Greedy Algorithms
Greedy Technique

What is it? How does it work?
- Quick and dirty approach to solving optimization problems
- Not necessarily ends up with an optimal solution

Problems explored
- Coin changing problem
- Minimum spanning tree algorithms
- Dijkstra’s algorithm for single source shortest paths
- Knapsack problem
An optimization problem:
- For a problem to solve, there are an objective function and a set of constraints
- Find a feasible solution for the given instance for which the objective function has an optimal value (either maximum or minimum depending on the problem being solved)
 - A feasible solution satisfies the problem's constraints
 - The constraints specify the limitations on the required solutions

An example in the next slide
Coin changing problem

- Problem: Return correct change using a minimum number of US coins.

- Greedy choice: Pick the coin with the highest value

- A greedy solution: next slide

- The amount owed = 37 cents.
 - The change is: 1 quarter, 1 dime, 2 cents.

- Solution is optimal when US coins are used. Why is it optimal?
A greedy solution:

Input: Set of coins, `amount-owed`

`change = {}`

while (more coin-sizes && valueof(`change`) < `amount-owed`) {

 // Selection
 Choose the largest remaining coin

 // feasibility check
 If (adding the coin makes the valueof(`change`) exceed the `amount-owed`)
 then reject the coin
 else add coin to `change`

 // check if solved
 if (valueof(`change`) == `amount-owed`)
 then return `change`

} return “failed to compute change”
Elements of the Greedy Strategy

- Cast problem as one in which you make a greedy choice and are left with one sub-problem to solve.
- Cost-benefit analysis for a greedy choice, e.g., the number of the coins used vs. the remaining amount of the change you owe.
A greedy solution is not always optimal!

- Reconsider the Coin Changing problem
 - Suppose you live in Alice’s Wonderland where you have 12 cent coins in addition to US coins
 - Suppose you owe 16 cents
 - The greedy solution chooses a 12 cent coin and four 1 cent coins → 5 coins
 - An optimal solution is one dime, one nickel, and one cent → 3 coins

- Greedy algorithms rarely find an optimal solution
 - A proof is needed to show that the algorithm finds an optimal solution.
 - A counter example shows that the greedy algorithm does not provide an optimal solution.
Greedy algorithms make **good local choices** in the hope that they result in an optimal solution.

- Just make a choice that seems best at the moment and solve the remaining sub-problem in the next step
- Iteratively make another greedy choice after one
- Result in feasible solutions but not necessarily end up with an optimal solution

A greedy algorithm never reconsider its choices

- Main difference from dynamic programming
- Dynamic programming is exhaustive, and makes decisions based on all the previous decisions, potentially reconsidering previous choices
- In an earlier lecture on dynamic programming, we saw both greedy and dynamic programming approaches for finding an Optimal BST (Binary Search Tree)
 - A greedy approach locating the highest probability node at the root or trying to minimize the tree depth does not necessarily give you an optimal solution
Greedy Minimum Spanning Tree Algorithms

- Prim’s Algorithm
- Kruskal’s Algorithm
What is A Spanning Tree?

- A *spanning* tree for an undirected graph $G=(V,E)$ is a *subgraph* of G that is a *tree* and contains all the vertices of G.

- Can a graph have more than one spanning tree?

- Can an unconnected graph have a spanning tree?
Minimum Spanning Tree

- The weight of a subgraph is the sum of the weights of its edges.

- A minimum spanning tree for a weighted graph is a spanning tree with the minimum weight.

- Can a graph have more than one minimum spanning tree?

\[\text{Mst } T: w(T) = \sum_{(u,v) \in T} w(u,v) \text{ is minimized} \]
Example of a Problem that Translates into a MST

The Problem
• Several pins of an electronic circuit must be connected using the least amount of wire.

Modeling the Problem
• The graph is a complete, undirected graph \(G = (V, E, W) \), where \(V \) is the set of pins, \(E \) is the set of all possible interconnections between the pairs of pins and \(w(e) \) is the length of the wire needed to connect the pair of vertices.
• Find a minimum spanning tree.
Greedy Choice

We will show two ways to build a minimum spanning tree.

- **Prim's algorithm**
 - A MST can be grown from the current spanning tree by adding the nearest vertex and the edge connecting the nearest vertex to the MST
 - Example: Figure 4.4 in page 146

- **Kruskal's algorithm**
 - A MST can be grown from a forest of spanning trees by adding the smallest edge connecting two spanning trees
 - Example: Figure 4.7 in page 153
Notation

• Tree-vertices: in the tree constructed so far
• Non-tree vertices: rest of vertices

Prim’s Selection rule

• Select the minimum weight edge between a tree-node and a non-tree node and add it to the tree
Key idea of Prim’s algorithm

Select a vertex to be a tree-node

while (there are non-tree vertices)
{
 if (there is no edge connecting a tree node with a non-tree node)
 return “no spanning tree”

 select an edge of minimum weight between a tree node and a non-tree node

 add the selected edge and its new vertex to the tree

} return tree
Prim’s algorithm

procedure `prim(G, w)`
Input: A connected undirected graph $G = (V, E)$ with edge weights w_e
Output: A minimum spanning tree defined by the array `prev`

for all $u \in V$:
 cost(u) = ∞
 prev(u) = nil
Pick any initial node u_0
`cost(u_0) = 0`

$H = \text{makequeue}(V)$ \hspace{1cm} (priority queue, using cost-values as keys)
while H is not empty:
 $v = \text{deletemin}(H)$
 for each ${v, z} \in E$:
 if cost(z) > $w(v, z)$:
 cost(z) = $w(v, z)$
 prev(z) = v
 `decreasekey(H, z)`

w[i][j] = 0 if i=j; edge weight if there is an edge (i, j); or infinity if no edge (i, j) exists
Example

S: set of tree vertices

<table>
<thead>
<tr>
<th>Set S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
</tr>
<tr>
<td>A</td>
<td>5/A</td>
<td>∞/nil</td>
<td>6/A</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
</tr>
<tr>
<td>A, D</td>
<td>2/D</td>
<td>∞/nil</td>
<td>4/A</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
</tr>
<tr>
<td>A, D, B</td>
<td></td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
</tr>
<tr>
<td>A, D, B, C</td>
<td></td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
</tr>
<tr>
<td>A, D, B, C, F</td>
<td></td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
<td>∞/nil</td>
</tr>
</tbody>
</table>

cost/prev
Implementation

• Queue can be implemented as an array or heap
• Time complexity changes based on the implementation of the queue
 – More details next
Prim’s algorithm

procedure prim(G, w)
Input: A connected undirected graph \(G = (V, E) \) with edge weights \(w_e \)
Output: A minimum spanning tree defined by the array prev

for all \(u \in V \):
 cost(u) = \(\infty \)
 prev(u) = nil

Pick any initial node \(u_0 \)

\(cost(u_0) = 0 \)

\(H = \text{makequeue}(V) \) (priority queue, using cost-values as keys)

while \(H \) is not empty:
 \(v = \text{deletemin}(H) \)

 for each \(\{v, z\} \in E \):
 if \(cost(z) > w(v, z) \):
 \(cost(z) = w(v, z) \)
 \(prev(z) = v \)
 decreasekey(H, z)

\(\Theta(V) \)

\(\Theta(1) \)

So, the total time complexity is \(O(V*\text{deletemin}) + O(V * \text{decreasekey}) \)

Note that decreasekey is executed maximum \(E \) times to find a MST
Prim’s algorithm

• Time complexity
 – $O(V \times \text{deletemin}) + O(V \times \text{decreasekey})$
 – Array: deletemin is $O(V)$ and decreasekey is $O(1) \rightarrow O(V^2)$
 – Heap: deletemin is $O(lg V)$ and decrease key is $O(lg V) \rightarrow (E \ lg \ V)$

• So, using heap is better when the graph is sparse (i.e., it has few edges) but worse when the graph has many edges
Lemma 1

Let $G = (V, E)$ be a connected, weighted undirected graph. Let T be a promising subset of E. Let Y be the set of vertices connected by the edges in T. If e is a minimum weight edge that connects a vertex in Y to a vertex in $V - Y$, then $T \cup \{e\}$ is promising.

Note: A feasible set is promising if it can be extended to produce not only a solution, but an optimal solution.

In this algorithm: A feasible set of edges is promising if it is a subset of a Minimum Spanning Tree for the connected graph.
Outline of Proof of Correctness of Lemma 1

- T is the promising subset and e is the minimum cost edge of Lemma 1
- Let T' be the MST such that $T \subseteq T'$
- We will show that if $e \not\in T'$ then there must be another MST T'' such that $T \cup \{e\} \subseteq T''$.

Proof has 4 stages (shown in the following slides):

1. Adding e to T', closes a cycle in $T' \cup \{e\}$.
2. Cycle contains another edge $e' \in T'$ but $e' \not\in T$
3. $T'' = T' \cup \{e\} - \{e'\}$ is a spanning tree
4. T'' is a MST
The Promising Set of Edges Selected by Prim

- $e \in Y$
- $\otimes \in V - Y$

MST T' but $e \notin T'$
Lemma 1

Since T' is a spanning tree, it is connected. Adding e, creates a cycle.

In T' there is a path from $u \in Y$ to $v \in V-Y$. Therefore the path must include another edge e' with one vertex in Y and the other in $V-Y$.
Lemma 1

- If we remove e' from $T' \cup \{ e \}$ the cycle disappears.
- $T'' = T' \cup \{ e \} - \{ e' \}$ is connected. Every pair of vertices connected by a path that does not include e' is still connected in T''. Every pair of vertices connected by a path, which included e', is still connected in T'' because there is a path in $T'' = T' \cup \{ e \} - \{ e' \}$ connecting the vertices of e'.

\[w(e) \leq w(e') \]

By the way Prim picks the next edge
Lemma 1

- $w(e) \leq w(e')$ by the way Prim picks the next edge.
- The weight of T'', $w(T'') = w(T') + w(e) - w(e') \leq w(T')$.
- But $w(T') \leq w(T'')$ because T' is a MST.
- So $w(T') = w(T'')$ and T'' is a MST

$\bullet \in Y$

$\otimes \in V - Y$

Conclusion $T \cup \{e\}$ is promising
Theorem: Prim's Algorithm always produces a minimum spanning tree.

Proof by induction on the set T of promising edges.

Base case: Initially, $T = \emptyset$ is promising.

Induction hypothesis: The current set of edges T selected by Prim is promising.

Induction step: After Prim adds the edge e, $T \cup \{ e \}$ is promising.

Proof: $T \cup \{ e \}$ is promising by Lemma 1.

Conclusion: When G is connected, T produced by Prim is a MST.