1: [10 points] Briefly describe when it is not efficient to apply the divide and conquer approach. Just describe one case.

2: [10 points] True/False Questions. Just say T(ue) or F(alse) for each of the following questions.

(a) [2 points] $9,999,999n^3 \in \Theta(n^3)$.
(b) [2 points] $n^2 \in o(n^3)$.
(c) [2 points] $n^4 \in \omega(n^4)$.
(d) [2 points] $n \lg n \in o(n)$.
(e) [2 points] $n^2 \in O(n^3)$.

3: [10 points] Write the recurrence equations for merge sort and solve the equations to compute the time complexity. Assume that $n = 2^k$ where k is a positive integer.
4: [20 points] Prove that \(a_1 n + a_2 n^2 + a_3 n^3 + \cdots + a_{k-1} n^{k-1} + a_k n^k = \Theta(n^k) \) where \(a_i > 0 \) (1 \(\leq \) \(i \leq \) \(k \)).

Hint: Consider \(\max(a_1, a_2, \cdots, a_k) \) for \(O \) (big Oh) and \(\min(a_1, a_2, \cdots, a_k) \) for \(\Omega \).

5: [10 points] Sort the following list in increasing order of asymptotic time complexity:

- \(2^n \)
- \(10^7 n \log n \)
- \(n^2 - 3n \)
- \(5n^3 \)
- \(n! \)
- \(n^6 - 10^9 n^4 \)

6: [10 points] Develop a divide-and-conquer algorithm that searches a sorted list of \(n \) integers to find an arbitrary integer \(x \) in the list. Especially, write a ternary search algorithm that divides a list into three smaller sublists of equal size where \(n = 3^k \) for \(k > 0 \).
7: [20 points] Answer the following questions.

(a) [10 points] Define the principle of optimality. To solve a problem via dynamic programming, the principle of optimality should hold for the problem. Why?

(b) [10 points] Briefly show that the principle of optimality holds for the minimum spanning tree problem.

8: [10 points] Briefly describe how dynamic programming algorithms can reduce the time complexity to solve certain problems compared to recursive divide conquer algorithms.
9: Extra Credit [10 points]. Construct the optimal binary search tree for three keys A, B, and C with search probabilities 0.2, 0.3, and 0.5.