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Abstract

The RINSE simulator is being developedto support
large-scalenetwork securitypreparednessandtraining ex-
ercises,involving hundredsof playersanda modelednet-
work composed of hundredsof LANs. Thesimulatormust
beableto presenta realisticrenderingof network behavior
asattacksarelaunchedandplayersdiagnoseeventsandtry
countermeasuresto keepnetwork servicesoperating.We
describethe architectureand function of RINSE andout-
line how techniqueslike multiresolutiontrafÞc modeling,
multiresolutionattackmodels,andnew routing simulation
methodsare usedto addressthe scalability challengesof
this application.We alsodescribein moredetailnew work
on CPU/memory modelsnecessary for theexercisescenar-
ios anda latency absorptiontechniquethat will helpwhen
extendingtherangeof client toolsusableby theplayers.

1. Introduction

Theclimateon theInternet is growing increasinglyhos-
tile while organizationsareincreasinglyrelying on the In-
ternet for at leastsome aspectsof day-to-dayoperations.
They arethusbeingforced to planandpreparefor network
failuresor outright attacksÑhow it might affect themand
whatactionsto take.With currentsystemcomplexity, tools
to assistin preparednessevaluationandtraining arelikely
to becomemoreandmoreimportant.

TheOctober2003Livewire cyberwar exercise[2] con-
ductedby the Departmentof HomelandSecurity, is one
particularinstanceof preparednessevaluationand training
thatinvolvedcompaniesacrossindustrialsectorsas well as
governmentagencies.More exercisesof this type arecur-
rently being planned,and basedon experiencesfrom the
Þrst event, there was a desirefor improved tools to auto-
maticallydeterminetheimpactonthenetwork from attacks
anddefensive actions andthe extent to which the network

is capableof deliveringtheservicesneeded.Providing net-
work simulation tool supportfor exercisessuchasLivewire
is particularlychallengingbecauseof theirscale.Futureex-
ercisesareexpectedto involve asmany asa coupleof hun-
dredparticipatingorganizations,andwill thusinvolvemany
ÒplayersÓandanetwork of signiÞcantsize.

We are currently developing the Real-time Immer-
sive Network Simulation Environment for network
security exercises (RINSE) to meet this need and ad-
dress the challengesinherent in this type of applica-
tion. Hence, the goal for RINSE is to managelarge-scale
real-time human/machine-in-the-loopnetwork simula-
tion with a focus on security for exercisesand train-
ing. It needsto be extensibleso that it can evolve over
time,andit needsto bedesignedwith aneye towardssecu-
rity andresilienceto hardwarefaultssincetheseexercises
involvemany peopleandlastfor severaldays.

The spectrumof approachesto generallarge-scalenet-
work modelingbeingexploredin the literaturerangefrom
hardwareemulationtestbedslikeEmulab[38], network em-
ulatorslike ModelNet[37], to network simulatorslike IP-
TNE [34], GTNetS[9], PDNS[9], andMAYA [40]. Hard-
wareemulationexcelsin applicationcoderealism(running
the real thing), while simulationstendto be moreßexible
andhave anadvantagein termsof scalability. However, the
middlegroundis increasinglybeingexplored;for instance,
throughincreasingemulationsupportin simulators.For se-
curity exerciseswe like theßexiblity andscalabilityof sim-
ulation,andthesafetyof unleashingattacksin a simulated
environmentratherthanona realnetwork.

Several simulators offer similar capabilities,including
parallel execution, real-time/emulationsupport, and dis-
creteevent/analyticmodels. However, we believe RINSE
is uniquein the way it bringstogetherhuman/machine-in-
the-loopreal-timesimulationsupportwith multiresolution
network trafÞc models,attackmodelsthat leveragethe ef-
Þciency of themultiresolutiontrafÞcrepresentations,novel
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Figure1: RINSEarchitecture

modelsof host/routerresourcessuchasCPUandmemory,
andnovel routingsimulationtechniques.In thispositionpa-
per we provide an overview of RINSE to show how these
techniquesarebeingbroughttobearontheproblemathand.
We alsodetail somespeciÞcnew contributions: i) a tech-
niquefor absorbingoutsidenetwork latency into thesimu-
lationmodelandii) modelsfor includingCPUandmemory
effectsinto network simulations.

Theremainderof thispaperis organizedasfollows.Sec-
tion 2 describesthe architectureof RINSE andoutlinesa
simpleexamplescenariothatintroducesthesalientfeatures
of RINSE,describedfurtherin Sections3 to 7. Finally, Sec-
tion 8 summarizesandoutlinesfuturework.

2. RINSE Architecture

RINSE consistsof Þve components:the iSSFNetnet-
work simulator, the Simulator Database Manager, a
database,the Data Server, and client-sideNetwork View-
ers, as shown in Figure 1. The iSSFNetnetwork simula-
tor, formerly calledDaSSFNet,is the latestincarnationof
the C++ network simulator basedon the Scalable Sim-
ulation Framework (SSF), an Application Programming
Interface(API) for parallelsimulationsof large-scalenet-
works [5]. iSSFNet runs on top of the iSSF simulation
kernel, which handlessynchronizationand supportfunc-
tions. iSSF usesa composite synchronous/asynchronous
conservative synchronization mechanism for paral-
lel and distributed execution support [23], and has re-
cently been augmentedto include real-time interaction
and network emulationsupport. iSSFNet runs on paral-
lel machinesto supportreal-timesimulationof large-scale
networks.

Each simulation node connects independently to
the Simulator Database Manager, which delivers data
from the simulator to the databaseand delivers con-
trol input from the databaseto the simulator. On the
user/playerside,the DataServer interfaceswith client ap-
plications, such as the Java-basedapplication ÒNetwork

ViewerÓ,which allows the userto monitor andcontrol the
simulatednetwork. In the future,we plan to evolve thear-
chitecture towards using the emulation capabilities to
supportdirect SNMP interactionwith the simulatednet-
work devices,thushaving regular networking utilities and
network managementtools as clients. In the current de-
sign, the Data Server performs authenticationfor each
user, distributes deÞnitionsof the clientÕs view of the net-
work (using the Domain Modeling Language),and pro-
vides a simple way for the client applicationsto access
new datain the database throughXML-basedremotepro-
cedurecalls. The Network Viewer clients, a screenshot
shown in Figure2, provide the userswith their local view
of the network (usually only their organizationÕs net-
work) andperiodically poll the Data Server for data. The
Data Server respondswith new data for each client, ex-
tractedfrom the database.The gamemanagers,function-
ing as superusersof an entire exercise,also useNetwork
Viewer clients,but canhave a moreglobalview of thenet-
work.

The Network Viewer clients have a simple command
promptwheretheusercanissuecommandsto inßuencethe
model.Usercommandsaresentin theoppositedirectionof
theoutputdatapathandinjectedinto thesimulator. Wecur-
rentlydivide thecommandsintoÞvecategories:

Attack– thegamemanagerscanlaunchattacksagainstnet-
works or speciÞcservers.RINSE focuseson Denial-
of-Serviceeffectson networksanddevices,soattacks
includeDDoSandworms.

Defense– attackscanbeblockedor mitigated,for instance
by installingpacketÞlters.

Diagnostic Networking Tools– functionality simi-
lar to some commonly used networking utilities,
such as ping, are supportedfor the player to diag-
nosethenetwork.

Device Control– individual devices, such as hosts and
routers,canbeshutdown or rebooted.

Simulator Data– commandscanbe issuedto the simula-
tor to controltheoutput,turnonor off traceßow from
aparticularhost,etc.

Dependingon the type of a command,it may be address-
ing the whole simulator, a particularhostor router, a par-
ticular interface,or a particular protocolor applicationon
a hostor router. A commandhandlinginfrastructurein the
simulatorpassesthe commandsfrom the clientsto the ap-
propriatecomponentsof thesimulationmodel.

Next, weillustratethesalientfeaturesof RINSEanddis-
cussusercommandsin moredetailthroughasimpleexam-
ple scenario.We point to descriptionsof importantaspects
of thesimulatoraswego throughtheexample.



Figure2: Network Viewerclient screenshot

2.1. Example Scenario

Considerasimplescenariowhereaplayeris responsible
for a subnetwork, partially shown in Figure 2, containing
amongotherthingsaserver. Multiple clientsarerequesting
information from the server throughsomeform of trans-
actions.By transactionwe simply meana request-response
exchangebetweentheclientandtheserver. Sections4 and6
outlineRINSEÕs modelsfor efÞcientrepresentationof traf-
Þcßows androutecomputation.

Theplayercanselectdatatomonitor, suchasthetransac-
tion requestandresponsesat theserverandswitcheson the
ßow of outputdatafrom thesimulatorby issuingthecom-
mand:

report server on

hereserver is simplyasymbolicnamefor theserverad-

dress.
A gamemanagerattemptsto disrupt the operationsof

the server by launchinga DDoS attackagainst openser-
viceson the server, andthe playerresponsiblefor the net-
work will needto diagnosewhatis goingon andtry to take
remedialactions.Thegamemanagerlaunchestheattackby
issuinganattackcommandat theNetwork Viewerclient:

ddos attack attacker serv er 100 2000

Both attacker andserver aresymbolic namesfor the
attackerÕs hostandthetargetedhost, respectively. Uponre-
ceiving the command(via the commandhandling infras-
tructure), the attackerÕs host uses a simulatedintermedi-
ate communicationchannel(e.g., InternetRelay Chat) to

sendattacksignalsto zombiehostsÑhosts under the at-
tackerÕscontrol.Thesezombiehoststheninitiatethedenial-
of-serviceattackagainstthetargetedvictim. Theattackis to
last for 100secondsandeachzombieemitstrafÞcat a rate
of 2000kbits/s.RINSEattackmodelsleverageefÞciencies
in its high volumetrafÞc representations,as is further de-
scribedin Section5.

We will assumeherethat theDDoStrafÞcsimply loads
theopenservicedaemonsandthusinducesalargeCPUload
on the server. This load disruptsthe processingof legiti-
matetransactions.As shown in thescreenshotin Figure2,
the player managingthe server can monitor the CPU uti-
lization on the server andobserve anabnormallyhigh load.
Modelsof hostandrouterresourceslike CPUandmemory
aredescribedin moredetailin Section7. After determining
that the load likely stemsfrom abnormaltrafÞc, theplayer
attemptsto block trafÞcon a certainport thathasbeenin-
advertentlyleft openby issuing thecommand:
filter server add 0 deny all all * all * 23

to install a Þlteron theserver to deny packetscomingin on
all interfaces,usingall protocols,from all sourceIP ad-
dresses(Ò* Ó),andall sourceports, to all destinationIP
addresses(Ò* Ó)and destinationport 23. SuccessfulÞlter-
ing blockspacketsfrom reachingtheopenservicedaemons
andthusalleviatesthe loadon theserver at theexpenseof
someprocessingcostfor Þltering.

We now proceedto describeaspectsof thesystemmen-
tionedherein moredetail,startingwith thereal-time simu-
lationsupport.

3. Real-time Simulation Support

In addition to supportingthe RINSE Network Viewer
client, we are currently developing support for the Sim-
ple Network ManagementProtocol(SNMP) to allow us to
monitorandcontrolthesimulatednetwork devicesthrough
industry-standardnetwork managementtools.For that rea-
son,our real-timesimulationsupportmustbesimple,ßex-
ible, andbe ableto accommodatereal-timeinteractionsat
varying degreesof intensity, including both human-in-the-
loop andmachine-in-the-loopsimulations.In this section,
we describe the real-timesupportboth in the iSSFparallel
simulationkernel and in the network simulatorsupported
by iSSF.

3.1. Kernel Support

Over the years,we have seenmany network emulators,
rangingfrom single-linktrafÞcmodulatorsto full-scalenet-
work emulationtools,e.g.[32, 37]. Mostnetwork emulators
aretime-driven.For example,ModelNet[37] storespackets
in ÒpipesÓsortedby the earliestdeadline.A scheduler ex-
ecutesperiodically (onceevery 100 µseconds)to emulate



packetmoving throughthepipes.Therearetwo maindraw-
backsassociatedwith the time-driven approach:i) the ac-
curacy of theemulationdependson thetime granularityof
thescheduler, which largely dependson thetargetmachine
or the targetoperatingsystem,andii ) therehasnot beena
goodmodelusedby network emulatorsto accuratelychar-
acterizethe backgroundtrafÞc andits impacton the fore-
groundtransactions(i.e., trafÞcconnectingreal-timeappli-
cations).Simulation-basedemulation(also referredto as
real-timenetworksimulation), on the otherhand,provides
a commonframework for real applicationtrafÞc to inter-
act with simulatedtrafÞc,andthereforeallows us to study
bothnetwork andapplicationbehaviors with morerealism.
Examplesof existing real-timenetwork simulators include
NSE [8], IP-TNE [34], MaSSF[21], and Maya [40]. IP-
TNE is theÞrst simulatorweknow thatadoptsparallelsim-
ulation techniquesfor emulatinglarge-scalenetworks.The
real-timesupportin iSSF inherits many featuresof these
previous simulation-basedemulators. Our approach,how-
ever, is uniquein severalways,whichweelaboratenext.

Extending SSF API. The real-timesupportis designedas
an extensionto the SSFAPI, thusmakingan easytransi-
tion for otherSSFmodelsthatrequirereal-timesupport.In
SSF, an inChannel (or outChannel ) object is deÞned
asa communicationport in anentity to receive (send)mes-
sagesfrom (to) otherentities. We extendedthe conceptof
the in-channelusing it as the conduit for the simulatorto
receive eventsfrom outside the simulator(e.g.,accepting
usercommandsarrivedat a TCPsocket). We extendedthe
API sothatanewly createdin-channelobjectcanbeassoci-
atedwith areaderthread.Thereaderthreadconverts(exter-
nal)physicaleventsinto (internal)virtualeventsandinjects
them into the simulator using the putVirtualEvent
method.A virtual event is createdto representthe corre-
spondingphysical event andis assignedwith a simulation
timestampcalculatedasa functionof i) thewall-clock time
at which the event is insertedinto the simulatorÕs event-
list, and ii ) the currentemulation throttling speed(which
we will elaboratemomentarily). The SSFentitiesreceive
eventsfrom the in-channelobjectsasbefore,regardlessof
whetherthey representspecialdevices that acceptexter-
nal events. From a modelingperspective, thereis no dis-
tinction betweenprocessing a simulationevent anda real-
time event.Similarly, we alsoextendedthe conceptof the
out-channelusing it as a device to export events(for ex-
ample,reportingthe network stateto a client application
over a TCP connection). In this case,a writer threadcan
be associatedwith the special outChannel object.The
writer threadinvokes the getRealEvent methodto re-
trieve eventsdesignatedfor the external device and con-
vertsthe virtual eventsinto physical events.Eachof these
eventsis assignedwith a real-timedeadlineindicatingthe
wall-clock time at which the event is supposedto happen.

The real-time deadlineis calculatedfrom the virtual time
andagain theemulationthrottling speed.Thewriter thread
is responsiblefor deliveringtheeventuponthedeadline.

Throttling Emulation Speed.Thesystemcandynamically
throttletheemulationspeed(eitherby acceleratingor decel-
eratingthesimulationexecutionwith respectto real time).
This featureis important for supportingfault tolerance.For
example,if asimulatorfailsoverahardwareproblem,after
Þxing the problem,the simulatorshouldbe ableto restart
from a previously checkpointedstateandquickly catchup
with rest of the system.We can acceleratethe emulation
speedandusethe sameuserinput loggedat the database
server to restorethe state. In order to regulate the time
advancement,we modiÞedthe startAll methodin the
Entity class(whichisusedtostartthesimulation in SSF),
addinganoptionalargument to allow theuserto specifythe
emulationspeedastheratio betweenvirtual time andwall-
clock timeÑfor example,a ratio of onemeanssimulation
in real-time,ÒinÞnityÓmeanssimulationasfastaspossible,
andzeromeanshalting the simulation.An Entity class
methodthrottle is alsoaddedto make it possibleto dy-
namicallychangetheratioduring thesimulation.

Prioritizing Emulation Events: We usea priority-based
schedulingalgorithm in the parallel simulation kernel to
betterserviceeventswith real-timeconstraints.In SSF, the
usercanclusterentitiestogetheras timelines,i.e., logical
processes,thatmaintaintheirown event-lists.Eventsonthe
timelines are scheduledaccordingto a conservative syn-
chronizationprotocol[23]. In aÒpureÓsimulationscenario,
wherethesimulationis set to runasfastaspossible,a time-
line canbe scheduledto run aslong asit haseventsready
to beprocessedsafelywithout causingcausalityproblems.
For thatreason,duringtheeventprocessingsession,theker-
nel executesall safeeventsof a timeline uninterruptedto
reducethe context switching cost.When we enableemu-
lation, however, the timelinesthat containreal-timeevents
mustbescheduledpromptly.

To promptly processtheeventswith real-timedeadlines
in the system,we adopteda greedyalgorithmin iSSFas-
signinga high priority to emulationtimelines.Thesetime-
lines contain real-time objectsÑspecial in-channelsand
out-channelsthat are used for connectingto the physical
world.Wheneverareal-timeeventis postedandreadyto be
scheduledfor executionon theseemulationtimelines,the
systeminterruptsthe normalevent processing sessionof a
non-emulationtimelineandmakesaquickcontext switchto
loadandprocessthereal-timeeventsin theemulationtime-
line.Thispriority-basedschedulingpolicy allowstheevents
thatcarryreal-timedeadlinesto beprocessedaheadof regu-
lar simulationevents.Notethat,however, sincenormalsim-
ulation events may be on a critical paththat affectsa real-
time event, this methodis not an optimal solution. We are



currentlyinvestigating othermoreefÞcientschedulingalgo-
rithms that canpromptly processemulationeventsaswell
aseventson thecritical path,so that the real-timerequire-
mentcanbesatisÞedin a resource-constrainedsituation.

3.2. Latency Absorption

Werealizethatthereal-timedemandnotonly putsatight
constrainton how we processeventsto reducethe chance
of misseddeadlines,but alsoon the connectivity between
the simulatorandthe real applications.For example, con-
sider a scenario in which a path is establishedbetweena
client machinerunningthe ping applicationandthe ma-
chinerunningthenetwork simulator, asshown in Figure3.
The client machine,which assumes the role of a host in
thesimulatednetwork (with avirtual IP address10.5.0.12),
pingsanotherhostat 10.0.1.19.Theping applicationat the
clientmachinegeneratesasequenceof ICMP ECHOpack-
etstargeting10.0.1.19.Thesepacketsareimmediatelycap-
turedby a kernelpacket Þlteringfacility [22] andthensent
to the machinerunning the simulator. A readerthreadre-
ceivesthesepackets,andconvertsthemto thecorrespond-
ing simulationevents.The simulatorcarriesout the simu-
lation by Þrstputting the ICMP ECHO packetsin theout-
put queueof thesimulatedhost10.5.0.12.Thepacketsare
then forwardedover the simulatednetwork to the desig-
natedhost10.0.1.19,which respondswith ECHO REPLY
packets.Oncethe packets returnto the host10.5.0.12,the
simulatorexportstheeventsto awriter thread,which sends
themto theclientmachinerunningthepingapplication.The
client ping application Þnally receives the ECHO REPLY
packetsandprints out the result.Note that the segment of
the path betweenthe client applicationand the simulated
hostdoesnotexist in themodel.Theproblemis thatthela-
tenciesof the physical connectioncancontribute a signiÞ-
cantportionof thetotal round-tripdelay. Simplyonthefor-
wardingpath(from theclient to thesimulator),it maytake
hundredsof microsecondsevenon a high-speedlocal area
network, beforetheemulation packet is eventuallyinserted
into the simulatorÕs event-list.1 It can tremendouslyaffect
applicationsthataresensitive to suchlatencies.

Our solutionto this problemis to hidethe latenciesdue
to the physical connectioninside the simulatednetwork.
Sincedelaysare imposeduponnetwork packets transmit-
ted from onerouterto anotherin simulation,we canmod-
ify the link layer model to absorbthe latenciesby send-
ing the packet aheadof its due time. The simulatormod-
els the link-layer delay of a packet in two parts:the queu-

1 Thedelayincludesthetime for thesenderÕs operatingsystemto cap-
tureandsendthepacket, thetransmissiontime of thepacket, thetime
for thereaderthreadto receive thepacket, andthetime for thesimu-
lator to Þnallyaccepttheeventandinsertit into theappropriateevent-
list.

% ping 10.0.1.19
PING 10.0.1.19: 56 data bytes

64 bytes from 10.5.0.12: icmp_seq=0 

ttl=64 time=0.54 ms

64 bytes from 10.5.0.12: icmp_seq=1

ttl=64 time=0.28 ms
… 

10.5.0.12

10.0.1.19

physical connections

vir tual connections

Simulated
Network

Reader
Thread

Writer
Thread

Figure3: Emulationof aPingApplication

ing timeÑthe time to sendall packetsthatareaheadof the
packet in question,andthetransmissiontimeÑthe time for
the packet to occupy the link beforeit canbe successfully
delivered,which we modelas the sumof the link latency
andthe transmissiondelayÑthe latter is calculatedby di-
viding the packet sizeby the linkÕs transmissionrate.As-
sumingthat packetsaresent in Þrst-in-Þrst-out(FIFO) or-
der, thetime requiredto transmitapacket is known assoon
asthepacket entersthequeueat thelink layer. Notethat,if
theFIFO orderingis not observed(e.g.,packetsarepriori-
tizedaccordingto theirtypes),onecannotpredictthepacket
queuingtimeprecisely. Furthermore,if weneedtoprovidea
moredetailedmodelon lowerprotocollayers, thelink state
layermayplay a signiÞcantrole in determiningthepacket
transmissiontime aswell. In eithercase,we canstill usea
lower boundof thepacket delaysin our scheme.In thedis-
cussionsto follow, weassumethedelaysareprecisefor bet-
terexposition.

We usea list to storethe packets in the queuetogether
with theirprecalculatedtransmissiontimes.Let Tnow bethe
currentsimulation time andP0 bethe lastpacket transmit-
ted over the link. T0 is the simulationtime that P0 starts
transmission(T0 ! Tnow ). Let Pi be the i th packet in
the queue, where0 < i ! N and N is the total num-
berof packetscurrentlyin thequeue.The time to transmit
packet Pi is thereforeTi = T0 +

∑i ! 1
j =0(! + " j ), where

! is the link latency and " j is the transmission delay of
packet Pj . Supposethat an ICMP ECHO packet is cre-
atedexternally at wall-clock time tR , andthe correspond-
ing simulationpacket Pd is injectedinto the simulatorat
time t"

R . As a result,thepacket carriesa virtual time deÞcit
of #d = (t "

R " tR )/R , whereR is theproportionalitycon-
stantthatindicatestheemulationspeed(i.e.,theratioof vir-
tual time to realtime).Ratherthanappendingthepacket to
theendof thequeue,weinsertthepacketrightbeforepacket



Pk , wherek = max{ i |i # 0 and#d <
∑N

j =i (! +" j )} .2 Af-
ter insertingthepacket in thequeue,wereducedeÞcitof the
packet by thetotal transmission timesof all packetsbehind
the packet in the queue:

∑N
j =k (! + " j ). Furtherimprove-

mentcanbe madeto transmitthe emulationpacketseven
earlier. Whena packet with a deÞcitbecomesthe headof
thequeue,we cansimulatethepacket transmissionin zero
simulationtime. That is, we canfurther reducethe deÞcit
by thepacketÕs transmissiontime.Notethatin iSSFthede-
lay of thelink thatconnectshostsbelongingto two separate
timelinesis usedto calculate the lookaheadfor theconser-
vative parallelsynchronizationprotocol.It is requiredthat
the link latency ! for cross-timelinelinks must be larger
thanzero.In this case,we canonly reducethedeÞcitby as
muchastheexpectedpacket transmissiondelay.

It is reasonableto insert an event with a time deÞcit
aheadof othersin the queue.After all, were the physical
connectionlatenciesnot present, theeventwould have en-
teredthe queue muchearlier. However, in caseswherethe
deÞcit is larger than the sum of transmission time of all
packetsin thequeue(thepacket is thereforeinsertedat the
headof the queue),we can only allow the packet to con-
tinue carryingthe remainderof the deÞcitto the next hop,
andthereforepreempteventsat the next hop.The process
continuesuntil the deÞcitis reducedto zero,or the packet
reachesits destination.Sincewe do not ÒunsendÓpackets
that have beensentbeforethe emulationpacket with the
deÞcitarrives,thisschemeis simplyanapproximationonce
thedeÞcitis carriedto thenext hop.

Another issue concerns accommodatingthe physi-
cal connection latencies in the reverse path (from the
simulator to the client application). A simple solu-
tion is to assumesuch latenciesin the reverse path to
be the sameas in the forwarding path, and usea deÞcit
of the sameamount for all packets traveling in that di-
rection. The problemwith this approachis that the sim-
ulated network always tries to make up for the deÞcit
within the Þrstfew hops,while in factsuch a deÞcitis ex-
pectedat the last segmentof the path from the simulator
to the applicationclient. This meansthe interactions be-
tweenthe packets with deÞcitsand other packets in sim-
ulation do not representreality. We expect that, since in
large-network simulations there are much fewer emula-
tion packets than simulation packets, the effect of sucha
distortion may not be signiÞcantat all. We plan to quan-
tify sucheffect in our futurework.

2 We do this by scanningthe list from thepacket at the tail of the list.
k=0 meansthatthepacket is insertedat thefront of thelist.

4. Multi-resolution Traffic Models

A key techniqueemployed in iSSFNet to make real-
time simulationof large networks feasibleis to usemulti-
resolutionrepresentationsof trafÞc.Theideais to adjustthe
level of detailwith whichatrafÞcßow is simulateddepend-
ing on how interestedwe are in the detaileddynamicsof
theßow. TrafÞcthat is ÒinfocusÓ, whatwe call foreground
trafÞcis simulatedwith high Þdelityat packet-level detail.
TrafÞc that representsÒotherthingsÓgoing on in the net-
work, i.e.,backgroundtrafÞc, is abstractedusingßuidmod-
eling, eitherusingÞnegrainedper-ßow models,or coarse
time-scaleperiodicÞxedpoint solutions.

Fluid modeling of network trafÞc is a techniquewith
somehistory [14, 29, 3, 20, 19], and is being explored
also in other network simulators,such as MAYA [40],
IP-TN [15], and HDCF-NS/pdns[31]. The modelsused
in iSSFNet are basedon our previous work to develop
discrete-eventßuid modelingof TCPandhybrid trafÞc in-
teractionmodelssuchthat thepacket andßuid representa-
tions cancoexist in the samesimulation [26]. Very recent
work hasaddressedcoarsermodelsusingÞxedpoint solu-
tion techniques[27] to calculatethe effectsof ßows com-
peting as they passthrougha large network. As we have
previouslyshown [24], orderof magnitudespeedupsof net-
work simulationsare possiblethroughthe type of multi-
resolutionmodelingoutlinedhere,which makesit possible
to representlargernetworksandmoreßows in realtime.

5. Attack Models

Attack modelsin RINSE focus on assetsat a network
resourcelevel, i.e., things like network bandwidth,con-
trol over hosts,or computationalor memoryresourcesin
hosts.AttackmodelsincludeDoSattacks,worms,andsim-
ilar large-scaleattackstypically involving largenumbersof
hostsandhigh intensitytrafÞc ßows.

5.1. Distributed Denial-of-Service

TheDDoSmodelin RINSEassumesthattheattackerhas
alreadyestablisheda network of zombiehoststhat he/she
cancontrol throughsome(semi-)anonymouschannel, e.g.
InternetRelayChat(IRC).Thus,to launchtheattacktheat-
tackersendsasignalto anintermediateagent(host)thatdis-
seminatesthesignalto thezombies.Thezombiesthenpro-
ceedto blastthetargetwith trafÞc.

It is worth noting that we arethusoften only interested
in the coarsebehavior of the attack trafÞc (a large volume
of trafÞc) ratherthan the detailedtrafÞc dynamics(minor
variability). Consequently, we leveragethemulti-resolution
trafÞcmodelsto providecoarseßuidmodelsof attacktrafÞc
thatis signiÞcantlymoreefÞcientfor simulating large-scale



attacksthanall outpacketsimulation.Thefollowing exam-
ple illustratesthepoint.

Figure4 comparestotal (kernel)event countsof ßuid-
and packet-basedDDoS attackmodelsfor a scenarious-
ing the NMS baselinemodel [1]. The network consistsof
a ring of LANs with a singletarget anda Þxed numberof
zombies(240) in eachLAN. Let Z bethenumberof zom-
bies,R be the trafÞc rate injectedby each zombie,T be
the attackduration,P be the averagepacket size,and H
be the numberof averagehops. Focusing on the zombie
attacktrafÞc, in the absenceof congestionthe total num-
ber of packet transmissioneventsfor the packet model is
Np = Z á(RáT/P )áH andthenumberof ßuidupdateevents
is N min

f = Z ác áH for theßuid,wherec = 2 (ßow setup
andteardown) for a constantrateßow. In the experiments
T = 50 seconds,P = 1000 bytes,the numberof cam-
pusesandthusZ is variedbetween240 and1440,andR
is varied R $ { 1200, 2400, 4800} kbps.Adding networks
slightly increasesH , but high trafÞc ratescandecreaseH
throughcongestion loss,with observedH $ [7.1, 9.6]. Con-
gestionlossfor ßuidslead to ßow interactions.In theworst
caseeachnew ßow interactswith eachprevious ßow such
thatN ma x

f = %Z/ 2&(Z + 1) áH ác.
In theexperimentseventcountsfor ßuidmodelingis es-

sentially constantfor different R (not shown), and orders
of magnitudelower thanthepacket model.Dueto conges-
tion interactionNf lies closerto N ma x

f , andthusthe esti-
matedratio Np/ N ma x

f ! RT/P (Z + 1)c is in the order
of 102. Eventsother thanpacket transmissioneventscon-
tributeonlymarginally. Figure5showshow executiontimes
(2.6GHzCPUrunningLinux)essentiallycorrespondto the
event counts,i.e., orderof magnitudereductionsfor ßuid.
Adding otherßows to the modelcan increasethe number
of ßuid rateadjustmentsfrom congestion andthusincrease
the numberof eventsnecessary for the ßuid model.These
resultssimply illustratethe indicationfor a signiÞcantad-
vantagefor ßuid representationsof coarsehigh-volumeat-
tacktrafÞc.

5.2. Scanning Worms

RINSEalsohasInternetscanningwormmodels[18, 28,
17] thatallow for abstractionof partsof thetopologyand/or
abstractionof thetrafÞcßows by utilizing theßuid models
to representscanßows throughthe network. By modeling
the scanning trafÞc as it traversesthe network, it captures
interactionsbetweenworm propagationand the infrastruc-
ture,suchasbandwidthconstraintsslowing down propaga-
tion of theworm.

Thecurrentscanningworm modelis theEstimate-Next-
Infection (ENI) model [39]. In ENI model the network
topology can be abstractedusing the conceptof a worm-
net. A wormnetis a subnetthat hassusceptible hostsin-
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sideandis representedby a single (gateway) router, asil-
lustratedin Figure6. ThisrouterannouncesanIP preÞxand
keepsthestatesof thewormpropagationinsidethissubnet.
Thenetwork topologyis composedof backboneroutersand
wormnets. Thewormpropagationinsideeachsingleworm-
net is computedindividually, andthewormnetsaffect each
otherthroughscanningtrafÞcthey inject into thebackbone
routers.Optionally, the internaltopologyinsidethe worm-
netmayberetained,in which casethepacket trafÞcto and
from the individual hostsget ßuidizedanddeßuidizedby
thewormnetgateway.

Thescanningßow ratesget updatedusingdiscretetime
stepsof size ∆t. The model considersscansinside the
wormnetandscanshitting it from theoutsideseparately, es-
sentiallythroughseparatetime steps.Theworm modelre-
lies on the Þxed point ßuid trafÞc model to computescan
ßows throughthe backbonenetwork every ∆t time units,
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Figure6: Wormnetscanabstractlargenumbersof vulnera-
blehostsor modelthemin detailusingßuidizinganddeßu-
idizing of trafÞc,i.e.,conversion to packet-level trafÞc.

while adaptive time steps are usedto handlethe internal
scans.This approachimproves precision for preferential
scanningstrategies,using localizedscanning, while limit-
ing the work to updatetrafÞc ratesthroughthe backbone
network. Let $ be the scanrateof oneworm instance.At
the beginning of eachtime step,starting at t, for a given
wormnetj , two thingsarecomputed:

1. New infectionsthatwill happenin thiswormnetin this
comingtime step.

2. Scansthatwill besentoutto theotherwormnetsin this
time step.

The numberof scanssentout by this wormnetduring the
timestep[t, t + ∆t] is sj (t) = I j (t) á$ á∆t, whereI j (t) is
thenumberof infectedhostsinitially at timet. Thereceived
scanningrater j is the sum of scanratesfrom eitherlocal
sourcesr j L or externalsourcesr j E , i.e., r j = r j L + r j E .
r j E is assumedto beconstantduringthistimestep.Assume
thatthereceivedscansarriveat thiswormnetfollow aPois-
sonprocess,thentheinfectionsthatwill happenalsofollow
a Poissonprocesswith a rateof ! j (t) = r j (t) áSj (t)/C j ,
whereSj (t) is the numberof infectedhostsat time t in-
sidewormnetj , andCj is thesizeof theIP spaceof worm-
net j . Thusthe time for the next infection canbe sampled
using an exponentialprocesswith the meanof 1/! j (t),
i.e., %t $ Exp(! j (t)). If the sampledtime is outsidethis
time stept + %t > t + ∆t, thenwe Þnishcomputingthe
worm propagationfor this wormnetfor this time step.If %t
is within this timestep,thestatusof thewormnetis updated
to considerthe scanssentout by this newly infectedhost
from its infection time. Then the time is advancedto the
sampledinfectiontime, thescansfrom local sourcesr j L is
updatedasr j L (t + %t) = r j L (t) + %r , andthe scanssent
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out by this wormnet is updatedassj = sj + %s. After the
update,we repeattheabove stepsthroughan iterative pro-
cess.Note that the computingof %t and %s needsto take
into accountwhether the wormshave a preferencefor lo-
cal addresswhenchoosingscanningaddresses,the details
of whichareomittedhere.

Figure 7 shows resultsfor a validation experiment us-
ing CodeRedv2 parameters,comparinginfectionsin the
modelwith collecteddataduring the actualattackin July
2001.Thedatatracewasbeencollectedin a / 16 network at
theChemicalAbstract Service(http://www.cas.org). Using
theuniquesourceIP addressesfrom incomingscanpackets
to thenetwork, theactualnumberof infectedhostsin theIn-
ternetwasestimatedusingthe methoddescribedin [41]. In
theexperimentwe useddatasetfrom theRocketfuelproject
at theUniversityof Washington[35] to generateabackbone
network topology and attached244 wormnetsto it. From
theprocessedreal-world datatrace,weassumedthattheto-
tal numberof susceptiblesis 374,500. Thereis no prefer-
entialscanninginvolvedin CodeRedv2 incident,thescan-
ning rateis setto 5 scans/sec,andthe experimentwasrun
deterministically. In this experimentwe arenot attempting
to capturehostrepairandpatching,andthegrowth phaseis
capturedverywell by themodel. 3

6. Routing

Memoryandcomputationaldemandsfor routingof traf-
Þc have beenidentiÞedas signiÞcantobstaclesfor large-
scalenetwork simulationandemulation,andhasbeenad-

3 Notethatthenetwork bandwidthwasnota limiting factorin theprop-
agationof this particularworm.



dressedin severalstudies[30, 12, 11, 4, 7]. A naive repre-
sentationof routing informationrequiresO(n) in eachnode
for n nodes,for a total of O(n2) storage.Hierarchicalad-
dressingin theInternetimprovesuponthis to O(p) in each
node,wherep is thenumberof IP preÞxes,eachrepresent-
ing a network. p variesfrom 1Ð2in endhosts(onedefault
route)to morethan130,000in coreInternetrouters.Thus,
for large-scalenetwork models, the amount of memory
neededto storeall theroutinginformationwill still quickly
becomeunwieldy. Somestudies[30, 12, 4] start from the
premiseof shortestpath routesand try to reducecompu-
tationalandrepresentationalcomplexity throughspanning
treeapproximations[12, 4] or lazy evaluation[30]. Others
haveachievedmemoryreductionsin detailedprotocolmod-
els,suchasBGP(policy based routing)throughimplemen-
tationimprovements[11, 7].

In iSSFNetwe have developeda methodfor on-demand
(lazy) computationof policy basedroutes,ascomputedby
BGP [16]. For efÞciency reasonsandto ensurethat trafÞc
(attacktrafÞc in particular)canaddressandreacha desti-
nationnetwork even if the destination is missing,we need
hierarchicaladdressing.Hence,our routing model is cur-
rently beingextendedto handlerouteaggregation.We are
thus able to preloadpartial (precomputed)forwarding ta-
blesbasedon a priori known trafÞc patternsin the model,
suchasscriptedbackgroundtrafÞc,and computeroutesfor
otherßows asneeded.

7. Modeling Device Resources

Basedon experienceswith earlierexercisesof the type
RINSE is targeting, it becameapparentthat the network
modelwill needto capturenotonly theeffectof limited net-
work resources,like bandwidth,but also someaspectsof
constraintsoncomputationalresourcesin hostsandrouters.
Partly becausethey may be targetedby Denial-of-Service
attacks,but also for realismin termsof feasibledefenses.
For instance,if thereis no cost for packet Þltering,a de-
fendermight employ packetÞltersandlet thenumberof Þl-
tersgo towardsinÞnity without observingany ill effectsin
themodel.Consequently, weneedmodelsof computational
resources(CPU)andmemoryin RINSE.

Theproblemof modelingprocessingconstraintsin net-
work simulationshasbeengiven only limited attention to
date.Indeed,in mostcasesa fairly simplemodelwill suf-
Þce.However, in thecaseof RINSE,a fair amountof detail
is necessaryto be able to capture,at leastcoarsely, inter-
actionsbetweendifferenttasksandtrafÞcßows in termsof
processing.This resultsin signiÞcantimplementation hur-
dles,aswill bedescribed,andthesituationis alsocompli-
catedby thefact that themulti-resolutionrepresentationof
trafÞcnecessitatesamulti-resolutionrepresentationof com-

putationalworkload(i.e. bothdiscreteandßuid representa-
tionscoexisting).

Examples of network simulators that include mod-
els of computational resources include the follow-
ing. Models of the Border Gateway Protocol, such as
SSFNet.OS.BGP[10], which hasbeenusedto studyrout-
ing convergence,and BGP++ [6] have been Þtted with
simple models of computational delays. The models
in SSFNet.OS.BGPand BGP++ both use random uni-
formly distributedprocessingdelays,while BGP++alsoof-
fers the choice of measuringthe computation delay in the
embeddedrouting code.The simple model for route pro-
cessingdelays in SSFNet.OS.BGPwas thus one of the
parametersconsideredin [10] to study route conver-
gence time. In another study, a model of Secure-BGP
(derived from SSFNet.OS.BGP)wasusedto studythe im-
pact of cryptographicoverheadson the performanceof
the protocol [25]. Similarly to the original SSFNet.BGP
model,costswereassociatedwith each BGP updatemes-
sage.

Thesensornetworkingcommunity, beingveryconscious
of theconstraintsimposedby tiny sensors,areparticularly
interestedin modelingthe power consumptionof different
components.Thus,simulatorssuchas SensorSim(an ex-
tensionto ns-2)includea CPUmodelthatappearsprimar-
ily focusedoncoarselymodelingthepowerconsumptionof
theCPU[33].

However, in the caseof RINSE, a fair amountof detail
is necessaryto be able to capture,at leastcoarsely, inter-
actionsbetweendifferenttasksandtrafÞcßows in termsof
processing.This resultsin signiÞcantimplementation hur-
dles,aswill bedescribed,andthesituationis alsocompli-
catedby thefact that themulti-resolutionrepresentationof
trafÞcnecessitatesamulti-resolutionrepresentationof com-
putationalworkload(i.e.hybrid discreteandßuid represen-
tations).

7.1. CPU Model in RINSE

In RINSE we want to model CPU and memory re-
sources,where the speciÞcswill dependon the scenario
in question(i.e., which resourcescould potentiallybe ex-
hausted).We identiÞedthe following requirementson our
CPUmodel:

¥ InterferencebetweendifferentCPUintensive tasks.

¥ TrafÞcdelay couldresultfrom high CPUloadÐe.g.,as
a resultof reducedserver responsiveness.

¥ Possibilityof packet lossdueto sustainedhigh load.

¥ ObservableCPUload: theusershouldbeableto mon-
itor CPUloadto diagnosethesystem.
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¥ Light weight: we muststrive for thesimplestpossible
modelsthat can at leastapproximatelyrepresentthe
desiredeffects.

Thus,we requiremorebehavior detail thanmany otherap-
plicationsdo to be ableto capture,at leastcoarsely, inter-
actionsbetweendifferenttasksandtrafÞcßows in termsof
processing.This resultsin signiÞcantimplementation hur-
dles,aswill bedescribed,andthesituationis alsocompli-
catedby thefact that themulti-resolutionrepresentationof
trafÞcnecessitatesamulti-resolutionrepresentationof com-
putationalworkload(i.e.hybrid discreteandßuid represen-
tations).However, given the complexity of operating sys-
temsandhardware layers, we muststrive for the simplest
possiblemodelsthat can at leastapproximatelyrepresent
theeffectswehave identiÞed.

Interference:to observe interferencebetweendifferent
tasks,we needto model how processingcycles are allo-
cated.The genericUNIX processschedulingmechanism4

[36] is basedon priority scheduling,whereprocesspriori-
tiesarecontinuously recomputedto try to achieve goodre-
sponsivenessandlatency hiding for I/O boundtasks.

We do not want to get into the detailsof the schedul-
ing mechanism,but be ableto observe competitionfor re-
sources.Within theCPU,a setof tasksaredeÞned,where
a task can be thought of as a processor thread.For in-
stance,thesecouldbeapplicationlayerprocesseslike web
clients/servers,a databaseserver, or lower layer functional-
ity like a Þrewall processdoing packet Þlteringon incom-
ing packets.Figure8 illustrateshow eachtaskservicesthe
work it hasto do in FCFSorder, but cycles areallocated
amongtasksusingprocessorsharing.In this Þrstmodel we
simplify the problemby assuming that the tasks we con-
siderhave roughly the samepriority (same range),so that
they aretreated equally. Therequests(incomingtrafÞc) to
eachtaskmaybeamixtureof packetsandßuidtrafÞcßows.

4 It variessomewhatbetweendifferentßavors.Linux hasa slightly dif-
ferentmechanism,but for the purposesof this discussionitÕs essen-
tially thesame.

As in thehybrid packet/ßuidtrafÞcmodelin [26], we form
a hybrid queueby ßuidizing the packet load throughesti-
mating the packet rate.However, the servicemodel inter-
leaving the tasksactuallymake thingseven morecompli-
catedherethanmosthybrid trafÞc modelssinceserviceis
not FIFO. AssumethereareN tasks.Let ! f

i (t) be the in-
comingßuid workloadratefor taski (in cyclespersecond)
at time t, andandµ is CPU service rate(i.e. its speed).A
packet hasan associatedworkload,wt in cycles.By esti-
matingthethepacketarrival rateovera timewindow [t ", t ],
wegettheestimatedpacketworkloadrate! p

i (t). Let theto-
tal arriving workloadfor taski be ! i (t) = ! f

i (t) + ! p
i (t).

We needto allocatea servicerateto eachtaskµi (t), deter-
minebacklog" i (t) andpossiblylostwork &i (t). A discrete
workloadarrival (packet workload)at t is alwaysaddedto
backlogon arrival " i (t) ' " i (t) + wt . Note,however, that
if nodiscretearrivalsprecededit in [t ", t ], then! p

i (t) = 0.
Weconsidertwo cases:

Non-overload, the total incoming workload rate over all
tasks is less than or equal to the workload service
ratetheCPU canhandle,i.e.

∑
i ! f

i (t) + ! p
i (t) ! µ.

In this caseeachtask is Þrst assignedthe ßuid ser-
vice rateit requiresµi (t) = ! f

i (t) + ! p
i (t). Tasksthat

have any backlog(" i (t) > 0), andthis appliesto any
tasksprocessingpackets,aremarkedasgreedy. Let g
be the numberof greedytasks. Any left-over cycles
' (t) = µ "

∑
i µi (t) areallocatedequallyto greedy

tasksµi (t) ' µi (t) + ' (t)/g . This ensuresthat the
backloggetsdrainedasquickly aspossibleand thus
packetsareprocessedasquickly aspossible.Conse-
quently, ßuid workloadresultsin a processorutiliza-
tion in proportion to the incomingrate, while discrete
workloadresultsin burstsof full utilization.

Overload, the sum of the incoming ßuid workload rates
andtheaveragedpacket workloadratesis greaterthan
theservicerateof theCPU.Thatis, thereis asustained
overloadcondition. In this casethe tasksare denied
cyclesin proportionto their fractionof the total work-
load,andwhatcannot behandledaccumulatesasback-
log.

µi (t) =
! i (t) áµ∑

i ! i (t)
(1)

An arriving discreteworkload (packet) that doesnot
yet have an averagerateestimateposesa problemin
this case.It is given µi (t) = 1 (full utilization) with-
out affectingotherßows.This is unrealisticin thatthe
total CPUservicerateis now brießymorethanµ, but
is a reasonableapproximation for occasionalpackets.
If the packet is the Þrst in a serieswith high average
workloadrate,thentheservice rateswill becorrected
themomenttheÞrstarrival rateestimateis calculated.
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Whena taskis deÞned,a buffer spacesizebi canbeas-
signedto it to limit the backlogand introducethe possi-
bility of loss of work if the task cannotkeepup. Packets
occupy buffer spaceaccordingto their sizeuntil serviced.
Fluid ßows are assumedto have a simple linear relation-
ship between the workloadrate(cycles/second)andmem-
ory usedfor backlograte(bytes/second).

Modeling loss in hybrid queuesis a delicatematter, as
pointedout in [26]. If a discreteworkload(packet) arrives
to a back-logged taskqueuesuchthat thereis not enough
spaceto Þtit in thebuffer weconsiderthestateof thequeue.
If it is draining,theaveragearrival rate is lessthantheser-
vice rate, and we assumethat it will Þt (replacingßuid
buffer spacewith thepacket).If thequeueisÞlling, wegive
thepacketaprobabilityof Þttinginto thequeueequalto itÕs
proportionof thetotal taskloadp = ! p

i (t)/ (! f
i (t)+ ! p

i (t)).

An unexpectedcomplicationresultingfrom theintroduc-
tion of the CPU model that hasa ßuid representationwas
thepossibility of feedbackloopswithin a host/router. In an
overloadcondition,tasksbecomecoupledthroughcompe-
tition for CPU but may also be coupledthroughthe traf-
Þcßow. Thismayleadto acyclic dependency of trafÞcand
CPUwork. Assume,for instance,thatwe considerthecost
of Þltering and trafÞc forwarding in a Þrewall router. As
illustratedin Figure 9, protocol layersinduceload on the
CPU.If theCPUgetsoverloadedit needsto reportbackto
the protocol layersso that they canreducethe trafÞc rate
emitted.However, sincethetrafÞcßow passesÞrstthrough
Þltering (A) and then forwarding (B ) thereis a feedback
loop in termsof rateadjustments.WhenB changesits load
to theCPU,it mustupdatetheservicedloadfor A. A must
thenupdatethe trafÞc rateemitted to B , which must then
perform anotherload updateto the CPU. For n tandem
tasks,wherework is proportionalto ßow rate,theprinciple
of proportionalloss(equation1) limits the feedback.Con-
siderthe i :th task.Let f i be the inßow, ! i = ki áf i be the
(offered)workload,andcn

i be thecyclesallocatedfor task
i . Initially, ßow rate f 1 is sentthroughall tasks,so equa-
tion 1 impliesweallocatecyclesascn

i = ki /
∑n

j =1 kj . Tan-
demdependenciesmeansthatf i = (cn

i ! 1/! i ! 1) áf i ! 1, and

thus

! i = ki
cn

i ! 1

! i ! 1
f i ! 1 =

ki áki ! 1f i ! 1 áf i ! 1∑n
j =1 kj f i ! 1ki ! 1f i ! 1

=
ki∑n

j =1 kj

That is, the requiredcycles ! i to handlethe adjustedin-
ßow f i equalsthefractionof cyclesassignedcn

i , sotheallo-
cationstabilizesimmediately. But completelyavoiding this
feedbackloopdoesnotappearpossible,soweratelimit the
feedbackfrom theCPUto theprotocollayers.Throughthis
rate limiting, we mimic the control delay imposedby the
schedulingmechanismand boundthe computationalcosts
in themodel.

TrafÞcdelay:onedifÞcult issuewashow to implement
delayswithin the protocolstackwithout incurring signiÞ-
cantoverheads. Firstly, we assumethat mosttasksrequire
insigniÞcantoverheadsso that they do not needto be de-
layedor accountedfor. Thus,our implementationshouldbe
efÞcientfor the frequentcaseof not modelingprocessing
usedfor a packet or ßuid trafÞc ßow. Moreover, we want
to avoid incurring additional code complexity and event
schedulingasmuchaspossible.

iSSFNetusesa protocolmodelinspiredby thex-kernel
design[13], where eachhost or router containsa proto-
col graphcontainingprotocolsessions. Thecompositionof
protocolsessionis conÞgurable,asaremany parametersfor
eachprotocol session.Thekey ideais to haveawell deÞned
commoninterfacethroughwhich protocolsessionscanbe
pluggedtogether. Thesearethepushandpopmethods.Fig-
ure10illustratesthepositionof thepush/popinterfacesthat
areusedasexchangepoints betweentheprotocolsessions.
Packetsarepushedto lower protocolsessionsandpopped
upwards. The iSSF simulation kernel, which iSSFNet is
built on top of, supportsprocess-orientedsimulation.How-
ever, for maximum efÞciency, the programmingpatterns
usedin the protocol stackare based on event-orientation
throughtimer objectsand continuations. Supportingarbi-
trarysuspensionpointsfor processingdelaysin theprotocol
stackwould require switchingto a process-orientedmodel
andinstrumentingthecode to statesave local variablesfor
processsuspension.(This is doneby annotatingthe C++
codeto indicatesimulationproceduresandstatevariables,
after which the iSSF system performsa source-to-source
translationbeforecompilation.)Insteadwe optedto limit
thepossiblesuspensionpoints,i.e.pointsin thestackwhere
discretepacketscan get delayed,to the push/popentry in-
terfacesto theprotocolsessions.Thus,multiple delaysona
packet within oneprotocolsessionwill bemergedinto one
delaythatisnotincurreduntil thepointwherethepacketen-
tersthenext protocolsession.Thepush/popAPIÕsaregood
candidatesuspensionpoints becausethe stateof process-
ing of a packet (or a ßuid ßow) is passedin the packet it-
self along with a small numberof additionalparameters.
Hence,we can safely assumethat thereare no additional
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statevariablesearlierin the executionstack that needsav-
ing. So,uponreturnwe continueprocessingfrom thepush
or popcall without reconstructingtheprocessstack.Other
datastructuresin the protocolsessions,suchasqueuesof
packets that have beendelayedpendingsomecondition,
evolvethroughthepassageof time,i.e.while thesuspended
packet undergoesprocessing, andthusdo not require sav-
ing.

The accumulateddelay for a packet within a protocol
sessionis stored in the packet and thus detectedas the
packet reachesthenext push/popsuspensionpoint.Suspen-
sion points can be enabledor disabledthroughthe DML
conÞguration;the ideabeing to make it easyto aggregate
delays,andthusaggregateevents,by having fewer enabled
suspensionpoints.

Theapplicationlayeris differentfrom therestof thepro-
tocol sessionsin thatit interfaceswith therestof theproto-
col stackthroughthesocket interface(designedto besimi-
lar to theBSD socket API). Hence,no packetsexist at this
layer. Insteadthesocket is usedasthesuspensionpointand
to storedelays. If thesocket suspendpoint is disabled, the
packet is markedwith thedelaywhich follows it down the
stackto theÞrstenabledsuspensionpoint.

Displacing the suspensionpoint from the point in the
codewherethedelayshouldtake placealtersthecausalor-
deringof statemodiÞcationsin themodel,i.e. theinterleav-
ing of updatesin simulationtime will be slightly altered.
We believe this will not bea signiÞcantissuefor theproto-
colsunderconsiderationhere,but moreexperiencewith the
modelwill beneededto bearthisout.
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7.2. Example

We illustratethe CPU modelthrougha very simpleex-
ample.In an experimenta 41.6 MB Þle was downloaded
from a Linux laptop(actingasthe server) usingscp (se-
curecopy). The CPU load on the datasource(server) was
monitoredusing vmstat . Figure 11 shows the CPU uti-
lization during the transferas ÒmeasuredÓ.This scenario
wasmodeledin iSSFNetusingits packet level TCPmodel.
A clienthostis connecteddirectly to aserverhostthrougha
100Mb/s link. WhenmodelingtheCPUload,we have two
choices:useaßuidrepresentationof theloadontheCPU,or
usediscretechunksof work.Theadvantageof theßuidrep-
resentationis thatit is simpleto useandhasvery low simu-
lationcost.Thedrawbackis that it is coarseandwill not im-
poseany delayonthesendingof thepackets.Discretework
is moreexpensive to simulate,but is moreÞne-grainedand
delayspackets.

Usingßuid work, we simply call a setFluid method
on theCPU,asthetransferstarts, to settheinstructionrate
during the transfer(we simply matchthe observed utiliza-
tion). When the transferis completedthe instructionrate
is setbackto zero.Theresult,shown asÒßuidloadÓ,indi-
catesa shortertransfertime thanwhat wasmeasured.Al-
ternatively, we can usediscreteworkloads.Examining the
OpenSSHscpimplementationindicatesthatit transfersdata
througha2KB buffer, sowewritedatato thesocketin 2KB
blocksandimposea computedelayon eachblock for data
transferandencryption.Thecomputationcostis registered
througha call to cpu.use(...) with thenumberof in-
structionsusedanda pointerto thesocket beingused.The
socket send() codehides a call to cpu.delay(...)
causingthesocketprocessingto besuspendedanddelayed.
We alsousea timer to add a small idle delaybetweeneach
block to modellatencies.After tuning thesedelays,there-



sult shown asÒdiscreteloadÓ,canbemadeto match reality
fairly well.

Thereis a signiÞcantdifferencein simulation cost be-
tweenthesetwo approaches.Usingßuid CPUload,no ex-
tra eventsareaddedby the CPU model,but with the dis-
creteworkloadmodel,eachblock requiresa resourcede-
partureevent and resultsin an event for drained backlog.
Thus, the total event count increasesby a factorof about
2.4 andthe execution time by a factorof 4. It is up to the
modelerto determinewhentheadditionalcostis justiÞed.

7.3. Discussion

Linear regressionon results from a small benchmark
model (a sequence of forwarding routers) indicated that
the event cost for discrete(per-packet) CPU work delays
is more than twice that of packet forwarding events,due
to complex updatesandstatisticsbookkeeping.We arecur-
rently looking into waysto reducethis cost,but it appears
likely that therewill still be a signiÞcantoverheadassoci-
atedwith resourceupdatesfor discretework. Hence,it ap-
pearsnecessaryto beselectivein whatcoststo modeland/or
usecoarserßuid representationsof the workload imposed
on theCPUalsofor packet-level trafÞc.

Asidefrom approximationsarisingfrom implementation
decisions,thecurrentCPUresourcemodelrepresentsmany
simpliÞcations.The principle of proportional loss is fre-
quently usedfor ßuid trafÞc and alleviates the allocation
feedbackissuementionedpreviously. But we seethe need
for moreemphasison distinctionof taskprioritiesto better
mimic prioritizationof processesandthreads.For instance,
kernellevel processesshouldbe largely insulatedfrom de-
mandsat theuserlevel. We arelooking into new allocation
policiesthatcanprioritizedemands.

8. Summary and Future Work

RINSE incorporatesrecentwork on i) real-time inter-
action/emulationsupport,ii) multi-resolutiontrafÞcmodel-
ing, iii) efÞcientattackmodels,iv) efÞcientroutingsimula-
tion, andv) CPU/memoryresourcemodels,to target large-
scalepreparednessand training exercises.Describedhere
wereefÞcient CPU/memorymodels necessaryfor the sce-
narioexercises,anda latency absorptiontechniquethatwill
help when extending the rangeof client tools usableby
the players.We also provided empirical resultsthat point
to thesigniÞcantperformanceimprovementsthatarepossi-
ble in simulationsof DistributedDenial-of-Serviceattacks
by leveragingoff the ßuid basedtrafÞc models.The net-
work worm modelsincorporatedin RINSE permit model-
ing theinteractionwith network infrastructureandtheprop-
agationdynamicshavebeen validatedagainstcollecteddata
duringrealwormattacks.

Aside from model reÞnements,our ongoingandfuture
work includesmore fundamentalissuessuchassupporting
fault toleranceand efÞcientreal-timeschedulingof com-
puteintensive taskslikebackgroundtrafÞccalculationsand
majorroutingchanges.For example,wewouldlikeoursim-
ulationframework to permitcertainbackgroundtasks,such
asbackgroundtrafÞc calculations,to be adaptively sched-
uledbasedonhigherpriority load.
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