Dynamic L ocalization Control for Mobile Sensor Networks

Sameer Tilak, Vinay Kolar, Nael B. Abu-Ghazaleh and Kyoung-Don Kang

{saneer, vi nkol ar, nael , kang} @s. bi nghant on. edu

Abstract

Localization is a fundamental operation in mobile
and self-configuring networks such as sensor networks
and mobile ad hoc networks. For example, sensor loca-
tion is often critical for data interpretation; moreover,
network protocols, such as geographic routing and geo-
graphic storage require individual sensors to know their
coordinates. Existing research focuses on localization
mechanisms: algorithms and infrastructure designed to
allow the sensors to determine their location. In a mo-
bile environment, a related problem exists: when nodes
are mobile, the underlying localization mechanism must
be invoked repeatedly to maintain accurate location in-
formation. We propose and investigate adaptive and pre-
dictive protocols that control the frequency of localiza-
tion based on sensor mobility behavior to reduce the en-
ergy requirements for localization while bounding the
localization error. In addition, we evaluate the energy-
accuracy tradeoffs that arise: intuitively, higher the fre-
quency of localization, the lower the error introduced
because of mobiliy. However, localization is a costly op-

eration since it involves both communication and com-

putation. Since energy is at a premium in wireless de-
vices, it is important to perform localization in an en-
ergy efficient fashion. Our results indicate that the pro-
posed protocols reduce the localization energy signifi-

cantly without sacrificing accuracy.

1. Introduction

Localization is the ability of a sensor to find out its
physical coordinates; this is a fundamental ability for
embedded networks because interpretating the data col-
lected from the network is possible unless the physical
context of the reporting sensors is known. Several higher
level services such as aggregation, routing, storage re-
quire sensors to know their coordinates. [10]). Existing
research has focused on addresing localization problem
static sensor networks (sensors once deployed are sta-

tionary throughout life-time) [3, 4].

1.1. Background

Localization has received a lot of attention in the

context of static sensor networks. WWe now mention some



of the state-of-the art techniques which can be used for
localization for static networks. He et. al [4] have classi-
fied existing localization techniques into two categories:
range-based and range-free.In range-based techniques,
information such as distances (or angles) of a receiver
are computed for a number of references points using
one of the following signal strength or timing based
techniques and then position of the receiver is com-
puted using some multilateration technique [12]. How-
ever, range-free techniques do not depend upon presence

of any such information.

Localization techniques typically require some form
of communication between reference points (nodes
with known coordinates) and the receiver (node that
needs to localize). Some examples of communica-
tion technologies are RF-based and acoustic based
communication. In RADAR system [1], RF-based
localization is suggested, where distance is esti-
mated based on received signal strength. Cricket [9]
uses concurrent radio and ultrasonic sounds to es-
timate distance. Some researchers have used Time
based techniques such as Time-of-Flight(TOA)
[12], Time-Difference-of-Arrival(TDOA) [9, 11] be-
tween reference point and the receiver node as a way
to estimate distance. Niculescu et. al [7] proposed us-
ing angle-of-arrival to estimate position. Recently He
et. al [4] proposed range-free techniques for localiza-

tion.

A straightforward localization approach would make

use of Global Positioning System (GPS). Existing re-

search projects such as zebra-net [5] uses a GPS based
localization, where mobile sensors find out their loca-
tion every three minutes. He et. al [4] pointed out, GPS
based systems require expensive and energy consuming
electronics for precise synchronization with the satel-
lite’s clock. GPS uses one-way flight time information
whereas other systems such as Local Positioning Sys-
tem (LPS) [12] use round-trip-time to avoid time syn-
chronization.

Bulusu et. al [3] studied signal strength based and
connectivity based techniques for localization in outdoor
environments.

Perhaps most similar to our work, the pervasive com-
puting community has investigated location and activity
monitoring and prediction using wearable sensors [6].
However, the focus is on the accuracy of the estimate
and prediction and not on the energy cost. Furthermore,
most of these works assume the persence of accelerom-
eters which we do not assume in this paper.

After discussing state-of-the art localization tech-
niques for static sensor networks, we now motivate the
problem for mobile sensors in the context of several real-

world scenarions.

1.2. Motivation — Mobile Sensor Applications

ZebraNet [5], is a sensor network application for
wild-life tracking whose goal is to provide more insight
into complex issues. In this application, sensors are at-
tached to zebras. As the zebras move, sensors record

various parameters providing insight into mobility and



migration patterns, social structures of these species. In
the proposed implementation, sensors perform localiza-
tion every three minutes using GPS. However, such a
fixed sampling period cannot account effectively for dif-
ferent mobility patterns that the animal follows: for ex-
ample, 3 minute localization period is overly aggressive
for an animal that is asleep or grazing, but may be in-
sufficient to localize an animal that is moving at high
speed. Clearly, it is better to have self-configuring sen-
sors which will adapt dynamically to the animal behav-
ior to provide an accurate energy-efficient localization.
The protocols presented in this paper strive to make the

sensor network self-adaptive.

As another motivating application consider, cellular
phone companies that are interested in finding out cover-
age (signal quality) in a customer area to provide better
quality service. Future infrastructure deployment deci-
sions (e.g., new base stations) are driven by the collected
information. At present, a common way to collect such
information is to have a person to comb the area mea-
suring signal strengths at various locations. This method
is uneconomical and time-consuming. One can imagine
cell phone capable with micro-sensors measuring signal
strength. Such sensors need to find out their coordinates
to report the measured parameters. All subscribers car-
rying such cell phone will gather such information as he

is moving around.

In this paper we are concerned with the following
fundamental energy-quality tradeoff associated with lo-

calizaiton in mobile environments. With mobility, nodes

must repeatedly invoke localization to maintain an ac-
curate estimate of their location. The more often the
localization, the more accurate the location estimate.
However, since there is an energy cost involved in lo-
calization, we would like to minimize the localization
frequency. Thus, the localization must be carried out
with a frequency sufficient to capture location within
acceptable error tolerance. We call this problem Loca-
tion Tracking (LT). We emphasize that location track-
ing is orthogonal to localization: we are concerned with
the problem of when to localize which is largely inde-
pendent of the underlying localization mechanism. More
specifically we assume that the sensors use one of the
several existing localization techniques. While we focus
on localization control in a mobile sensor network en-
vironment, the algorithms and analysis apply for other

mobile environments such as mobile ad hoc networks.

In this paper, we propose two new classes of localiza-
tion approaches: (1) Adaptive; and (2) Predictive. Adap-
tive localization dynamically adjusts the localization pe-
riod based on the recent observed motion of the sensor,
obtained from examining previous locations. This ap-
proach allows the sensor to reduce its localization fre-
quency when the sensor is slow, or increase it when it
is fast. In the second approach, the sensors estimate the
motion pattern of and project its motion in the future. If
the prediction is accurate, which occurs when nodes are
moving predictably, estimates of location may be gener-
ated without performing actual localization, allowing us

to further reduce the localization frequency thereby sav-



ing the energy.

We propose algorithms that fit the two classes above
and compare them to static, fixed-period, localization
both using simulation and analysis. We show that dy-
namic localization can significantly improve the energy
efficiency of localization without sacrificing accuracy in
the location estimation (in fact, improving accuracy in

most situations).

The remainder of this paper is organized as follows.
In Section 2 we define the dynamic localization prob-
lem and present candidate protocols for addressing it in
Section 3. Section 4 presents some analysis of the per-
formance of the protocol under various conditions. In
Section 5 we carry out an evaluation study of the pro-
tocols. In Section 6 we give more insight into behavior
of predictive protocols with unexpected changes in mo-
bility. Finally, in Section 7 we present some concluding

remarks.

2. Problem Definition: Localization Con-

trol

Figure 1 shows a sensor node in motion. At every lo-
calization point, the node invokes its localization mech-
anism (e.g., using GPS, triangulation based localization,
or otherwise) to discover its current location (z;,v;).
The localization point vector is the sequence of local-
ization points collected by a sensor is denoted S;. We
assume that the localization mechanism estimates the

current position with a reasonable tolerance. In the fig-

ure, the uncertainty introduced by the localization mech-
anism is represented by the shaded circles in the Fig-

ure 1.

In the time duration between two consecutive local-
ization points, the error in the estimate of the location in-
creases as the node moves (on average) increasingly fur-
ther from its last location estimate. In order to control
this error, localiztion must be repeated with enough fre-
quency to ensure that the location estimate meets some
application-level error requirements (e.g., the estimate
remains within a prespecified threshold from the ac-
tual location). However, carrying out localization with
high frequency drains the node’s energy. Solutions to
this problem must balance the need to bound error with
the cost of carrying out localization. Exploring proto-
cols that effectively estimate location while minimizing
the localization operations is the problem we consider in
this paper.

We keep our analysis independent of the specific lo-
calization mechanism used. Note that dynamic control
of localization is needed whether localization is car-
ried out on demand (i.e,, the node queries neighbors or
fixed localization nodes for localization information) or
proactively (e.g., by having localization nodes period-
ically transmit localization beacons, or using GPS). If
localization is on-demand , the localization mechanism
can be invoked when needed. Alternatively, if the local-
ization is done periodically without control of the sen-
sor node, the node can still control its localization fre-

quency by deciding when to start listening to the bea-



Figure 1. Mobile Sensor with Localization Points.

cons. Since receiving packets or GPS signals consumes
significant energy, controlling the localization frequency
also applies for such schemes. Also, an underlying as-
sumption in this paper is that an accurate estimate of lo-
cation is needed continuously. Such a situation would
occur, for example, if sensors are continuously collect-

ing data.

2.1. Performance Metrics

The primary tradeoff is between the observed local-
ization error and the energy consumed. The localization
error stands for diveregence of reported location from
actual location. At any given time, we measure diver-
gence in terms of euclidean distance between actual and
reported coordinates — we term this the instantenous er-
ror. We also consider a threshold based error metric
where we compare the absolute error to an appplication
defined tolerance distance (distoierance) (Shown in fig-
ure 1); a localization error lower than tolerance distance
is acceptable to the application. We measure the percent-
age of the time that the localization estimate is within the
application defined threshold.

Consider the example of using cell phone to find out

signal quality within a campus and periodically signal
quality readings are sent to the base station. Tolerance
distance can be specified as 5 meters (say). Intuttion be-
hind is that, for cell companies to plan infrastructure de-
ployment in future it is not required to get exact loca-
tions where the signal is low but they are interested in
general to find out areas of weak signal. So the granular-
ity is more coarse in that case. To capture that we con-

sider threshold based error (E1presh)-

For certain class of applications such as emergency
services, instantenous error (divergence from actual co-
ordinates) might be important. Errorpsoiute, Captures

that effect.

In the following equations, (Iz,ly:) (lzi—1,ly:1)
be the x and y coordinates of the node at time t
and (t-1) repsectively. Also, let (Zest,,Yest,) and
(Tactual, » Yactual,) denote the estimated and actual co-

ordinates of a sensor at time t.

Let distyyq, Stands for

distirar = /(120 — l24-1)2 + (lye — lys—1)? (L)



cating the algorithm enough will result in unacceptable

error. In the remainder of this section, we introduce our

ETTOTabsolutet = \/(-Test, - xactualt)z + (yestt - yactual,)

|di3ttra'u - diStthresholdl
EThrest =

0 otherwise.

O]

3. Dynamic Localization Protocols

In this section, we introduce the proposed proto-
cols for dynamic localization. We evaluate the follow-
ing three approaches for localization: (1) Static localiza-
tion: the localization period is static; (2) Adaptive lo-
calization: the localization period is adjusted adaptively,
perhaps as a function of the observed velocity which can
be approximated using the last two localization points;
and (3) Predictive localization: in this approach, we use
dead reckoning to project the expected motion pattern of
the sensor based on the recent history of its motion.

As mentioned before, for this work we want to iso-
late performance of our protocols from any specific lo-
calization algorithm. We assume that the the localization
algorithm once executed gives an estimate of its current
location with reasonable accuracy. Therefore error in-
troduced because of localization itself if negligible. The
focus of this paper is not the localization algorithm but
the different policies to determine invocation of the lo-
calization algorithm. Excessive invocation of the local-

ization algorithm is not energy efficient while not invo-

2
proposed protocols for each of these approaches in more

detail.

3.1. Static Fixed Rate (SFR)

if diSttnw > diSttthgh

This is the base protocol where localization is car-
ried out periodically with a fixed time period ¢. The sen-
sor node reports its co-ordinates as the location captured
during the last localization point. For example, let the lo-
calization interval be t,¢,. Let us assume that the node
had localized at time ¢ and calculated its co-ordinates
as (z¢,y:). Then the node is going to report its location
as (xz,y;) for the time period between ¢t and ¢ + t,¢,.
This protocol is simple and its energy expenditure is in-
dependent of mobility; however, its performance varies
with the mobility of the sensors. Specifically, if a sensor
is moving quickly, the error will be high; if it is moving
slowly, the error will be low, but the energy efficiency

will be low.

3.2. Dynamic Velocity Monotonic (DVM)

In this adaptive protocol, a sensor adapts its localiza-
tion as a function of its mobility: the higher the observed
velocity, the faster the node should localize to maintain
the same level of error. Thus whenever a node localizes,
it computes its velocity by dividing the distance it has
moved since the last localization point by the time that
elapsed since the localization. Based on the velocity, the

next localization point is scheduled at the time when a



prespecified distance will be travelled if the node contin-
ues with the same velocity. This distance, for example,
can be the application specified desired maximum error
threshold. Thus, when the node is moving fast, localiza-
tion will be carried more often; when it moves slowly,
localization will be carried out less frequently. Similar
to SFR, the location reported by the node between two
localization points will be one calculated at the previ-

ous localization point.

In this protocol, there is a configurable parameter o
that represents the target maximum error. At every local-
ization point, the current estimated velocity is computed.
Based on this value we estimate the time required to
travel the prespecified tolerance distance (dist;orerance)-
If the node continues with the same velocity — the next
localization point is scheduled at that point. Note that
this approach assumes that a node is moving with a con-
stant velocity between localization points. This may not
be always accurate — for example, if a node was stand-
ing still for half the period, then started moving at a ve-
locity v, the estimated velocity will be %, and we will
end up with suboptimal localization (e.g., exceeding the
error threshold for some time). Moreover, for very low
speeds the localization period may be computed adap-
tively to be very large (e.g., a period of infinity would
be predicted if the node is standstill). Similarly, if the
speed is very high, the localization period may become
very low, thereby spending a lot of energy. To account
for these effects, we place an upper and a lower limit

on the localization periods, which we call as upper and

Figure 2. State Diagram for Dead Reckon-
ing

lower query thresholds respectively.

3.3. Mobility Aware Dead Reckoning Driven
(MADRD)

This is a predictive protocol that computes the mobil-
ity pattern of the sensor and uses it to predict future mo-
bility. To the best of our knowledge, this is the first paper
to apply dead reckoning for localization in mobile sen-
sor network.

Using dead reckoning, localization should be trig-
gered when the expected difference between the actual
mobility and the predicted mobility reaches the error
threshold. This is in contrast to DVM where localiza-
tion must be carried out when the distance from the last
localization point is predicted to exceed the error thresh-
old. Thus, if the node is moving predictably, regardless
of its velocity, localization can be carried out at very
low frequency; if the predicted mobility pattern is per-
fect and holds for all future time, no further localization
would be necessary.

Account for differences in the predicted model and
the actual mobility of the sensor, include errors due to

changes in the mobility pattern that occur after or during



dead-reckoning estimation is almost impossible. In the
next section, we analyze the effect of this difference for
some special cases. We place an upper and a lower limit
on the localization periods, which we call as upper and
lower query thresholds similar to that of DVM. More-
over, we score the performance of our prediction at ev-
ery localization point by comparing the predicted loca-
tion to the actual location. If the prediction is erroneous
(larger than a prespecified rate of divergence), we move
towards a low confidence state and become more aggres-
sive in localization. The intuition is that the mobility pat-
tern is changing, and more localization is needed to cap-
ture the new mobility pattern as well as to bound the
localization error. However, if the prediction is accurate,
our confidence in the predictor increases and we increase

the localization period.

A state diagram for MADRD is shown in Figure 2.
In this diagram, HC refers to the high confidence state
where the predictor is scoring well and localization pe-
riod is increased. LC refers to the low confidence state
where the predictor is not scoring well and the period is
decreased. Erroneous predictions move the predictor to-
wards the LC, while correct predictions move it towards
HC. States S1 and S2 provide some hysterisis between

LC and HC.

4. Error Analysis under Constant Velocity

Mobility

Let us assume that the node moves with constant ve-
locity v. Let v, and v, be the velocity along X and Y’
axes. Let the sensor node localize every t,z, seconds
using SFR protocol. If DVM protocol is used to local-
ize then the time interval between consecutive localiza-
tion will be determined by the velocity v. If the node
is using MADRD to localize, it will localize at a pe-
riod as determined by the algorithm highlighed in Fig-
ure 2. The MADRD protocol predicts its current co-
ordinates based on the velocity and the previously lo-
calized co-ordinates. However, DVM and SFR will use
a non-predictable model for estimation of current co-
ordinates. Hence, the error in DVM is similar to SFR —
the difference being that the period is adapted in DVM to
try and limit this error. Therefore, the analysis of DVM
is not done explictly. The analysis of error under con-
stant velocity motion is broken down into three stages
(1) Simple Constant Velocity Mobility; (2) Constant Ve-
locity with pause; and (3) Constant Velocity change of

direction.

4.1. Constant Velocity Mobility Scenario

The simple case of a node moving in a straight line
and not taking any turns is analyzed in this subsection.

We first discuss SFR, then MADRD.

4.1.1. SFR protocol Assume that the node had local-

ized at time ¢ and is supposed to localize next at time
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(t + tsyr). Let the location of the node at time ¢ be
(z¢,y¢). If the node has to send a data packet at time
between ¢ and (¢ +t,,), then the node will attach its lo-
cation as (x4, y;). Since the node is moving at constant
velocity, the actual distance travelled from the time ¢ in-
creases linearly. The error is the measured as the differ-
ence between actual location and (z¢, y;). Hence, the er-
ror keeps increasing linearly till (¢ + t,z,) is reached as
shown in the Figure 3. The X -axis in Figure 3 shows the
distance travelled from the point (x¢,y;). The slope of

this line will proportional to the velocity .

4.1.2. MADRD protocol In case of MADRD, the
node will calculate its location based on the pre-
viously localized co-ordinates (z,, y,) and pre-
viously measured velocities (v,,v,) and give the
calculated location as the current location. For con-
stant velocity straight line motion, v, and v, does not
change. Hence the location calculated will be accu-

rate as shown in graph in Figure 3.

4.2. Constant Velocity with pause scenario

In this case, the node comes to a standstill after be-
ing in motion with velocity v. Let the distance at which
the node stops be d meters after the previous localization
point (z, y:). In this case, the error in SFR increases lin-
early until d, when it stops increasing. Conversely, the
error in MADRD starts at 0 while the node maintains the
speed of v. However, when it stops moving, the error in
MADRD starts increasing proprtionately to » since the
predictor assumes that the node continues in motion. In-
terestingly, if the node is standstill but suddenly starts
moving with velocity v, SFR and MADRD will behave
identically until the next localization point (which may
be different for each). The reason is that SFR’s uses the
implicit prediction that the node remains at the point of
the last localization. In this scenario, MADRD uses the
same predictor since the node actually was not moving

at the last localization point.

4.3. Constant velocity with change of direction

scenario

emadrd

(xt,y) ! (xt_sfr, yt_sfr)

X y

Figure 4. Error for deviation of § degrees

Now consider the node taking the deviation of 6 de-

grees. Let the distance at which the node takes the devia-
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Figure 5. Errors in SFR and MADRD

tion be x meters after the localization point (x4, y¢). The
time at which the deviation occurs is greater than time
t and lesser than t + t,z,. Figure 4 shows the move-
ment of the node. The distance between points (z;, y;)
and (x4, ,yt,,,) signifies the distance covered in time
tsfr With constant velocity v if there was no deviation
along the path.

The error in localization between time ¢ and ¢ + ¢, ¢,
can be split up into two parts. The first part is error be-
fore the deviation occurs (identical to the fixed velocity
analysis above) and the second one is after the deviation.
Let n be any point on the expected line of motion that
the node would have travelled if it had not taken the de-
viation. If the node would have travelled a distance of n
along expected straight line, it will travel the same dis-
tance after deflection because of constant velocity. Let
n = 0 at the point of deviation and increases along the

straight line.

4.3.1. SFRprotocol Letthe node use SFR protocol for
localizing. The the error at point n will be the length of
line es ¢ shown in Figure 4. The equation for e, fr is

given by Equation 4.

n X sin @
tanq = — " 3
ana (z +n x cosb) @)

n X sin§

(4)

€I"= Tina

Figure 5 shows the graph of error against n . As n
increases from 0 to y, the e,z varies as shown in the
graph in Figure 5. We can see that for n > 0, the curve
is not linear. This can be seen clearly in the case where
0 = 135 degrees.

As the angle of deflection increases from 0 degrees
to 90 degrees, the error in SFR decreases because the
line of motion will be nearer to (z;,y;) when 6 in-
creases. For angles greater than 90 degrees and lesser
than 180 degrees. The error decreases as node moves
towards (¢, y;) and then starts increasing.

At 6 = 180 degrees, the error touches zero after the
node has covered z distance and then the error starts in-
creasing linearly. Now the error vector is in other di-
rection than the earlier error vector. Graph in Figure 5

shows the absolute value of the error.

4.3.2. MADRD protocol
.6
€madrd = 2 X n X sin 3 (5)

The length of the line e,,44-q In Figure 4 shows the
the error in MADRD protocol. It increases linearly as
the n increases. This is given by the equation 5. Graph
in Figure 5 shows the comparison of MADRD protocol

with SFR for different angles. We observe for acute an-



Simulation area 300 x 300 m?
Transmission range 100 m
Initial Energy 10000 J
MAC Protocol 802.11
Transmit Power 0.660 W
Receive Power 0.395 W
Idle Power 0.035 W
Number of Mobile Nodes 24
Number of Beacon Nodes 36

Table 1. Simulation parameters.

gles, MADRD protocol performs better than the SFR.
However, if 4 is between 90 degrees and 270 degrees,
SFR starts performing better. This is because the node is
moving away from the predicted motion line and e, ¢, is

smaller than the e,,04r4-

5. Experimental Results

In order to analyze the protocols, we used ns-2 [8],
a discrete event simulator. Table 1 summarizes the rele-
vant parameters used during our simulations. We use a
query based localization mechanism: a node that is in-
terested in localization broadcasts a request — beacon
nodes that receive the request reply with their own coor-
dinates. The node upon receiving the coordinates from
the beacon nodes, uses them to infer its location (e.g., it
can use aformentioned triangulation technique with the
beacon coordinates as reference points). In our simula-
tion, the beacon nodes are placed such that at least three,
and sometimes four, beacons are able to answer a query.
Note that our results are not dependent on this localiza-

tion model, regardless of how the localization is carried

out.

First, we consider the random waypoint model,
widely used in the mobile ad hoc network commu-
nity. In this model, a node picks a random location in
the simulated area and starts moving to it with a control-
lable average velocity. When the node reaches the des-
tination, it pauses for some fixed pause time and then
picks another destination randomly and starts mov-
ing towards it. The model is predictable while the node
is moving, or for the duration of the pause but not dur-
ing the period where it pauses or when it starts
moving. Since both speed and pause times are im-
portant parameters of random mobility model, we
conducted simulations to study effect of mobil-
ity and pause time on error and energy. In general,
if the pause times are short, the node has more un-
predictable behavior. We then study performance of
MADRD protocol for various upper query thresh-
old values. After studying the performance of these pro-
tocols for various important parmeters of a given
mobility model, finally, we present some limited re-
sults with Gaussian Markovian mobility pattern which
does not lend itself well to prediction using a con-
stant velocity model as we do in MADRD. We used
BonnMotion tool [2] to generate the various scenar-

ios.

5.1. Fundamental Energy-Error Tradeoff

Figure 6 shows the absolute error for random way-

point mobility model with speed uniformly distributed
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Figure 6. Absolute Error: Speed (4-5 m/s).

between 4-5 m/sec. The SFR period in this case was
chosen to be 2 seconds — the node performs localiza-
tion once every two seconds. Recall that, in the case
of SFR and DVM the node assumes that the last mea-
sured localization point is its current location. Therefore
Errorgpsorute, CONtinues to grow between two succes-
sive localization points as the node moves away from its
last localization point. Figure 6 shows the absolute error
for SFR, DVM and MADRD protocols. In the case of
SFR, sensor 0 localizes approximately at times 0.6, 2.6.
As one can see upon localization the error lies within the
localization mechanism error range (which we picked to
be uniformly distributed between 0 to 0.5 meters). In be-
tween the two localization points, the error increases lin-
early up to 8 meters. In the case of DVM, a similar trend
is seen again, howerver due to adaptive localization in-
tervals, the magnitude of the error is lower than that of
SFR; DVM was able to discover that it needs to local-
ize more often than once every 2 seconds. In the case of
MADRD protocol, the ability to predict the current lo-
cation gives rise to very low error since the node actu-

ally follows the prediction. This graph clearly shows the

strength of dead-reckoning procotols due to their predic-
tion capability.

We now systematically vary mobility from very low
to high speeds, more specifically we consider four cases:
1 m/sec, 5 m/sec, 7 m/sec, and 10 m/sec.

Figure 7(a) shows the absolute error as a function of
mobility for the four protocols for two different pause
time values. The primary observation here is that the
error for SFR grows linearly with the average velocity
while both DVM and MADRD manage to adapt their lo-
calization and maintain an error that does not grow sig-
nificantly with the velocity. Under high mobility, this re-
quires more localization operations than SFR. *

Figure 7(b) shows the effect of pause time for one
specific velocity. For this given speed, we consider 4
pause times, namely, pause time of 0%, 10%, 50% 90%
of the total simulation time. Pause 0% represents con-
tinuously moving subjects, while in the case of 90%
pause time,the subject pauses for 90% of the simula-
tion time. Intutively, these 4 pause times together cover
a very broad range of mobile objects. Since pauses af-
fect the prediction of DVM and MADRD, their advan-
tage in terms of error relative to SFR is highest with zero
pause time. At very high pause times, all three protocols
perform well.

As mentioned before, an alternative measure of lo-
calization effectiveness is to monitor the fraction of

the simulation time where the localization estimate was

1 For readability,we do not consider al the four pause times for

these speedes.
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within an application specified threshold; (distsoierance
in this case 5 meters). It represents the Eqp s error de-
fined previously in equation 2. Figure 8(a) shows the ac-
curacy as a function of mobility for two pause times.
Again, we observered a similar trend here — DVM and
MADRD perform much better than SFR, especially as
higher velocities. As the speed increases, the perfor-
mance of SFR degrades dramatically. However, DVM
and MADRD are almost resillient to change in speed.

Notably, for lower speeds (1 m/sec), all the three proto-

cols have almost indentical error value, but as shown be-
low, DVM and MADRD achieve significant energy sav-

ings than that of SFR.

Figure 8(b) shows the accuracy for one average ve-
locity as the pause time is varied. For lower pause times,
DVM and MADRD perform significantly better than
SFR. As the pause time increases, all the three proto-
cols perform well. Importantly, as shown later, the en-
ergy characteristics of DVM and MADRD are better

than those of SFR.
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After studying effect of various parameters on error
values, we now consider the energy efficiencies of these
protocols. In Figures 9(a), 9(b) and 9(c) show the en-
ergy expenditure for various protocols as a function of
mobility and pause time. In each of these graphs, the
Y-axis represents the energy expenditure of various pro-
tocols normalized with respect to SFR. In the case of

low mobility 9(a), DVM and MADRD localize less of-

ten than SFR. Therefore, both DVM and MADRD result
in significant energy savings as compared to that of SFR.
However, as the speed increases, the energy expeniture
of DVM and MADRD grow more than that of SFR. Note
that since these protocols are adaptive, even for high
speeds they adapt well with the increase in pause time
thereby spending less energy than SFR when pause time

is high. For example, when the speed is between 4-5 me-



ters/sec, figure 9(b) indicates that with pause time set to
0 seconds and 90 seconds, DVM localizes more often
than SFR and spends more energy. But when the pause
time is increased to 450 seconds, DVM being adaptive,

spends less energy than SFR.

5.2. Performance stufy of MADRD with Upper

Query Thresholds Variations

Recall that to protect against inaccuracies in the pre-
diction model or unexpected changes in the mobility
model MADRD must limit the maximum period be-
tween localizations (we call this upper query threshold).
Figure 10 shows the effect of this tradeoff — we vary the
upper query threshold and observe the effect on the ac-
curacy, error and localization energy. If the threshold is
raised, this allows MADRD to aggressively predict lo-
cation without forcing localization operations to ensure
that the predictions are accurate. Thus, at high thresh-
olds, higher energy savings are possible 10(c), but the
expected error grows 10(a), 10(b). A good value for the

upper threshold must balance these two effects.

5.3. Effect of Mobility Model Variation

This study presents our observations regarding per-
formance of these protocols under gaussian mobility
model. The results indicate that, energy expenditure of
both SFR and MADRD is almost same, while the DVM
has higher energy expenditure. Importantly, MADRD

has significantly lower error than both SFR and DVM.

Eventhough our results with gaussian model are prelim-
inary, they provide a good starting point for our future
study. More specifically, in future, we would like to eval-
uate the performance of these protocols under various

other mobility models including group mobility models.

6. Effect of change in mobility pattern

In this section, we analyze behavior of the protocols

under unexpected change in mobility pattern.

6.1. Effect of change in direction MADRD:

Unexpected changes in mobility pattern of a node
such as pause and change in direction alter the accu-
racy of the protocols. The performance of adaptive pro-
tocols (DVM and MADRD) is more prone to variance in
mobility pattern of the node than the non-adaptive pro-
tocols. DVM uses the observed mobility pattern to alter
the localization interval. If the change is not captured ap-
propriately, this leads to inaccurate decisions by the pro-
tocol. The effect is more pronounced in MADRD which
not only is an adaptive protocol but also a predictive pro-
tocol. In that case, the error between the actual and the
predicted location of the node is more pronounced be-
cause of the change in node movement pattern.

Figure 12(a) shows the behavior of MADRD when
a turn occurs. In this case, the MADRD estimate con-
tinues predicting motion in the original direction. More-
over, even when localization occurs, the average veloc-

ity computed as a predictor for the next period will be off
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as well (it represents the weighted average of the origi-

nal as well as the new velocities).

6.2. Effect of Pause time in MADRD

Consider Figure 12(b) where a node moving with
a constant velocity comes to a pause. In this case,
MADRD estimate overshoots the node along the
old trajectory when it pauses. Because of the na-

ture of MADRD protocol, the predicted co-ordinates

oscillates around the actual location. The dampen-
ing of these oscillations can be observed in the Fig-

ure 12(b) as the time progresses.

6.3. Effect of mobility pattern on the protocols

The assumed mobility model has significant impli-
cations on the performance of the localization proto-
cols. For SFR, the primary property is the average ve-

locity in the model — this determines the expected lo-
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Figure 12. MADRD Behavior with Unexpected Change in Velocity

calization error given a certain localization frequency.
For the adaptive approach, the computed velocity affects
the localization frequency. Thus, if there are frequent
changes in velocity (magnitude or direction), this will
affect the estimate for the velocity for the next period,
possibly increasing the error. For MADRD, the effect of
the mobility pattern is even more pronounced. Specif-
ically, changes in velocity will cause the algorithm to
continue predicting the node motion along the previous
trajectory of its motion. Further, changes in motion will
cause the velocity at the next point to be predicted erro-
neously — for example, if the node was moving for half
the period then came to a stop, the velocity will be pre-
dicted as half the original velocity when the node is ac-
tually at a standstill. Thus, for MADRD to operate best,

the mobility pattern should be predictable.

7. Concluding Remarks

In this paper, we explored approaches and trade-

offs to the problem of localization in mobile sensor net-

works. A basic localization scheme; SFR, localizes pe-
riodically, with a fixed period. However, this approach
may be insuffient to localize accurately if the period is
large relative to the speed of the node. Moreover, if the
localization period is small, localization will be carried
out more frequently than would ideally be needed to lo-
calize causing a proportionate loss in energy needed to

carry out localization.

We explored two algorithms for dynamic localiza-
tion: (1) DVM: an adaptive algorithm that matches the
localization period to the observed velocity of the node;
and (2) MADRD: a predictive algorithm that uses dead
reckoning to estimate the location of a node assuming it
is following its recently tracked tracjectory. We charac-
terized the performacne of these algorithms for two mo-
bility patterns under different velocities and pause times.
Both the proposed approaches significantly outperform
static localization both from an energy and accuracy per-
spectives. In particular, MADRD performance was ex-

cellent in almost all situations that were studied; how-



ever, it is best suited to mobility patterns that are pre-
dictable and this result may not generalize to other mo-
bility scenarios as discussed before.

In the future we would like to implement these proto-
cols on existing sensor prototypes (eg. Motes) and study
their performance. The Zebranet project has developed
a simulator for studying systems tradeoffs in wild-life
tracking environment in a realistic setting. We would
like to port our protocols from ns-2 to ZNetSim [5], a
simulator for Zebranet, and study the performance for an
existing application. At present our work is limited to in-
dividual mobility models; but in the future we will also
explore group mobility models. For military scenarios
for example we can imagine a group of soldiers moving
together to achieve certain goal. We would like to evalu-
ate the protocols proposed in this paper for such scenar-

ios and suggest some improvements.
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