. Thread
TB (priority medium) shares PCE lock LX with thread TA

(priority low). The ceiling priority of LX is, therefore, set
to medium. TB executes and acquires lock LX (without
changing priority because of the ceiling of LX), it then per-
forms some action that requires the JVM to acquire an in-
ternal PI lock LY . TB is now preempted by a high priority
thread TC that executes a JVM operation that requires LY .
Priority inheritance occurs and thread TB has its priority
asynchronously boosted to the high priority. Thread TB is
now executing within lock LX at an active priority greater
than the ceiling of LX . According to the new PCE protocol
this is NOT an error condition as the base priority of thread
TB is lower than the ceiling priority of LX .

6This changes the ceiling protocol check to a precondition check
instead of an invariant check, when accessing synchronized meth-
ods/statements.

3. Formal Model

In Section 2, we presented a reformulation of the PCE
protocol to enable it to work seamlessly with the PI pro-
tocol. In this section we propose a formal model of the
new protocol, using this model we analyse the protocol in
the next section. To correctly formalise the semantics of the
new protocol, we propose a modelling architecture using the
extended Timed Automata (TA) formalism of the UPPAAL
tool7. We can identify the following basic components for
defining the modelling architecture:

• Thread: necessary for the definition of verification
scenarios, where it enters and exits Locks;

• Lock: defines a shared resource, i.e. synchronized
statements or methods in a Java program. The access
to these resources is regulated by the synchronisation
protocol. A Lock can have a PI or PCE policy;

• Protocol: models the synchronisation protocol of the
RTSJ, following the rules for including/removing pri-
ority sources, as described in this paper;

• Scheduler: because the synchronisation protocol in-
cludes possible movements between priority queues,
this component represents a priority-based scheduler.

Further to the components cited so far, we also define
another one used to generate verification scenarios for the
interaction between threads using locks. This is necessary
since we are using model checking as our analysis method.
Therefore, using this component for generating scenarios,
we can ensure that for a finite amount of threads and shared
resources all possible interactions are verified.

In Figure 1 we present the modelling architecture show-
ing the possible interactions between the components. In-
teractions occur through the use of (global) variables and
channels. Specifically, the arrows showing the interactions
are labelled with the name of the channel used to activate
the desired behaviour in the target automaton, and the nec-
essary parameters (global variables). For instance, when a
thread becomes eligible-for-execution, it invokes the Sched-
uler by synchronising with the efe channel and passing its
identification number (tid variable) as a parameter. As the
boxes for Lock and Thread components suggest, it is possi-
ble to have one or more (1..N) Lock and/or Thread automata
in a given verification scenario, whereas there is only one
Scenario Generator, Protocol and Scheduler automata.

Now we present the automaton used to generate the com-
bination of verification scenarios in our model. Due to space
constraints, we do not present the other automata for the
components composing the architecture of Figure 1. A pre-
sentation of these automata can be found in [8].

7Due to space constraints we do not introduce the UPPAAL tool. The
reader is referred to [1] for such introduction.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

Figure 1. Modelling architecture.

Scenario Generator: This is used to generate combina-
tions of verification scenarios having as input a certain num-
ber of threads and locks. One automaton of such Scenario
Generator is shown in Figure 2 (a). The automaton pre-
sented is used to define scenarios for an arbitrary (but fi-
nite) number of threads (defined by NT) and three different
locks. It starts by non-deterministically assigning (state S1)
to the array nl (using as index the id of each thread) a cer-
tain number of locks that each thread will be entering in a
nested manner. After that, it non-deterministically defines
the first lock that each thread will be entering. This is done
by assigning values to the array sl (state S2), again using
as index the id of each thread. After leaving this state, the
automaton signals to all thread automata that they can start
(via the broadcast channel start) the execution of the gen-
erated scenario.

The automaton represents the scenario depicted in Fig-
ure 2 (b). All locks are of PI type, the base priority of the
threads are defined as T0 = 0, T1 = 2 and T2 = 4 accord-
ing to the figure. Moreover, the arrows are used to show
what nested executions for each thread can occur. In this
sense, all of the threads can start entering in either one of
the three locks, entering in up to a maximum of two other
locks (e.g. possible executions for any of the threads could
be L2 → L0 → L1 or L0 → L1, and so on). For instance,
if there was no arrow to the right side of the lock L2 in the
figure, the possible executions for the affected thread would
be restricted in such way that it would be not possible to
do a nested locking from L2 → L0. As explicitly stated
in the definition of the scenario, it does not allow threads
to sleep inside locks. In Section 4 we define scenarios that
allow threads to sleep inside locks (an assumption valid in
RTSJ programs) and use the syntax describe in Figure 2 for

defining scenarios.

S0
(t <= 0)

S3
S1 S2

(t == 0)
i := 0

nol[i] := 1,
i++

(i < NT)

(i == NT)
i := 0

(i < NT)
sl[i] := 0,
i++

(i == NT)
start!

(i < NT)
nol[i] := 2,
i++

(i < NT)
nol[i] := 3,
i++

(i < NT)
sl[i] := 2,
i++

(i < NT)
sl[i] := 1,
i++

(a) (b)

Figure 2. Scenario generator.

4. Model Analysis

In this section we formally explore the behaviour of the
synchronisation protocol proposed in this paper. Since we
are using model checking as our analysis method, we need
to define different scenarios that provide the executions we
are interested in analysing. From an analysis point of view,
we classify our properties into two different types: consis-
tency and behaviour. Consistency properties are used to en-
sure that we have correct modelled the protocol. Behaviour
properties are used to explore in more detail different be-
haviours associated with the protocol.

Verification scenarios: The generation of all possible
scenarios for the protocol using model checking is not feasi-
ble during the verification process. Even if it could, such an
approach would generate many scenarios that would never
occur in a real system. Therefore, we model some scenar-
ios aimming to capture the major behaviours we are inter-
ested in analysing. These scenarios are depicted in Figure
3, where we propose seven different scenarios for our for-
mal analysis. The syntax for the definition of the scenarios
follows the one explained in Section 3. Moreover, when a
PCE lock is defined (Figure 3), the number in its right side
is the ceiling priority for that lock.

In both Scenarios 1, 2, 5 and 7 we expect not to have
deadlocks. For Scenario 3 this assumption is not true, due to
the possible combinations of entrance and exits of PI locks.
Using Scenario 4 we depict the occurence of exceptions for
PCE locks. Scenario 6 is used to illustrate problems with the
use of the sleep method found in Java8. The last Scenario 7
is used to explore the behaviour of using both PI and PCE
policies in the same system.

8We used only two locks in Scenario 6 (three locks generated state
explosion problems) because the complexity added to the analysis when
the sleep behaviour is activated

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

Figure 3. Scenarios for the analysis.

Consistency analysis: Consistency analysis is used to en-
sure that the model presented in the last section correctly
incorporates the definitions of the protocol, with respect to
both PI and PCE lock behaviours. We start analysing the
change of priorities that can occur with the interaction of
threads entering and exiting locks. According to the proto-
col, the behaviour for such property is defined via the addi-
tion of priority sources.

Property 1. When a thread (Tid) acquires a lock. If the
lock was of PI type and higher priority threads try to enter
this lock, new thread priority sources are added to Tid and
its active priority becomes greater than its base priority.
Otherwise, if the lock was of PCE type, a new PCE lock
source is added to Tid and its active priority is changed if
Tid active priority is lower than the lock’s priority ceiling.

In the context of PI locks we are dealing with the addi-
tion of thread sources (array STN [Tid] in the model9). For
PCE locks we are looking at the addition of PCE locks as
priority sources (array SPN [Tid] in the model). To spec-
ify this property we use the pattern (Φ � φ). The left
side of the implication specifies that the thread has either
threads or PCE locks as priority sources (STN [Tid] >
0) || (SPN [Tid] > 0). At the right side we make sure
that the active priority of the thread is greater than its base
priority (T [Tid][TAP] > T [Tid][TBP]).

9Due to space constraints we do not present the full formal model. The
reader is referred to [8] for such a presentation.

In order to check this property, we substitute Tid for each
thread in the scenarios, except for Scenarios 3 and 4. Exe-
cuting different verification runs and having a true result in
all of them confirms the properties. For Scenarios 3 and 4
we only execute this property with the substitution of Tid

for the lowest priority thread in the scenario (zero), reach-
ing a true result. Specifically, for the other threads of the
scenarios we do not verify this property for the following
reason. In Scenario 3 it is possible that a low priority thread
becomes source of a higher one (in executions that can po-
tentially lead to a deadlock situation, see Property 4). Be-
cause the active priority of the higher thread is not changed,
the right-side of the implication is false. In Scenario 4 we
have the case where a thread enters in a PCE lock (satis-
fying the left-side of the implication) and, because its base
priority is greater than the ceiling priority of the lock, an
exception happens (see Property 3) and the priority is not
changed (right-side of the implication is false). The next
property focuses on ensuring that mutual exclusion is guar-
anteed by the model.

Property 2. Between the time that a thread enters and exits
a lock, no other thread can enter in the lock.

We specify this safety property by inserting a global
array (threadin[NL]) in the model that has the size of
all locks in the given scenario (we use the id of the
locks (Lid) as index to this array). We start with all val-
ues of threadin[NL] set to zero, incrementing it when
a thread enters in a lock (transition S0 → S1 for
Lock automaton) and decrementing when a thread exits
a lock (transition S0 → S7 for Lock automaton). This
way we define the property: A[] (threadin[Lid] >=
0) && (threadin[Lid] <= 1). The property is verified
for all locks (Lid) in the scenarios. Having those proper-
ties verified to a true result (see Table 1), now we focus on
analysing some behaviours of the protocol.

Behaviour analysis: Behaviour analysis is used to ex-
plore certain behaviours of the protocol. In the first prop-
erty, we start analysing that it is not possible to have excep-
tions being raised.

Property 3. An exception is never generated.

To specify this property we define the safety formula:
A[] (not Protocol.EXCEPTION) – making sure that
the EXCEPTION state of the Protocol automaton in the
model is never reached. This property mainly concerns PCE
locks and, when evaluated in the scenarios, had a false re-
sult only for Scenario 3 due to the different ways threads
can nest locks and that ceiling priorities for the locks are
defined. The exception generated refers to a synchronous
exception, rather than an asynchronous exception. One triv-
ial counter-example that shows the generation of the syn-
chronous exception is shown in Figure 4.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

Figure 4. Synchronous exception generated.

Another behaviour property looks at the important issue
of not having deadlock situations.

Property 4. No deadlock situations can occur in the defined
scenarios.

Using the deadlock keyword available in the UPPAAL
tool, we can easily specify this formula, leading to the spec-
ification A[] (not deadlock). During verification, this prop-
erty was true for Scenarios 1, 2, 5 and 7. Specifically, with
the true result in the verification of Scenario 5 (where ceil-
ings are correctly defined), we ensure that the basic prop-
erties of the PCE protocol, deadlock freedom and single
blocking, is maintained in the modified protocol presented
in this paper. We ensure single blocking because in Sce-
nario 5, without having single blocking, certain executions
would inevitably lead to deadlock situations, which do not
occur. For Scenarios 3, 4 and 6 the property was false. In
Scenario 3 the use of PI locks leads to a deadlock situation.
The generation of an exception is the reason for the dead-
lock in Scenario 4. Finally, in Scenario 6 the use of PCE
locks when threads can sleep inside locks leads to the dead-
lock – a situation prone to happen in such scenarios [6]. In
Figure 5 we show the counter-example for the property us-
ing Scenario 6.

Figure 5. Deadlock with PCE locks.

In the counter-example, thread T2 with highest priority
starts executing and enters lock L0, increasing its priority
to 5. Instead of continuing the execution, T2 sleeps and

enables thread T1 to start executing and entering in lock L1.
When T2 wakes, it tries to enter in lock L1 that has been
locked by T1. The deadlock situation has been formed due
to the sleep semantics found in the Java language.

The last analysed property is used to show the main idea
of the protocol, having PCE locks to increase their priori-
ties higher than the priority ceiling. To do such, we focus
our attention only in Scenario 7 and define the following
property.

Property 5. It is not possible for thread T0 to have its active
priority raised above priority 4.

The property is defined as (A[] (T [T0][TAP] <= 4).
This ensures that in all states the active priority (constant
TAP in the model) of thread T0 is lower than or equal to
four. Looking at the definition of the scenario and its inter-
actions, at first sight the maximum active priority of thread
T0 should be 4. Nevertheless, this is not true and we show in
Figure 6 the counter-example that illustrates the main fea-
ture of the protocol defined in this paper.

Figure 6. PCE lock acting as a PI lock.

Initially, thread T0 enters in PI-type lock L1. After enter-
ing in the lock, thread T1 starts executing and enter in lock
L0. It is then preempted by thread T2 which tries to enter in
lock L1, increasing the priority of T0 which then enters in
lock L2. Finally, the highest priority thread T3 tries to enter
in lock L0 and increases the priority of T1. T1 now tries to
enter in PCE lock L2, already locked by T0. According to
the protocol definition, the active priority of T0 is boosted
(lock L2 act as a PI lock) and the system can finish. Such in-
teraction without this protocol would not have made possi-
ble the correct execution of the system and an asynchronous
exception would have been generated as soon as thread T1

tried to enter in the lock L2 with its active priority greater
than the ceiling priority.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

Verification results: In Table 1 we condensed the verifi-
cation results for both consistency and behaviour properties.
The syntax used to describe the results is: (Result (T for
true or F for false), Time (approximated in sec:msec) and
Memory space (approximated in MB)). In the verifications
we used an Intel Pentium 4 1.9 GHz machine running the
Slackware Linux 8 Operating System with 1 Gb of RAM.
UPPAAL tool version 3.4.11 was used with its aggressive
state space reduction option set.

Table 1. Verification results.
Prop. Scenario 1 Scenario 2 Scenario 3

1 (T, ≈ 00:52, ≈ 28) (T, ≈ 00:62, ≈ 37) (T, ≈ 23:81, ≈ 1089)
2 (T, ≈ 00:42, ≈ 23) (T, ≈ 00:63, ≈ 24) (T, ≈ 21:84, ≈ 753)
3 (T, ≈ 00:42, ≈ 17) (T, ≈ 00:52, ≈ 23) (T, ≈ 20:87, ≈ 753)
4 (T, ≈ 00:97, ≈ 24) (T, ≈ 01:29, ≈ 24) (F, ≈ 37:66, ≈ 567)
5 – – –

Prop. Scenario 4 Scenario 5 Scenario 6
1 (T, ≈ 08:91, ≈ 509) (T, ≈ 19:09, ≈ 766) (T, ≈ 09:19, ≈ 482)
2 (T, ≈ 08:22, ≈ 267) (T, ≈ 18:24, ≈ 560) (T, ≈ 08:53, ≈ 327)
3 (F, ≈ 00:52, ≈ 31) (T, ≈ 18:13, ≈ 560) (T, ≈ 08:42, ≈ 327)
4 (F, ≈ 01:35, ≈ 31) (T, ≈ 42:54, ≈ 561) (F, ≈ 10:51, ≈ 170)
5 – – –

Prop. Scenario 7
1 (T, ≈ 01:56, ≈ 94)
2 (T, ≈ 01:35, ≈ 60)
3 (T, ≈ 01:35, ≈ 64)
4 (T, ≈ 03:43, ≈ 65)
5 (F, ≈ 01:19, ≈ 55)

5. Conclusions and Final Remarks

Whilst there is literature abound on priority inheritance
protocols (a good review is given by Liu [5]), all of it fo-
cuses on the properties of a particular approach. There is
none that addresses the combined use of multiple proto-
cols. The main international standards that address the use
of more than one type of priority inheritance protocol are
POSIX and Ada. Similar to the RTSJ, both allow the use of
PI and PCE protocols in programs (although with a different
level of support). Unfortunately, they do not consider the
use of a mixture of PI and PCE locks in the same system.
The unwritten assumption seems to be that an application
will use one approach or the other.

This paper has illustrated why multiple approaches are
likely to be needed in large real-time systems, and we have
shown that asynchronous exceptions can be generated un-
der normal operational circumstances. To solve this prob-
lem, we proposed a new version of the PCE protocol that
allows a more harmonious integration with the PI proto-
col. We have used model checking technology to analyse
the behaviour of the protocol. During the analysis we have
showed that for all modelled scenarios, the protocol avoids
unwanted asynchronous exceptions. We also reconfirm the
danger of self suspension whilst holding a lock (for exam-
ple by calling the sleep() method) in RTSJ programs. This

can lead to deadlock situations even when only PCE locks
are used. This undermines one of the main advantages of
using PCE.

In addition, the proposed formal priority inheritance
model can be modified to explore the behaviour of other
priority inheritance protocols in the literature. The model
is available on our web site (http://www.cs.york.ac.uk/rts/
osantos) for this purpose. With respect to the maximum
blocking time, the protocol is equivalent to the PI protocol
when: (i) only PI locks are used or; (ii) there are interac-
tion between PI and PCE locks. When only the PCE lock is
used, the maximum blocking time equals that of the original
PCE protocol.

Currently, we do not model any kind of dynamic changes
that may occur in the system due to program behaviour, in-
cluding the change of thread priorities and the change of
lock protocols. This adds considerable complexity to the
formal model and can easily generate state explosion prob-
lems. As future work, we are consider different ways to
manage this complexity and hence extend the model.

6. Acknowledgements

The authors gratefully acknowledge the contributions
of David Holmes, Peter Dibble, Rudy Belliardi and Doug
Locke to some of the work presented in this paper.

References

[1] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UP-
PAAL. In 4th Int. School on Formal Methods for the Design
of Computer, Communication, and Software Systems, volume
3185 of LNCS, pages 200–236, Italy, 2004. Springer-Verlag.

[2] R. Belliardi et al. The Real-Time Specification for Java - Ver-
sion 1.0.1. http://www.rtsj.org/, USA, 2004.

[3] G. Bollella et al. The Real-Time Specification for Java - Ver-
sion 1.0. Addison-Wesley, USA, 2000.

[4] B. M. Brosgol. A comparison of the mutual exclusion fea-
tures in Ada and the Real-Time Specification for Java. In
10th Ada-Europe International Conference on Reliable Soft-
ware Technologies, volume 3555 of LNCS, pages 129–143,
UK, 2005.

[5] J. W. S. Liu. Real-time systems. Prentice Hall, 2000.
[6] R. Rajkumar. Synchronization in real-time systems a priority

inheritance approach. Kluwer, USA, 1991.
[7] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance

protocols: an approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[8] A. Wellings et al. Integrating Priority Inheritance Algorithms
in the Real-Time Specification for Java. Technical Report
YCS-2007-412, Department of Computer Science - Univer-
sity of York, UK, 2007.

[9] A. J. Wellings. Concurrent and real-time programming in
Java. John Wiley & Sons, UK, 2004.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00 © 2007

