Greedy vs Dynamic Programming Approach
Outline

- Compare the methods
- Knapsack problem
 - Greedy algorithms for 0/1 knapsack
 - An approximation algorithm for 0/1 knapsack
 - Optimal greedy algorithm for knapsack with fractions
 - A dynamic programming algorithm for 0/1 knapsack
Greedy Approach VS Dynamic Programming (DP)

- Greedy and Dynamic Programming are methods for solving optimization problems.
- Greedy algorithms are usually more efficient than DP solutions.
- However, often you need to use dynamic programming since the optimal solution cannot be guaranteed by a greedy algorithm.
- DP provides efficient solutions for some problems for which a brute force approach would be very slow.
- To use Dynamic Programming we need only show that the principle of optimality applies to the problem.
The 0/1 Knapsack problem

- Given a knapsack with weight capacity $W > 0$.
- A set S of n items with weights $w_i > 0$ and benefits $b_i > 0$ for $i = 1,\ldots,n$.
- $S = \{ (item_1, w_1, b_1), (item_2, w_2, b_2), \ldots, (item_n, w_n, b_n) \}$
- Find a subset of the items which does not exceed the weight W of the knapsack and maximizes the benefit.
0/1 Knapsack problem

Determine a subset A of $\{1, 2, \ldots, n\}$ that satisfies the following:

$$\max \sum_{i \in A} b_i \text{ where } \sum_{i \in A} w_i \leq W$$

In 0/1 knapsack a specific item is either selected or not
Variations of the Knapsack problem

- Fractions are allowed. This applies to items such as:
 - bread, for which taking half a loaf makes sense
 - gold dust
- No fractions.
 - 0/1 (1 brown pants, 1 green shirt…)
 - Allows putting many items of same type in knapsack
 - 5 pairs of socks
 - 10 gold bricks
 - More than one knapsack, etc.
- We will first cover the 0/1 knapsack problem followed by the fractional knapsack problem.
Brute force!

- Generate all 2^n subsets
 - Discard all subsets whose sum of the weights exceed W (*not feasible*)
 - Select the maximum total benefit of the remaining (feasible) subsets

- What is the run time?
 - $\Omega(2^n)$
Example with “brute force”

\[S = \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \} \]
and \(W = 25 \)

- Subsets:
 1. \{\}
 2. \{ (item_1, 5, \$70) \} \quad \text{Profit=\$70}
 3. \{ (item_2, 10, \$90) \} \quad \text{Profit=\$90}
 4. \{ (item_3, 25, \$140) \} \quad \text{Profit=\$140}
 5. \{ (item_1, 5, \$70), (item_2, 10, \$90) \}. \text{Profit=\$160 ****}
 6. \{ (item_2, 10, \$90), (item_3, 25, \$140) \} exceeds \(W \)
 7. \{ (item_1, 5, \$70), (item_3, 25, \$140) \} exceeds \(W \)
 8. \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \} exceeds \(W \)
Greedy approach for 0/1 Knapsack?

- It falls short! We will see examples in the following slides.
Greedy 1: Max benefit first – Counter example

\[S = \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \} \]
Greedy 2: Minimum weight first – Counter example

\[S = \{ (item_1, 5, \$150), (item_2, 10, \$60), (item_3, 20, \$140) \} \]
Greedy 3: Max weight first
Counter Example

\[S = \{ (item_1, 5, \$150), (item_2, 10, \$60), (item_3, 20, \$140) \} \]
Greedy 4: Maximum benefit per unit item -- Counter Example

\[S = \{ (item_1, 5, $50), (item_2, 20, $140), (item_3, 10, $60) \} \]
Approximation algorithms

- Approximation algorithms are not guaranteed to provide an optimal solution, but yields that are reasonably close to optimal solutions.

- Let ApproxAlg represent a solution provided by an approximate algorithm. How far is the solution ApproxAlg away from the optimum OPT in the worst case?

- Many criteria are used. We use OPT/ApproxAlg for maximization, and attempt to establish OPT/ApproxAlg ≤ K where K is a constant (ApproxAlg/OPT for minimization)
Approximation algorithms

- The following slides show that the “best” greedy algorithm for 0/1 knapsack
 - Greedy 4 does not satisfy $\text{OPT}/\text{ApproxAlg} \leq K$
 - Often greedy4 gives an optimal solutions, but for some problem instances the ratio can become very large
 - A small modification of greedy4, however, guarantees that $\text{OPT}/\text{ApproxAlg} \leq 2$
 - This is a big improvement
Approximation algorithms

• Use greedy 4: Select the item with *maximum benefit per unit first*

• Example where greedy4 provides a very poor solution:
 • Assume a 0/1 knapsack problem with \(n=2 \)
 • Very large \(W \).
 • \(S=\{(\text{item1, 1, 2}, \ (\text{item 2, } W, $1.5W) \} \)
 • The solution to greedy4 has a benefit of $2
 • An optimal solution has a benefit of $1.5W$.
 • If we want the best investment and we have \(W=10,000 \). We should choose the 2nd one with a profit of $15,000, and not the first with a profit of $2.
Approximation Continued

- Let B_{Opt} denote the optimal benefit for the 0/1 knapsack problem.

- Let $B_{Greedy4}$ be the benefit calculated by greedy4.
 - For last example $B_{Opt} / B_{Greedy4} = \frac{1.5W}{2}$
 - Note: W can be arbitrarily large

- We would like to find a better algorithm Alg such that $B_{Opt} / Alg \leq K$ where K is a small constant and is independent of the problem instance.
A Better Approximation Algorithm

- Let $\text{maxB} = \max\{ b_i | i = 1, \ldots, n \}$

- The approximation algorithm selects, either the solution to Greedy4, or only the item with benefit MaxB depending on $\max\{ \text{BGreedy4}, \text{maxB} \}$.

- Let $\text{APP} = \max\{ \text{BGreedy4}, \text{maxB} \}$

- What is the asymptotic runtime of this algorithm?

- It can be shown that with this modification the ratio $\frac{\text{BOpt}}{\text{APP}} \leq 2$ (Optimal benefit at most twice that of APP)
An Optimal Greedy Algorithm for Knapsack with Fractions (KWF)

In this problem a fraction of any item may be chosen
The following algorithm provides the optimal benefit:

- The greedy algorithm uses the maximum benefit per unit selection criteria
 1. Sort items in decreasing \(\frac{b_i}{w_i} \).

 2. Add items to knapsack (starting at the first) until there are no more items, or the next item to be added exceeds \(W \).

 3. If knapsack is not yet full, fill knapsack with a fraction of next unselected item.
Let k be the index of the last item included in the knapsack. We may be able to include the whole or only a fraction of item k

Without item k

\[\text{totweight} = \sum_{i=1}^{k-1} w_i \]

profit

\[\text{profitKWF} = \sum_{i=1}^{k-1} p_i + \min\{ (W - \text{totweight}), w_k \} \times \left(\frac{p_k}{w_k} \right) \]

\[\min\{ (W - \text{totweight}), w_k \} \], means that we either take the whole of item k when the knapsack can include the item without violating the constraint, or we fill the knapsack by a fraction of item k.
Example of applying the optimal greedy algorithm for Fractional Knapsack Problem

\[S = \{ (item_1, 5, $50), (item_2, 20, $140) (item_3, 10, $60) \} \]
Greedy Algorithm for Knapsack with fractions

- To show that the greedy algorithm finds the optimal profit for the fractional Knapsack problem, you need to prove there is no solution with a higher profit (see text)

- Notice there may be more than one optimal solution
Dynamic programming approach for the 0/1 Knapsack problem

- Show principle of optimality holds
- Discuss the algorithm
Principle of Optimality for 0/1 Knapsack problem

- **Theorem**: 0/1 knapsack satisfies the principle of optimality

- **Proof**: Assume that item \(i \) is in the most beneficial subset that weighs at most \(W \). If we remove item \(i \) from the subset the remaining subset must be the most beneficial subset weighing at most \(W - w_i \) of the \(n - 1 \) remaining items after excluding item \(i \).

- If the remaining subset after excluding item \(i \) was not the most beneficial one weighing at most \(W - w_i \) of the \(n - 1 \) remaining items, we could find a better solution for this problem and improve the optimal solution. This is impossible.
Dynamic Programming Approach

- Given a knapsack problem with n items and knapsack weight of W.

- We will first compute the maximum benefit, and then determine the subset.

- To use dynamic programming we solve smaller problems and use the optimal solutions of these problems to find the solution to larger ones.
Dynamic Programming Approach

• What are the smaller problem?
 • Assume a subproblem in which the set of items is restricted to \{1, \ldots, i\} where \(i \leq n \), and the weight of the knapsack is \(w \), where \(0 \leq w \leq W \).
 • Let \(B[i, w] \) denote the maximum benefit achieved for this problem.
 • Our goal is to compute the maximum benefit of the original problem \(B[n, W] \).
 • We solve the original problem by computing \(B[i, w] \) for \(i = 0, 1, \ldots, n \) and for \(w = 0, 1, \ldots, W \).
 • We need to specify the solution to a larger problem in terms of a smaller one.
Recursive formula for the “smaller” 0/1 Knapsack Problem only using \textit{item}_1 \text{ to } \textit{item}_i \text{ and knapsack weight at most } w

1. If there is no item in the knapsack or } W \text{ is 0, then the benefit is 0

2. If the weight of \textit{item}_i \text{ exceeds the weight } w \text{ of the knapsack then }
\textit{item}_i \text{ cannot be included in the knapsack and the maximum benefit is } B[i-1, w]

3. Otherwise, the benefit is the maximum achieved by either not including \textit{item}_i \text{ (i.e., } B[i-1, w]) \text{ or by including } \textit{item}_i \text{ (i.e., } B[i-1, w- w_i]+b_i)

\[B[i, w] = \begin{cases}
0 & \text{for } i = 0 \text{ or } w = 0 \\
B[i-1, w] & \text{if } w_i > w \\
\max\{ B[i-1, w], B[i-1, w-w_i]+b_i \} & \text{otherwise}
\end{cases} \]
Pseudo-code: 0/1 Knapsack
(n+1)*(W+1) Matrix

Input: W, \{w_1, w_2, \ldots w_n\}, \{b_1, b_2, \ldots b_n\}
Output: B[n, W]

for w ← 0 to W do // row 0
 B[0, w] ← 0
for k ← 1 to n do // rows 1 to n
 B[k, 0] ← 0 // element in column 0
 for w ← 1 to W do // elements in columns 1 to W
 if (w_k ≤ w) and (B[k-1, w - w_k] + b_k > B[k-1, w])
 then B[k, w] ← B[k-1, w - w_k] + b_k
 else B[k, w] ← B[k-1, w]
Example:

\[W = 30, \ S = \{ (i_1, 5, $50), (i_2, 10, $60), (i_3, 20, $140) \} \]

<table>
<thead>
<tr>
<th>Weight:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxProfit { }</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxProfit { }</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>MaxProfit{i_1}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Example continued

$W = 30, S = \{ (i_1, 5, 50), (i_2, 10, 60), (i_3, 20, 140) \}$

<table>
<thead>
<tr>
<th>Weight:</th>
<th>0</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>9</th>
<th>10</th>
<th>...</th>
<th>14</th>
<th>15</th>
<th>...</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxProfit{ }</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>MaxProfit{i_1}</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>50</td>
<td>...</td>
<td>50</td>
<td>50</td>
<td>...</td>
<td>50</td>
<td>50</td>
<td>...</td>
</tr>
<tr>
<td>MaxProfit{i_1, i_2}</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>50</td>
<td>...</td>
<td>50</td>
<td>60</td>
<td>...</td>
<td>60</td>
<td>110</td>
<td>...</td>
</tr>
</tbody>
</table>

- $B[2,10] = \max \{ B[1,10], B[1,10-10] + b_2 \}$

 $= 60$

- $B[2,15] = \max \{ B[1,15], B[1,15-10] + b_2 \}$

 $= \max \{ 50, 50+60 \}$

 $= 110$
Example continued

\(W = 30, S = \{ (i_1, 5, $50), (i_2, 10, $60), (i_3, 20, $140) \} \)

<table>
<thead>
<tr>
<th>Wt:</th>
<th>0...4 5 ... 9 10...14 15... 19 20... 24 25...29 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxP{ }</td>
<td>0...0 0 ... 0 0 ...0 0 ... 0 0... 0 0... 0 0 ... 0 0</td>
</tr>
<tr>
<td>MaxP{(i_1)}</td>
<td>0...0 50...50 50...50 50... 50 50... 50 50... 50 50</td>
</tr>
<tr>
<td>MaxP{(i_1, i_2)}</td>
<td>0...0 50...50 60...60 110...110 110... 110 ... 110</td>
</tr>
<tr>
<td>MaxP{(i_1, i_2, i_3)}</td>
<td>0...0 50...50 60...60 110...110 140...140 190...190 200</td>
</tr>
</tbody>
</table>

 = 140

 = \max \{110, 50+140\}
 = 190

- \(B[3,30] = \max \{ B[2,30], B[2,30-20] + 140 \}\)
 = 200
It is straightforward to fill in the array using the expression on the previous slide. SO What is the size of the array?

- The array is the \((\text{number of items} + 1) \times (W + 1)\).
- So the algorithm runs in \(\Theta(nW)\). It appears to be linear BUT the weight is not a function of only the number of items. What if \(W = n!\) ? Then this algorithm is worse than the brute force method.

- No one has ever found a 0/1 knapsack algorithm whose worst case time is better than exponential AND no one has proven that such an algorithm is not possible.