Backtracking

Sum of Subsets
and
Knapsack
Backtracking

• Two versions of backtracking algorithms
 – Solution only needs to be feasible (satisfy problem’s constraints)
 • sum of subsets
 – Solution needs also to be optimal
 • knapsack
The backtracking method

- A given *problem* has a set of constraints and possibly an objective function
- The *solution* must be feasible and it may optimize an objective function
- We can represent the *solution space* for the problem using a *state space tree*
 - The *root* of the tree represents 0 choice,
 - Nodes at depth 1 represent first choice
 - Nodes at depth 2 represent the second choice, etc.
 - In this tree a *path* from a root to a leaf represents a candidate solution
Sum of subsets

- **Problem**: Given n positive integers w_1, \ldots, w_n and a positive integer S. Find all subsets of w_1, \ldots, w_n that sum to S.

- **Example**:
 $n=3$, $S=6$, and $w_1=2$, $w_2=4$, $w_3=6$

- **Solutions**:
 $\{2,4\}$ and $\{6\}$
Sum of subsets

- We will assume a binary state space tree.

- The nodes at depth 1 are for including (yes, no) item 1, the nodes at depth 2 are for item 2, etc.

- The left branch includes w_i, and the right branch excludes w_i.

- The nodes contain the sum of the weights included so far.
Sum of subset Problem:

State SpaceTree for 3 items: \(w_1 = 2, \ w_2 = 4, \ w_3 = 6 \) and \(S = 6 \)

The sum of the included integers is stored at the node.
A Depth First Search solution

- Problems can be solved using depth first search of the (implicit) state space tree.

- Each node will save its depth and its (possibly partial) current solution

- DFS can check whether node \(v \) is a leaf.
 - If it is a leaf then check if the current solution satisfies the constraints
 - Code can be added to find the optimal solution
A DFS solution

• Such a DFS algorithm will be very slow.

• It does not check for every solution state (node) whether a solution has been reached, or whether a partial solution can lead to a feasible solution.

• Is there a more efficient solution?
Backtracking

• **Definition**: We call a node *nonpromising* if it cannot lead to a feasible (or optimal) solution, otherwise it is *promising*.

• **Main idea**: Backtracking consists of doing a DFS of the state space tree, checking whether each node is promising and if the node is nonpromising backtracking to the node’s parent.
Backtracking

- The state space tree consists of expanded nodes only (called the pruned state space tree)
- The following slide shows the pruned state space tree for the sum of subsets example
- There are only 15 nodes in the pruned state space tree
- The full state space tree has 31 nodes
A Pruned State Space Tree (find all solutions)

\(w_1 = 3, w_2 = 4, w_3 = 5, w_4 = 6; \ S = 13 \)

Sum of subsets problem
void checknode (node v) {
 node u

 if (promising (v))
 if (aSolutionAt(v))
 write the solution
 else //expand the node
 for (each child u of v)
 checknode (u)
}
Checknode

- Checknode uses the functions:
 - $promising(\nu)$ which checks that the partial solution represented by ν can lead to the required solution
 - $aSolutionAt(\nu)$ which checks whether the partial solution represented by node ν solves the problem.
Sum of subsets – when is a node “promising”?

• Consider a node at depth i
• $weight_{SoFar} =$ weight of a node, i.e., sum of numbers included in partial solution that the node represents
• $total_{PossibleLeft} =$ weight of the remaining items $i+1$ to n (for a node at depth i)
• A node at depth i is non-promising if \((weight_{SoFar} + total_{PossibleLeft} < S) \)
 or \((weight_{SoFar} + w[i+1] > S) \)
• To be able to use this “promising function” the w_i must be sorted in non-decreasing order
A Pruned State Space Tree

\[w_1 = 3, \ w_2 = 4, \ w_3 = 5, \ w_4 = 6; \ S = 13 \]

Nodes numbered in “call” order

X- backtrack
sumOfSubsets (i, weightSoFar, totalPossibleLeft)

1) if (promising (i)) //may lead to solution
2) then if (weightSoFar == S)
3) then print include[1] to include[i] //found solution
 return
4) else //expand the node when weightSoFar < S
5) include [i + 1] = "yes" //try including
6) sumOfSubsets (i + 1, weightSoFar + w[i + 1],
 totalPossibleLeft - w[i + 1])
7) include [i + 1] = "no" //try excluding
8) sumOfSubsets (i + 1, weightSoFar ,
 totalPossibleLeft - w[i + 1])

boolean promising (i)
1) return (weightSoFar + totalPossibleLeft ≥ S) and
 (weightSoFar == S or weightSoFar + w[i + 1] ≤ S)

Prints all solutions!

Initial call sumOfSubsets(0, 0, \sum_{i=1}^{n} w_i)
Backtracking for optimization problems

- To deal with optimization we compute:
 - best – value of best solution achieved so far
 - value(ν) – the value of the solution at node ν
 - Modify promising(ν)

- Best is initialized to a value that is equal to a candidate solution or worse than any possible solution.
- Best is updated to value(ν) if the solution at ν is “better”

- By “better” we mean:
 - larger in the case of maximization and
 - smaller in the case of minimization
Modifying promising

- A node is *promising* when
 - it is feasible and can lead to a feasible solution and
 - “there is a chance that a better solution than the (current) *best* can be achieved by expanding it”
- Otherwise it is *nonpromising*

- A *bound* on the best solution that can be achieved by expanding the node is computed and compared to *best*
- If the *bound* $> *best*$ for maximization, ($< *best*$ for minimization) the node is promising
Modifying promising for Maximization Problems

- For a *maximization* problem the bound is an *upper bound*,
 - The largest possible solution that can be achieved by expanding the node is smaller than or equal to the *upper bound*
- If *upper bound* > *best* so far, a better solution may be found by expanding the node and the feasible node is *promising*
Modifying promising for Minimization Problems

• For minimization, the bound is a lower bound,
 – The smallest possible solution that can be achieved by expanding the node is larger than or equal to the lower bound

• If lower bound < best, a better solution may be found and the feasible node is promising
Template for backtracking in the case of optimization problems.

Procedure `checknode (node v)`
{
 node u;
 if (`value(v)` is better than `best`)
 `best` = `value(v)`;
 if (`promising (v)`)
 for (each child u of v)
 `checknode (u)`;
}

- `best` is the best value so far and is initialized to a value that is equal to or worse than any possible solution.
- `value(v)` is the value of the solution at the node.
Knapsack problem

- 0–1 knapsack problem using greedy algorithm
- Fractional knapsack problem
Notation for knapsack

• We use maxprofit to denote \textit{best}
• $\text{profit}(v)$ to denote $\textit{value}(v)$
The state space tree for knapsack

• Each node v will include 3 values:
 – $\text{profit}(v)$ = sum of profits of all items included in the knapsack (on a path from root to v)
 – $\text{weight}(v)$ = the sum of the weights of all items included in the knapsack (on a path from root to v)
 – $\text{upperBound}(v)$. $\text{upperBound}(v)$ is greater or equal to the maximum benefit that can be found by expanding the whole subtree of the state space tree with root v.

• The nodes are numbered in the order of expansion
Promising nodes for 0/1 knapsack

- Node v is *promising* if $\text{weight}(v) < C$, and $\text{upperBound}(v) > \text{maxprofit}$
- Otherwise it is not promising
- Note that when $\text{weight}(v) = C$, or $\text{maxprofit} = \text{upperbound}(v)$ the node is non-promising
Main idea for upper bound

- **Main idea**: *KWF (knapsack with fraction)* can be used for computing the upper bounds.

- **Theorem**: The optimal profit for 0/1 knapsack \leq optimal profit for *KWF*.

- **Discussion**: Clearly the optimal solution to 0/1 knapsack is a possible solution to *KWF*. So the optimal profit of *KWF* is greater or equal to that of 0/1 knapsack.
Computing the upper bound for 0/1 knapsack

• Given node v at depth i.
• $UpperBound(v) = KWF2(i+1, \text{weight}(v), \text{profit}(v), w, p, C, n)$
• $KWF2$ requires that the items be ordered by non-increasing p_i / w_i. If we arrange the items in this order before applying the backtracking algorithm, $KWF2$ will pick the remaining items in the required order.
KWF2(i, weight, profit, w, p, C, n)

1. bound = profit
2. for j=i to n
3. \(x[j]=0\) //initialize variables to 0
4. while (weight<C && i<=n) //not “full” and more items
5. if weight+w[i]<=C //room for next item
6. \(x[i]=1\) //item i is added to knapsack
7. weight=weight+w[i]; bound = bound +p[i];
8. else
9. \(x[i]=(C-weight)/w[i]\) //fraction of i added to knapsack
10. weight=C; bound = bound + p[i]*x[i]
11. i=i+1 //next item
12. return bound

• KWF2 is in O(n) (assuming items sorted before applying backtracking)
Pseudo code

• The arrays w, p, $include$ and $bestset$ have size $n+1$.
• Location 0 is not used
• $include$ contains the current solution
• $bestset$ the best solution so far
numbest=0; //number of items considered
maxprofit=0;
knapscak(0,0,0);
cout << maxprofit;
for (i=1; i<= numbest; i++)
 cout << bestset[i]; //the best solution

- maxprofit is initialized to 0, which is the worst profit that can be achieved with positive ρ_i.
- In Knapsack – before determining if node ν is promising, maxprofit and bestset are updated
knapsack(i, profit, weight)

if (weight <= C && profit > maxprofit)
 // save better solution
 maxprofit=profit //save new profit
 numbest= i; bestset = include; //save solution
if promising(i)
 include [i + 1] = “yes”
 knapsack(i+1, profit + p[i+1], weight + w[i+1])
 include[i+1] = “no”
 knapsack(i+1,profit,weight)
Promising(i)

promising(i)
{
 //Cannot get a solution by expanding node
 if weight >= C return false

 //Compute upper bound
 bound = KWF2(i+1, weight, profit, w, p, C, n)
 return (bound>maxprofit)
}
Example

- Suppose $n = 4$, $C = 16$, and we have the following:

<table>
<thead>
<tr>
<th>i</th>
<th>p_i</th>
<th>w_i</th>
<th>p_i / w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

- Note the items are in the *correct order* needed by *KWF*.
Example

F - not feasible
N - not optimal
B - cannot lead to best solution

maxprofit = 0
maxprofit = 40
maxprofit = 70
maxprofit = 80
maxprofit = 90

Item 1 [$40, 2]
Item 2 [$30, 5]
Item 3 [$50, 10]
Item 4 [$10, 5]
The calculation for node 1

$maxprofit = \$0 \ (n = 4, \ C = 16)$

Node 1

a) $profit = \$ 0$

$weight = 0$

b) $bound = profit + p_1 + p_2 + (C - 7) \times \frac{p_3}{w_3}$

$= \$0 + \$40 + \$30 + (16 - 7) \times \$50/10 = \$115$

c) 1 is promising because its weight $=0 < C = 16$

and its bound $\$115 > 0$ the value of $maxprofit$.
The calculation for node 2

Item 1 with profit $40 and weight 2 is included

\[\text{maxprofit} = \$40 \]

a) \[\text{profit} = \$40 \]
\[\text{weight} = 2 \]

b) \[\text{bound} = \text{profit} + p_2 + (C - 7) \times p_3 / w_3 \]
\[= \$40 + \$30 + (16 - 7) \times \$50 / 10 = \$115 \]

c) 2 is promising because its weight = 2 < \[C = 16\]
and its bound $115 > $40 the value of \[\text{maxprofit} .\]
The calculation for node 13

Item 1 with profit $40 and weight 2 is not included
At this point maxprofit=$90 and is not changed

a) profit = $0
weight = 0

b) bound = profit + p_2 + p_3 + (C - 15) \times \frac{p_4}{w_4}
 = $0 + $30 + $50 + (16 - 15) \times \frac{10}{5} = $82

c) 13 is nonpromising because its bound $82 < $90 the value of maxprofit.
Worst-case time complexity

Check number of nodes:

\[1 + 2 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 1 \]

Time complexity: \(\Theta(2^n) \)

When will it happen?

For a given \(n \), \(W=n \)
\(P_i = 1, w_i=1 \) (for \(1 \leq i \leq n-1 \))
\(P_n=n, w_n=n \)
Branch-and-Bound

Knapsack
Characteristics:

- Similar to backtracking approach
- Do not restrict any particular way of traversing the tree
- Use strategy similar to breadth-first-search with some modification (e.g., best-first search with branch-and-bound pruning)
- Visiting all the children of a given node, we can look at all the promising, unexpanded nodes and expand beyond the one with the best bound (e.g., greatest bound).
- For optimization problem
- Exponential-time in the worst case (same as backtracking algorithm), but could be very efficient for many large instances.
Example

F - not feasible
N - not optimal
B - cannot lead to best solution

Item 1 [$40, 2]
Item 2 [$30, 5]
Item 3 [$50, 10]
Item 4 [$10, 5]

Best-first search
(e.g., the order of node selection is based on the values of bound)
Breath-first search with branch-and-bounding pruning

maxprofit = 90

For Comparison: