
mWarp: Accelerating Intra-Host Live Container
Migration via Memory Warping

Piush K Sinha, Spoorti S Doddamani, Hui Lu, and Kartik Gopalan
State University of New York (SUNY) at Binghamton
{psinha1, sdoddam1, huilu, kartik}@binghamton.edu

Abstract—Live container migration allows containers to roam
from one server to another to achieve agility goals like load bal-
ancing, tackling machine failures, scaling in/out and reallocating
resources. However, migrating a container is also costly mainly
due to memory state migration — a large number of memory
pages need to be copied from the source server to the destination
server. In this paper, we propose a fast and live container
migration approach, mWarp, in an intra-host scenario, where
both the source and destination virtual machine (VM) servers
reside on the same physical host. Instead of copying a container’s
memory, mWarp relocates the ownership of the container’s
physical memory pages from the source VM to the destination
VM with a highly-efficient memory remapping mechanism. As
relocation of memory ownership is light-weight, mWarp leads to
fast and live container migration with less service disruption to
applications running in containers being migrated. We implement
mWarp upon a well-known live container migration tool (CRIU)
with key kernel/hypervisor-level support. The evaluation with
both micro benchmarks and real-world applications shows that
mWarp greatly reduces the total container migration time and
downtime (e.g., by an order of magnitude) with significantly
improved application-level performance (e.g., by 20%).

Index Terms—Virtualization, Container, Live Migration

I. INTRODUCTION

As an alternative to virtual machine (VM) based virtual-
ization (e.g., KVM, VMware, Xen), containers relying on
process-based virtualization offer a much flexible way in
deploying and executing applications. With containers, a bunch
of new use cases have been enabled in clouds such as (micro-
)services orchestration, management and just-in-time deploy-
ment [1]–[5]. For better isolation and security in multi-tenant
public clouds [6]–[10], containers are commonly encapsulated
in VMs while running. For example, containerized applications
are orchestrated and managed by Google Kubernetes Engine
upon a group of Google Compute Engine instances (i.e., VMs)
[3].

Like VMs, in-cloud containers need the capability to mi-
grate from one VM to another to achieve agility goals like
balancing load, escaping from hardware failures, scaling in/out
demands for resources, etc. A “cold” container migration pro-
cedure [11] usually involves three main steps: (1) suspending
the container on the source VM; (2) copying the state of the
container from the source VM to the destination VM; and
(3) restoring the container on the destination VM with the
same state as that on the source VM. In practice, a live con-
tainer migration is more appealing which keeps the container
running during migration — without disrupting the services

of applications running within. For example, precopy-based
live container migration [12] allows the migrated container
to keep running on the source side while its memory gets
transferred to the destination in an iterative manner (i.e., only
the dirtied memory is transferred in each iteration), until the
dirtied portion is small enough when the container is paused
and its remaining state is copied (less migration downtime).

Though the above approaches [12], [26] reduce the migra-
tion downtime, they in turn lengthen the total migration time
(i.e., the time between the start and the end of the migration)
due to either iterative memory copying [12] or on-demand
memory pages fetching [26]. During the total migration time,
the performance of applications running in containers could be
negatively impacted, for example, by costly page-fault-based
dirty memory tracking or massive migration network traffic.

In this paper, we present mWarp, a fast and live container
migration approach targeting a common intra-host migration
scenario in public clouds: When performing container migra-
tion, it is preferable to choose/provision a destination VM on
the same physical host (as long as the underlying host remains
available with sufficient resources), as the intra-host migration
can leverage local memory bandwidth for fast state transferring
and avoid costly inter-host network communication. Such
intra-host container migration is particularly applicable for a
VM that needs to be temporarily shut down for maintenance,
upgrade, and recovering from failures during which its hosted
processes/containers must be migrated.

The intra-host live container migration makes the key idea
of mWarp feasible: As the source and destination VMs reside
on the same physical host sharing the same memory, mWarp
completely avoids memory copying by relocating the own-
ership of a container’s memory pages from the source VM
to the destination VM — which we call memory warping.
To realize a highly-efficient memory relocation mechanism,
mWarp involves a new page table, mWarp table, residing in the
host kernel. During a container’s migration, the mWarp table
keeps track of the mappings from the container’s address space
to its host physical address on the source VM, and exposes
such mapping information for reconstructing the containers
memory space on the destination VM. As mWarp’s memory
relocation is super fast in comparison with traditional memory
copying, mWarp leads to sub-second intra-host live container
migration, regardless of the size of the containers being
migrated. In contrast, the memory copying based intra-host
container migration can take several or tens of seconds.



0.09 250 500 750 1000

Total Memory Size (MB)

0

0.5

1

1.5

2

2.5

3

To
ta

l 
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

(a) Impact of varying memory size
for an idle process.

0 250 500 750 1000

Memory Dirtying Rate (MB per second)

0

1

2

3

4

5

6

7

8

9

10

11

To
ta

l 
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

(b) Impact of varying memory dirty-
ing rate given the 1 GB size.

Fig. 1: Impact on total migration time by varying memory size
and varying memory dirtying rate.

We have implemented a prototype of mWarp on CRIU
[11], a well-known, user-space process checkpoint/restore tool.
mWarp further extends Linux kernel with the support of the
mWarp table and implements the memory relocation mecha-
nism for live container migration. Our preliminary evaluation
results show that mWarp achieves smaller total container
migration time and downtime for both micro benchmarks and
real-world applications.

In the rest of the paper, we first show the overhead analysis
of existing memory-copying based live container migration,
followed by the design, implementation, and evaluation of
mWarp, and finally discussion of related work and conclusions.

II. PROBLEM DEMONSTRATION

Live Container Migration. To illustrate the overhead of
live container migration, we use PHaul [12], a state-of-the-art
pre-copy based live container migration tool based on CRIU
[11]. PHaul works in the following two stages: checkpointing
and restoration. In the checkpointing stage, PHaul copies the
state of all processes of the container being migrated from the
source VM to the destination VM in an iterative manner. In the
restoration stage, PHaul restores all processes of the container
in the destination VM with received state.

More specifically, the pre-copy based live container migra-
tion in PHaul involves multiple iterations in the checkpointing
stage. Each iteration includes three steps (except for the last
one): (1) freezing the processes of the container; (2) marking
memory pages to be transferred in this iteration; and (3)
unfreezing the processes of the container. Note that, in step
(2) the dirtied pages since the last iteration are marked to
be transferred (all pages are marked in the first iteration).
After step (3), the marked memory pages will be copied
from the source VM to the destination VM asynchronously —
without blocking the processes being migrated. The migration
algorithm decides to enter the last iteration when either the
number of dirty pages is small enough or it reaches a certain
number of iterations. In the last iteration, all processes are
suspended and all memory pages (i.e., the content) as well
as other state of the processes (e.g., register contents, process
trees, memory properties, etc.) are copied to the destination
VM, after which the container can be gracefully shutdown.

On the destination VM, after receiving the complete state
of the container, the restoration procedure restores all the
processes of the container by first creating “empty” processes
and then loading the received state to these processes making
them have exact the same state as those in the source container
(right before suspension).
Overhead Analysis. We conduct the overhead analysis of
the live container migration using with the following configu-
rations: Each (the source and destination) VM is configured to
have sufficient resources (4 virtual CPUs and 4 GB Memory)
running on the same physical host (12 physical CPUs and
128 GB memory). The network bandwidth between these two
intra-host VMs is set to 10 Gbps. Two main metrics are used
for gauging the performance of live container migration: total
migration time — the time between the start and the end of
the whole migration; and frozen time — the time during which
the migrated container is suspended (i.e., in the last iteration).

First, we initialize a container with a single idle process.
We create such a process with varying memory sizes from a
“minimal” size of 0.09 MB (with only 22 memory pages) to a
relatively large size of 1 GB. The process allocates the memory
of a given size and dirties the entire allocated memory by
performing write operations. After initialization, the process
stays idle while we perform live migration. As shown in
Figure 1 (a), as the memory size increases, the total migration
time increases from 0.5 seconds under the size of 0.09 MB to
2.56 seconds under the size of 1 GB.

Further, we run a container with a single busy process. We
fix the memory size of the process to 1 GB, allowing it to keep
dirtying memory pages at different rates during migration,
from 0% (i.e., no pages are dirtied) to 100% (i.e., all allocated
pages are dirtied per second). As plotted in Figure 1 (b), the
total migration time keeps increasing from 2.56 seconds (at
rate 0%) to more than 10 seconds (at rate 100% ).

We also measure the frozen time to analyze the service
disruption in the execution of the container. The detailed
frozen time breakdown in both checkpointing and restoration
stages is shown in Figure 2 — under the case of the 1 GB
process with 100% dirtying rate. In Figure 2 (a), we observe
that more than 70% of the frozen time in the checkpointing
stage is caused by memory state copying, while Figure 2 (b)
shows that around 96% of the time during the restoration stage
is contributed by restoring memory state.

In summary, in the above intra-host live container migration,
the time spent in memory state copying and restoration domi-
nates the total migration time and frozen time. This motivates
us to develop a much faster live container migration technique
based on memory relocation that does not involve the copying
of containers’ memory pages.

III. DESIGN OF MWARP

The key idea behind mWarp is as follows: Instead of copy-
ing the memory of containers being migrated, mWarp relocates
the memory ownership of containers’ physical memory pages
from the source VM to the co-located destination VM via page
table remapping. In this Section, we first discuss how mWarp



0
.0

1
6

1.347 0.227

0
.0

0
0

2

0.281

0
.0

0
8

0% 20% 40% 60% 80% 100%

Others Transferring pstree data Transferring mm data
Transferring cores data Transferring memory state Information collection

(a) Frozen time breakdown on the source VM (checkpointing stage).

0.76

0
.0

2

0% 20% 40% 60% 80% 100%

Others Memory restoration time

(b) Frozen time breakdown on the destination VM (restoration stage).

Fig. 2: Breakdown of frozen time at each stage of live container migration.

Hypervisor

GPA->HPA

HPA

GPA’->HPA EPTd

mWarp Table

GVA->HPA

EPTs

GVA->GPA
Page 
Table

GVA->GPA’ Page 
Table’

GVA GVA

DestinationSource
Processes/Container Processes/Container

mWarp Migration

GVA->HPAGVA->HPA

GPA GPA’

Fig. 3: Architecture of mWarp.

builds upon the existing memory translation mechanism and
then present the detailed design of mWarp.
Memory Translation. In the native execution mode (i.e.
without virtualization), the mappings between the virtual ad-
dresses (VA) of a process (running inside a container) to its
physical addresses (PA) is kept in its page table. With such
mappings, once a virtual address is accessed by the process,
the memory management unit (MMU) walks the page table
and does the VA-to-PA translation.

In the virtualization execution mode, an additional level of
memory address translation is needed for virtualizing memory
management of VMs. As plotted in Figure 3, the page table of
a process running in a guest VM stores the mappings between
the guest virtual addresses (GVA) of a process to the guest
physical addresses (GPA) — the virtualized memory view
provided by the host (or the hypervisor). The hypervisor uses
another page table, called the extended page table (EPT) to
map GPA to its actual host physical addresses (HPA). When
a VM tries to access unallocated GPAs, EPT violations are
generated, like page faults for a process. These faults are
processed by the hypervisor which allocates a new physical
page for the faulting GPA. Hence, to access data from GVA,
two chained translations are needed as follows:

Source Container: GV A→ GPA→ HPA

As plotted in Figure 3, during migration the migration re-
storer on the destination VM constructs the same address space
(i.e., GVA) for the container processes as those on the source

VM. With the memory-copying based migration technique, the
restorer loads the memory page content (received from the
source VM) to the above GVA, which map to newly allocated
GPA’ (in the destination VM). Such GPA’ in turn map to the
newly allocated HPA’ (in the host):

Destination Container : GV A→ GPA′ → HPA′

Note that, HPA and HPA′ are two disjoint sets of physical
addresses. However, they store the same memory page content.
After migration, all HPA of the source VM will be reclaimed.
Memory Relocation. With the above observation — HPA
and HPA′ store the same memory page content — mWarp
avoids copying memory from HPA to HPA′, but instead
directly relocates the memory ownership of the container’s
physical memory pages (HPA) from the source VM to the
destination VM (i.e., by remapping the GVA of the destination
VM to the same HPA of the source VM):

Destination Container : GV A→ GPA′ → HPA

The key to realizing such memory relocation is to obtain the
GVA-to-HPA mappings from the source VM. However, such
mapping information is scattered in two separate locations:
one in the source VM’s page table and the other in the host
EPT table. To this end, mWarp involves a new page table,
mWarp table, in the hypervisor. An mWarp table explicitly
stores the GVA-to-HPA mappings of a container’s process
(identified by its unique process ID) on the source VM. To
migrate a container, we need multiple mWarp tables each
maintaining the GVA-to-HPA mappings of one process. The
mWarp tables are then exposed to the migration restorer on the
destination VM to establish the same GVA-to-HPA mappings
for the processes of the container being migrated. To further
distinguish processes from different VMs, an mWarp table
involves a VM’s identifier (VMID) as follows:

[VMID : PID] : GV A→ HPA

To build an mWarp table, the hypervisor needs to get the
GVA of a process from the source VM (i.e., kernel). mWarp
provides a new hypercall, hypercall_set, to the VM for
exposing such mappings. The source VM kernel invokes this
hypercall to pass a list of GVA-to-GPA mappings of the
process to the hypervisor. For each received GVA-to-GPA
mapping, the hypervisor extracts the GPA and translates it
to HPA using the EPT table, and then puts the corresponding
GVA-to-HPA mapping to the mWarp table (identified by the
process’s PID and the source VM’s VMID).



Memory Reconstruction. Restoring the address space of
the migrated container processes on the destination VM needs
to build GVA, GPA’ and HPA as well as their mappings.
The migration restorer on the destination VM first allocates
all GVA of the process (e.g., with the mmap system call)
and maps them to free guest page frames, to reconstruct the
GVA-to-GPA’ page table mappings. mWarp provides another
hypercall, hypercall_map, to allow the destination VM to
pass a list of GVA-to-GPA’ mappings and the process ID of
a container’s process being migrated to the hypervisor. In the
hypercall_map hypercall, for each received GVA-to-GPA’
mapping, the hypervisor: (1) looks up the mWarp table to find
out HPA from the GVA-to-HPA mappings; and (2) creates a
new mapping between GPA’ and HPA to update the destination
VM’s EPT with this newly mapped GPA’-to-HPA.

IV. IMPLEMENTATION

To demonstrate our proposed memory relocation based
live container migration, we have implemented an mWarp
prototype on CRIU [11], a popular user space process check-
pointing/restoration tool. The whole live container migration
consists of two stages: checkpointing and restoration.

mWarp on Checkpointing. The creation of the mWarp table
during the checkpointing stage is summarized in Figure 4 (a).
On the source VM, we modify CRIU’s checkpointing code
to replace the procedure of copying memory content with
the one of building the mWarp table. A new system call,
syscall_set, is added to the source VM. This system
call takes an array of GVA-to-GPA mappings along with the
process’s PID (i.e., we exploit the /proc/[PID]/pagemap
file to get the GVA-to-GPA mappings). If we make one
syscall_set system call for each GVA-to-GPA mapping, it
will add too much overhead because of excessive system calls.
We optimize our implementation to send a large number of
mappings within one system call. To achieve this, we allocate
page-size (i.e., 4 KB) aligned memory using the memalign
function and fill these memory with GVA and their GPA. In
practice, we allocate two page-sized arrays, one is for storing
GVA and the other is for storing GPA. Once we fill up these
pages, we invoke one syscall_set system call.

The syscall_set system call translates the base address
of the two arrays into a set of disjoint guest physical addresses.
These two disjoint guest physical addresses along with the
process’s PID are used for invoking the hypercall_set
hypercall. For one system call containing page-sized arrays
(as stated above), only one hypercall is invoked. As stated in
Section III, the hypercall_set locates the mWarp table of
the process, obtains the GVA-to-HPA mappings, and inserts
them to the mWarp table.

mWarp on Restoration. Figure 4 (b) summarizes the details
of mWarp’s restoration stage using the mWarp table. On
the destination VM, we modify CRIU’s restoration code to
replace the procedure of loading memory content with the
one of relocating address space. Another new system call,
syscall_map, is added to the destination VM which takes

an array of GVA with PID. More specifically, to reconstruct
the address space of the process on the destination VM, the
restorer uses mmap system call to first restore all the GVA
received from the source VM. Using mmap, we only reserve
the guest virtual addresses without having them mapped to
any physical memory (i.e., guest physical addresses on des-
tination VM). However, these guest virtual addresses need
to be mapped to free guest physical addresses (i.e., GPA’).
To this end, the syscall_map system call reserves free
memory pages using the kernel function get_free_pages
(to reduce overhead, we can reserve a batch of free pages by
calling one such function), and then establishes the mapping
between GVA and these reserved GPA’ by manipulating the
page table entries of the process.

In the end of the syscall_map system call, it invokes
the hypercall_map hypercalls and send the GVA-to-GPA’
mappings along with the process ID to the hypervisor. Using
the approach similar to that in mWarp’s checkpointing stage,
we optimize our design to reduce the number of system calls
and hypercalls using page-size aligned memory to transfer
GVA and GPA’. In the hypercall, it first checks if any of
the GPA’ received by the hypercall already has an existing
EPT mapping. If there is, the hypervisor will invalidate the
existing EPT mapping. Next, as stated in Section III, the
hypervisor retrieves HPA from the mWarp table for each
received GVA, and translates its GPA’ to the virtual address
of the QEMU process (which controls the destination VM).
Last, the QEMU’s virtual address, which is the host virtual
address (HVA), is mapped to the received HPA, creating the
HVA-to-HPA mappings in the QEMU process’s page table.
Notice that, the GPA’-to-HPA entry in the EPT table will be
automatically established from the HVA-to-HPA page table via
EPT violations.

V. PRELIMINARY EVALUATION

In this section, we present our preliminary evaluation re-
sults. We evaluate the effectiveness of mWarp by comparing
it with CRIU’s pre-copy live migration approach using both
micro benchmarks and real-world applications.
Micro Benchmark. We run a write-intensive benchmark in
a container by varying its memory sizes and dirtying rates —
the same one that we have used in Section II. This benchmark
varies its memory size from a minimal usage of 0.09 MB (22
memory pages) to that of 1 GB in the idle case, and varies its
memory dirtying rate from 0 GB/sec to 1 GB/sec with a fixed
memory size of 1 GB in the busy case. We use this benchmark
to evaluate the total migration time and total frozen time.

Figure 5 (a) and (b) show that, with CRIU, the total
migration time and total frozen time (i.e., downtime) increase
significantly with the increase of the memory size. For exam-
ple, the total migration time increases from about 0.5 seconds
under the 0.09 MB memory size to more than 2.5 seconds
under the 1 GB memory size, while the total frozen time
is around 0.3 seconds under the 0.09 MB memory size and
increases to around 1.3 seconds under the 1 GB memory size.
With mWarp, the changes in the total migration time and



Target
Process
Address 
Space

va1

Hypervisor’s 
Memory

Source Virtual Machine

VM’s Memory
gpa1

hpa1 hpa3 hpa2

GVA HPA

gva1 hpa1

gva2 hpa2

gva3 hpa3

2. Sent in bulk: Target 
process’s GVAs, GPAs 
and PID

3. Target process’s 
virtual address & HPA 
corresponding
to sent GPA are added 
in mWarp table

/proc/<PID>

Checkpointing
process

1. Target process’s virtual 
address GVA, GPA, PID

Hypervisor

(a) mWarp’s checkpointing stage.

hva1

Hypervisor’s Memory

Destination Virtual Machine

VM’s Memory
gpa’

hpa1 hpa3 hpa2

GVA HPA

gva1 hpa1

gva2 hpa2

gva3 hpa3

3. Target process’s PID, 
gva1, gpa’ in bulk

Restoring process

1. Reconstruct target 
process’s virtual 
address e.g. gva1

Hypervisor

Restoring Process’s
Page Table

2. Map gva1 to 
reserved gpa’

GVA GPA

gva1 reserved 
gpa’

QVA HPA

hva1 hpa1

QEMU’s
Page Table

QEMU’s 
address 
space

5. Qemu’s virtual address 
hva1 corresponding to gpa’ 
mapped to hpa1

4. Retrieve 
hpa1 for 
gva1 from 
mWarp
table

(b) mWarp’s restoration stage.

Fig. 4: The checkpointing and restoration stages of mWarp’s live container migration.

0.09 250 500 750 1000

Total Memory Size (MB)

0

0.5

1

1.5

2

2.5

3

To
ta

l 
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

mWarp

CRIU

(a) Total migration time.

0.09 250 500 750 1000

Total Memory Size (MB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

To
ta

l 
F
ro

z
e
n
 T

im
e
 (

s
)

mWarp

CRIU

(b) Total frozen time.

Fig. 5: Varying memory size on live container migration.

0 250 500 750 1000

Memory Dirtying Rate (MB per second)

0

2

4

6

8

10

12

To
ta

l 
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

mWarp

CRIU

(a) Total migration time.

0 250 500 750 1000

Memory Dirtying Rate (MB per second)

0

0.5

1

1.5

2

2.5

3

To
ta

l 
F
ro

z
e
n
 T

im
e
 (

s
)

mWarp

CRIU

(b) Total frozen time.

Fig. 6: Varying dirtying rate on live container migration.

total frozen time are very little and stay within sub-seconds
regardless of the total memory size. More concretely, with
mWarp, both the total migration time and total frozen time
are about 0.25 seconds for 0.09 MB memory size and increase
a little above 0.5 seconds under the 1 GB memory size. We
notice that the gap between the CRIU and mWarp results keeps
growing with the increase in memory size.

Figure 6 (a) and (b) show the total migration time and
total frozen time with varying dirtying rates (fixing the total
memory size to 1 GB). Figure 6 (a) shows that, with CRIU, the
total migration time keeps increasing as the memory dirtying
rate increases. For example, it takes around 2.6 seconds to
complete the container migration when the dirtying rate is 0
GB/second, while it takes more than 10 seconds when the
dirtying rate is 1 GB/second. In contrast, with mWarp, the
total migration time stays constantly around 0.5 seconds even
when the memory dirtying rate reaches to 1 GB/second. We

have the similar observation for the total frozen time. Figure 6
(b) shows that with CRIU, total frozen time keeps increasing
rapidly as the dirtying rate increases. However with mWarp,
the total frozen time remains constant around 0.5 seconds.

Quicksort is a CPU and memory intensive benchmark that
first fills random data in 1024 MB of allocated memory and
then sorts 50 of those allocated pages (200 KB) using the
quicksort sorting algorithm. We run the quicksort benchmark
in a container. To show the performance impact, we consecu-
tively migrate the container running the quicksort benchmark
and observe the total number of quicksorts per second during
the migration. Figure 7 (a) shows that the number of quicksorts
with CRIU reaches zero during the migration. With mWarp in
Figure 7 (b), we keep observing 200∼300 quicksorts during
the migration. It is because, again, mWarp leads to very small
migration downtime.

Sysbench [14] performs multi-threaded memory test by pre-
allocating memory and then reading from or writing to it. We
run the sysbench application in a container and use its write
test with the varying memory range from 128 MB to 1 GB. We
first run the memory write test without any migration to get
its completion time. We use this as the baseline and compare
it with the cases using mWarp and CRIU separately. Figure
8 shows that, with mWarp the completion time of sysbench
application is almost the same as the baseline. However, the
completion time increases significantly with CRIU as the pre-
acllocated memory size increases.

VI. RELATED WORK

Process/container live migration techniques have been ex-
tensively studied [11], [16], [23]–[26]. One representative
approach is post-copy technique [15], [26], where pages are
migrated only when they are referred on the destination
machine. Although such an on-demand page migration reduces
the initial cost of the migration, it increases the total migration
time. With post-copy technique, having longer total migration
time is risky as a network failure can result in migration failure
hampering the application’s execution. Pre-copy [16] keeps
processes/containers running on the source machine while its
memory keeps getting transferred to the destination in an



7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119

Time (s)

0

200

400

600

800

1000

Q
u
ic

k
s
o
rt

s
 p

e
r 

s
e
c
o
n
d

(a) Number of quicksorts with CRIU.

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119

Time (s)

0

200

400

600

800

1000

Q
u
ic

k
s
o
rt

s
 p

e
r 

s
e
c
o
n
d

(b) Number of quicksorts with mWarp.

Fig. 7: Comparison of number of quicksort operations during migration.

128 256 512 1024

Memory Write Size (MB)

0

2

4

6

8

10

12

14

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Baseline mWarp CRIU

Fig. 8: Sysbench Completion Time.

iterative manner; once the dirtied pages are small enough,
the whole process is paused and the remaining pages are
transferred. If the page dirtying rate is very high, the migration
will take way longer to complete. There has also been work
that combines some features of these techniques [17]–[19]. For
example, instead of copying entire memory state in the most
basic technique, only the minimal dirty pages are transferred
[20]. The remaining pages are transferred while the process is
running on remote machine. This reduces the transfer cost, but
requires the support of the remote paging mechanism. MOSIX
[21] and Sprite [22] implements migration by leaving residual
dependencies on the source machine. Although, it makes the
migration simple but it requires the source machine to be
available all the time till the process completes its execution.
In contrast, mWarp focuses on an intra-host container migra-
tion scenario, which completely eliminates memory copying
making the live container migration super fast.

VII. CONCLUSIONS AND FUTURE WORK

We have presented mWarp, a fast and live intra-host con-
tainer migration approach. In mWarp, instead of copying a
container’s memory, it relocates the ownership of the con-
tainer’s physical memory pages from the source VM to the
destination VM on the same host via a highly-efficient memory
relocation mechanism. Our preliminary evaluation shows that
mWarp leads to sub-second total container migration time
regardless of the container sizes and significant application-
level performance improvement for memory intensive appli-
cations. In the future, we are going to extend mWarp for
a comprehensive design and implementation including live
multiple containers migration and conduct further performance
optimizations including a more efficient kernel-level imple-
mentation. We will also perform detailed cost and benefit
analysis with real-world containerized cloud applications.

REFERENCES

[1] AWS Lambda, “https://aws.amazon.com/lambda/”.
[2] Azure Serverless Computing, “https://azure.microsoft.com/en-

us/overview/serverless-computing/”.
[3] Google: EVERYTHING at Google runs in a container,

“https://www.theregister.co.uk/2014/05/23/google containerization two
billion/”.

[4] W. Li, A. Kanso, and A. Gherbi, “Leveraging linux containers to
achieve high availability for cloud services,” in Proceedings of the IEEE
International Conference on Cloud Engineering (IC2E), March 2015.

[5] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-dusseau, and R. H. Arpaci-dusseau, “Serverless computation with
openlambda,” in Proceedings of the 8th USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud, 2016.

[6] Amazon Elastic Container Service, “https://aws.amazon.com/ecs/”.
[7] Kubernetes Engine, “https://cloud.google.com/kubernetes-engine/”.
[8] Azure Kubernetes Service, “https://azure.microsoft.com/en-

us/services/kubernetes-service/”.
[9] IBM Cloud Kubernetes Service, “https://www.ibm.com/cloud/container-

service”.
[10] VMware Pivotal Container Service, “https://cloud.vmware.com/vmware-

pks”.
[11] Checkpoint/Restore In Userspace, “https://criu.org/Main Page”.
[12] P.Haul, “https://criu.org/P.Haul”.
[13] E. Zayas, “Attacking the Process Migration Bottleneck,” in Proceedings

of the 11th Symposium on Operating Systems Principles, 1987.
[14] A. Kopytov, “Sysbench Manual,” http://imysql.com/wp-

content/uploads/2014/10/sysbench-manual.pdf, 2009.
[15] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy Live Migration

of Virtual Machines,” in ACM SIGOPS Operating Systems Review,
2009.

[16] M. Theimer, K. Lantz, and D. Cheriton, “Preemptable Remote Exe-
cution Facilities for the V System,” in Proceedings of the 10th ACM
Symposium on OS Principles, pp. 2–12, 1985.

[17] G. J. W. Van Dijk, and M. J. Van Gils, “Efficient process migration
in the EMPS multiprocessor,” in Proceedings of the 6th International
Parallel Processing Symposium, pp. 58–66, March 1992.

[18] A. Schill, and M. Mock, “DC++: Distributed Object Oriented System
Support on top of OSF DCE,” in Distributed Systems Engineering, 1993.

[19] S. Petri, and H. Langendorfer, “Load Balancing and Fault Tolerance in
Workstation Clusters Migrating Groups of Communicating Processes,”
in Operating Systems Review, 1995.

[20] E. T. Roush, and R. Campbell, “Fast Dynamic Process Migration,” in
Proceedings of the International Conference on Distributed Computing
Systems, pp. 637–645, 1996.

[21] A. Barak, and A. Litman, “MOS: a Multicomputer Distributed Operating
System,” in Software-Practice and Experience, 1985.

[22] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch, “The
Sprite Network Operating System,” in IEEE Computer, 1988.

[23] Przemysaw, Brian N. Bershad Stefan Savage, et al. ”Extensibility,
Safety and Performance in the SPIN Operating System.” Fifteenth ACM
Symposium on Operating Systems Principles. 1995.

[24] D. R. Engler, and M. F. Kaashoek, “Exokernel: An operating system
architecture for application-level resource management”, Vol. 29, no. 5.
ACM, 1995.

[25] H. Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vhaul: Towards op-
timal scheduling of live multi-vm migration for multi-tier applications”,
In IEEE Cloud, 2015.

[26] E. Zayas, “Attacking the Process Migration Bottleneck,” in Proceedings
of the 11th Symposium on Operating Systems Principles, 1987.


