
Simulation of Network Traffic at Coarse Time-scales

David M. Nicol, Guanhua Yan
Coordinated Science Laboratory

University of Illinois, Urbana-Champaign

Abstract

Simulation of large-scale networks demands that we
model some flows at coarser time-scales than others, sim-
ply to keep the execution cost manageable. This paper stud-
ies a method for periodically computing traffic at a time-
scale larger than that typically used for detailed packet sim-
ulations. Applications of this technique include computa-
tion of background flows (against which detailed foreground
flows are simulated), and simulation of worm propagation
in the Internet. Our approach considers aggregated traf-
fic between Internet Points of Presence, and computes the
throughput of each POP-to-POP flow through each router
on its path. This problem formulation leads to a non-linear
system of equations. We develop means of reducing this
system to a smaller set of equations, which are solved us-
ing fixed point iteration. We study the convergence behav-
ior, as a function of traffic load, on topologies based on
Internet backbone networks. We find that the problem re-
duction method is very effective, and that convergence is
achieved rapidly. We also examine the comparative speedup
of the method relative to using pure packet simulation for
background flows, and observe speedups of exceeding 5000
using an ordinary PC. We also simulate foreground flows
interacting with background flows, and compare the fore-
ground behavior using our solution with that of pure packet
flows. We find that these flows behave accurately enough in
our approach to justify use of the technique in our motivat-
ing application.

1. Overview

Simulation of large-scale wireline networks has many
applications. In some of these only a small fraction of traf-
fic is of specific interest, e.g., the behavior of flows man-
aged by a new transport protocol, or control traffic between
BGP routers. However, the flows of interest are affected by,
and may even (to a lesser degree) affect the other “back-
ground” flows. There is strong motivation to model back-
ground flows with less detail than foreground flows, with

the objective of significantly lowering the computational
requirements. Control traffic such as BGP announcements
and DNS queries need to be modeled at the packet level,
yet the network being simulated has hundreds of thousands
of devices and (typically) tens of thousands of flows repre-
sented at any given time. The only hope we have of meeting
real-time constraints is to significantly aggregate our treat-
ment of background traffic. In other applications the traffic
of interest can be modeled at a coarse time scale. For exam-
ple, simulation of worm spread across the Internet can be
usefully modeled at a time scale much larger than is usu-
ally used in network simulation, and the volume of traffic is
so large that this becomes necessary.

Our problem is this : given a description of flow in-
tensities at ingress points, efficiently determine link loads
throughout the network interior, and determine flow inten-
sities at egress points. Solution to this problem allows us
to represent these flows to a more detailed traffic mode in
terms of the demand they make on shared bandwidth (and
potentially, buffer space). These demands are periodically
recomputed, e.g., every 5 seconds. On large networks this
method will compute bandwidth consumption significantly
faster than will packet representation of the same flows.

These savings naturally come with a cost. Low resolu-
tion background flows may be less responsive to changes
in network state, they may exhibit less burstiness, the de-
gree to which a simulation using them differs from one with
all flows at the same resolution will be unknown. Neverthe-
less there are contexts where the trade-offs in favor of com-
putational speed are acceptable; indeed there are contexts
where one really has no other option but to use highly ab-
stracted representation of background traffic. Our research
group is developing a network simulator that will be used
in cyber-defense training exercises where the most impor-
tant accuracy requirements are that the simulated behav-
ior have a realistic “look and feel”. The simulator computes
the detailed effects on particular traffic flows (e.g. financial
transactions) as cyber-attacks occur, and as defensive mea-
sures are taken. Two defining characteristics are that its ap-
plication demands real-time performance (e.g., one second
of simulation time takes no more than one second of wall-

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

clock time to advance), and that its application involves net-
works with potentially hundreds of thousands of devices.

The simulation problem becomes non-trivial when we
attempt to capture the effects of bandwidth sharing among
flows across a common link. Our specific formulation tar-
gets time-scales larger than end-to-end latency, hence one
assumes that flows pass instantaneously through the net-
work. This leads to a system of non-linear equations whose
solution gives the desired background flows. We propose a
fixed point algorithm for its solution.

We empirically analyze this technique on models of real
Internet backbone networks, with synthetic traffic generated
using Pareto-Poisson Burst Processes (PPBP) [27]. We ex-
amine convergence behavior as a function of traffic load,
the speedup it offers, and the accuracy of foreground traf-
fic when it is used in place of packet simulation. Our ex-
periments demonstrate the viability of the approach for our
motivating application.

2. Related Work

Our problem is related to the area of network tomogra-
phy, that likewise seeks to determine some network charac-
teristics (e.g. the traffic matrix—volume of flows between
any pair of ingress and egress points) from other traffic mea-
surements (e.g. measured link loads on the network edge).
There is a large and fascinating literature on the topic, e.g.,
see [25, 24, 7, 22, 20, 4, 1, 5]. A key difference between
our problem and network tomography is that the latter is
driven by difficulties in obtaining measurements of certain
important quantities, and so works to use models to infer
them from measurements that are available. In the virtual
world of simulation we can measure anything we like; our
problem is to compute those measurements given the of-
fered load.

Our approach includes ideas found elsewhere. The no-
tion of simulating traffic using simple rate functions was in-
troduced almost ten years ago [8], a formulation that ob-
serves that FCFS service at a congested router port can be
modeled by scaling the flows in portion to their input rates,
which is a central facet of our model. Further development
is found in [14]; application to TCP is developed in [16],
which treats issues in simultaneous simulation of packet and
fluid flows, as do [9], [26], and [15]. Specific application to
the global Internet and practical problems therein are dis-
cussed in [2].

More detailed fluid models found in the literature include
treatments of TCP [17], models containing stochastic ele-
ments [13], a time-stepped model [23], and a discussion of
trade-offs [12, 11]. Use of fixed point iteration to solve for
network measures of interest also appears in [3], a model
that focuses much more on TCP and less on link loads. A
very abstract rate-based model is discussed in [21], work

that does not try to capture interflow dependencies in de-
tail, as we do.

Against this backdrop our contribution is the develop-
ment, optimized solution, and empirical study of a coarse-
grained traffic model that focuses on the impact that band-
width sharing on congested links has on flow rates through-
out the entire network. Our fixed point approach is unique
in that each approximated solution has internal consistency
that can, in some contexts, allow it to be used even if the so-
lution has not yet converged. The approach is a valuable and
necessary component of our real-time cyber-defense train-
ing simulator.

3. Model

We are interested in how a network shapes coarse-
grained traffic flows between many network points of
presence (POPs). We assume that there are n of these, de-
noted by P1, P2, . . . , Pn. Traffic is described by processes
{Tij(t)}, (1 ≤ i, j ≤ n) that give the rate (bits per sec-
ond) at which POP Ti injects traffic destined for POP
Pj into the network at time t. We discretize time into
units of length ∆ seconds, and define time tk = k · ∆,
k = 0, 1, 2, We make very few assumptions about
how {Tij(t)} is defined, other than at time tk the behav-
ior of Pij(t) with t ∈ [tk, tk+1] can be predicted. We may
use this formalism to reflect an underlying random pro-
cess, a recorded traffic trace, or even real-time measure-
ments. We will work with “smoothed” values of {Tij(t)},
as follows. Define Rij(tk) = (1/∆)

∫ tk+1

tk
Tij(t) dt,

and observe that the process that injects traffic at con-
stant rate Rij(tk) over [tk, tk+1] injects exactly the
same amount of traffic as does Tij(t) over that same pe-
riod. We will use {Rij(t)} to describe injected traf-
fic, in order to simplify the computation. Doing so we may
dampen burstiness at scales smaller than ∆, but we will in-
ject the same amount of traffic as the original process.

We model the network itself in terms of routers con-
nected by uni-directional links, understanding that we can
model a bi-directional link as a pair of uni-directional ones.
The sending endpoint of a link is associated with a router’s
output port, and associated with each output port is a buffer
size. Routing protocols establish forwarding tables that in-
dicate for each router the output port to use for any partic-
ular POP destination. We assume that routing decisions are
unaltered during a discretized epoch of length ∆. Link la-
tencies are effectively assumed to be zero, which is an ap-
propriate modeling assumption when ∆ is large compared
to the typical end-to-end latency of a flow.

At a given instant tk we can examine the sum of the
arrival rates to a router’s port. Congestion and traffic loss
may occur. We modified a congestion model commonly
used in fluid traffic simulations (e.g. [8, 14]) for our time-

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

stepped formulation, as follows. Suppose that at time tk

there are m flows mapped to a given port, with arrival
rates ψ

(in)
1 (tk), ψ(in)

2 (tk), . . . , ψ(in)
m (tk), and let Ψ(tk) =∑m

i=1 ψ
(in)
i (tk) be their aggregate arrival rate. Let µ denote

the link bandwidth. The rate of the ith flow out of the port
(denoted ψ

(out)
i (tk)) is defined in terms of the relationships

between Ψ(tk) and µ:

ψ
(out)
i (tk) =

ψ
(in)
i (tk) for Ψ(tk) ≤ µ

ψ
(in)
i (tk)

(
µ/Ψ(tk)

)
otherwise

= ψ
(in)
i (tk) × min{1, µ/Ψ(tk)}. (1)

In the first case the port can completely serve all of the
incoming flow; in the second case every flow’s output band-
width is scaled back by a constant factor, a device that mod-
els effect of FCFS service [8].

Equation (1) describes what the simulation needs to do
in order to compute a link’s utilization over the epoch
[tk, tk+1] as a function of the input flow rates to it at time
tk. However, we will see that this is a deceptively simple de-
scription; for, depending on the value of ∆, the flow rates
into the port at time tk may depend on the flow rates out of
it at time tk.

4. Algorithm

4.1. Time-step setup

The starting premise of our approach is that we can com-
pute resource consumption of certain types of flows rel-
atively infrequently, and treat that consumption as invari-
ant between updates. These flows may be made sensitive to
flows modeled with higher resolution, but only at the fixed
update points. Upon reaching an update point we have the
opportunity to re-assess the bandwidth allocated on each
link. These decisions may be made as a function of ob-
served past behavior. We also have the opportunity to ad-
just the offered load rate, e.g. , reduce it on flows for which
loss has been observed in the last time, in order to model
feedback (such as TCP provides). These issues are impor-
tant, but are not the focal point of the present paper.

When we use this formulation to compute background
traffic intensities it is important to capture the competition
between foreground and background flows for link band-
width. We use a simple mechanism for including the next
epoch’s anticipated foreground flow as we compute flow
rates for background flows. At time tk, for each port pz , we
compute an estimated foreground input rate λ

(in)
f (pz) based

on recent observations (or even known predictions, if such
were available). We model foreground flow passing through
the port as though it is injected into the network at this point

from a traffic source, crosses the link, and immediately dis-
appears into a traffic sink. As we compute new flow rates,
for that port we treat that flow exactly as any other flow.
The “fair” contribution of foreground traffic is thus consid-
ered as we allocate bandwidth for the background traffic.

Since each flow is recomputed each time-step, we also
have the opportunity to alter routing. This is particularly
useful in applications where routing changes in response to
changes in traffic loads, or where we simulate attacks on the
routing infrastructure by disabling routers, eventually caus-
ing routing protocols to respond and create new routes. We
assume that the routing for the next time step is known be-
fore we compute the flow updates.

4.2. Dependency Reduction

It is helpful to imagine the flow update computation in
terms of the status of input flow variables. We describe the
set of all flow variables at time tk (including the ingress
flow rates) by a vector Λ(tk). At any stage in flow update
processing an element of this vector is either settled or un-
settled. We say that a port is resolved once all of its input
flows are settled, because then Equation (1) specifies its out-
put rates. We say that the port is transparent if it is not re-
solved, but analysis shows that the sum of input rates cannot
exceed the port’s bandwidth; for such ports every flow’s out-
put rate is identical to its input rate. Our aim is to resolve as
many flow variables as possible, in a sort of data flow anal-
ysis phase. Once finished we necessarily have circular de-
pendencies among some flow variables, and another form of
processing is needed. A key component to the flow resolu-
tion analysis is the computation and propagation of settled
flow values—a settled flow value into a transparent port es-
tablishes a settled output value (and hence settled input to
the next router in the path). Thus identification of transpar-
ent ports is important. Another key component is the ob-
servation that we sometimes may determine that a port is
transparent if we know upper bounds on some of its inputs’
as-yet-unsettled variables. A settled flow rate into a trans-
parent but as-yet-unresolvable port produces a settled out-
put rate (which in turn may be used to help make another
port either transparent or resolvable.)

We describe the logic of this step in terms of produc-
tion rules, such as one uses to build expert systems. A rule
has a logical expression known as a precondition, and a
set of actions to apply whenever the precondition is satis-
fied. Applied here, the precondition is a Boolean expression
about settled/unsettled states of flow variables and the re-
solvable/transparent state of ports. The post conditions set
flow variable values, and change the state of flow variables
and ports.

A precise description of the rule set requires notation. We
drop the notational dependence on tk and use λi to be the

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Pre-condition Action

1.
∼ (S[p] = resolved) ∧
∀i ∈ I(p) {S[λi] = settled}

S[p] ← resolved,
∀i ∈ I(p) {S[λnp(i)] ← settled,
λnp(i) ← λi × min{1, µp/

∑
j∈I(p) λj})}

2.
S[p] = unresolved ∧ ∑

i∈I(p) λi ≤ µp ∧
∃ i ∈ I(p) s.t. S[λi] = bounded

S[p] ← transparent,
∀i ∈ I(p) s.t. S[λi] = settled {S(λnp(i)) ← settled}

3.
S[p] = transparent ∧ ∃i ∈ I(p) s.t.
(S[λi] = settled) ∧ ∼ (S[λnp(i)] = settled) S[λnp(i)] ← settled, λnp(i) ← λi

4.
φ(p) ≥ µp ∧ ∃i ∈ I(p) s.t.
λnp(i) > (µp/φ(p))λi

λnp(i) ← (µp/φ(p))λi

5. ∃i ∈ I(p) s.t. λi < λnp(i) λnp(i) ← λi

Table 1. Transition Rules for Dependency Reduction

ith flow variable in vector Λ. The state of λi, denoted S[λi]
is either resolved, or bounded. In the settled state λi has its
final value, and in the bounded state we define λ i to be the
bound. As we will see, at initialization every flow variable
is placed into one of these two states.

For every port p we denote the state of p by S[p], de-
fined to be one of resolved, transparent, or unresolved. We
also define I(p) to be the set of indices such that if i ∈ I(p),
then λi is an input flow variable for p; we similarly define
O(p) as the indices of flow variables defined by flows leav-
ing p. For every λi we let f(i) denote the logical end-to-end
flow associated with λi, and note that for every i ∈ I(p)
there exists a unique j ∈ O(p) such that f(i) = f(j); this
j is denoted np(i). µp denotes the port’s bandwidth. We de-
fine φ(p) to be the sum of rates of all settled flows into p.
This value necessarily changes as flows into p become set-
tled in the course of the computation.

At initialization the flow variables describing network in-
puts are given state settled and their values set. Every other
flow variable is put in the bounded state, and given the
ingress value of its associated end-to-end flow. Every port
is placed in the unresolved state. Table 1 gives five rules
that are applied repeatedly, until no further pre-conditions
are satified. Rule 1 says that if a port is not in the resolved
state but all of its input flows are settled, then the port be-
comes resolved and all of its output flows become settled.
Rule 2 says that if by summing the upper bounds on in-
put flow values to an unresolved port we can determine that

it will not be congested, then the port becomes transparent.
Rule 3 says the if there is a settled input flow to a transpar-
ent port whose corresponding output flow is not settled, then
that output flow becomes settled and takes the value of the
input flow. Rule 4 observes that if the total volume of known
settled flows into p exceeds the bandwidth, then the port will
definitely be congested and the scale factor by which all in-
put flows will be multiplied can be upper-bounded; thus ap-
plication of that scale factor to either a settled flow or an
upper bound on a flow produces an upper bound on the out-
put flow value. Rule 4 reduces any output flow upper bound
that can be so reduced. Finally, Rule 5 says that if the value
(or bound) on an input flow to any port is less than the value
or bound assigned to its corresponding output flow, then we
can lower the value assigned to the output flow. Rules 4 and
5 are powerful in that they may let us push bounding in-
formation past an unresolved port. We note in passing that
Rule 4 is the only rule in this set that depends fundamen-
tally on the assumed FCFS service. Leaving out Rule 4, we
can use this technique other disciplines, such as weighted
fair queueing.

In the evaluation of a rule set such as this, at any
time there may be a number of ports for which rule
pre-conditions are satisfied. Prioritizing selection of which
rules to fire is an important component of the solu-
tion. Rule 1 should always have highest priority, as the ob-
ject is to resolve flow variables as quickly as possible.
Next most important is Rule 2, for making a port transpar-

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

ent allows propagation of settled values through the port,
potentially enabling a Rule 1 firing. Rule 3 has next pri-
ority, for the same reason. Rule 4 is next, for by decreas-
ing upper bounds on output flows we may discover that
a port is transparent. Rule 5 has lowest priority; Rule 4’s
lower bounds are sharper (hence it has priority when it ap-
plies), but Rule 5 nevertheless may help to identify the
transparency of a port.

Efficient rule processing is possible. Our implementa-
tion visits each flow variable a small (constant) number of
times. There is no ordering, sorting, or searching involved.
The computational complexity is thus proportional to the
number of flows times the average number of ports through
which a flow passes—essentially linear in the size of the
problem.

Figure 1 illustrates these concepts with an exam-
ple topology, and description of the Rules processing that
lead to each flow variable becoming settled.

4.3. Circular Dependencies

Unlike the example of Figure 1, it may happen that after
dependency reduction is completed some input flow vari-
ables remain unsettled. When this occurs, there is a cycle of
unresolved ports in the system graph. One small change in
this example illustrates the point. If λ1 + λ9 > µ then p2
does not become transparent by Rule 2; the network is left
with a cycle p2 → p4 → p6 → p2 of unresolved ports.

The next step focuses on solving flow variables on such
cycles. The variables involved may be a subset of the vari-
ables still unsettled. In our running example we have to set-
tle λ2, λ6, and λ10 on the loop before we can settle all the
other unsettled variables. Fortunately it is easy to identify
the cycles and restrict our attention to them. The network
is a directed graph; the process of resolving ports and set-
tling variables can be thought of as a kind of graph reduc-
tion where we remove nodes corresponding to ports, as they
are resolved. After dependency reduction we can find cycles
by identifying nodes that have out-degree 0 (egress ports),
remove them and any edges directed to them. If the edge re-
moval causes another node to have out-degree 0 it too is re-
moved with all its in-edges, and so on. By this process we
remove non-cyclical dependents of the cycles whose values
we must compute. Once the variables on the cycles are de-
termined we can compute the flow variables for the rest of
the system.

We will say that a flow variable is irreducible if it is an
output of a port whose node remains in the reduced graph.
It may happen that the reduced graph has more than one
connected component. In the reminder we describe what to
do with a given connected component, understanding that
different connected components can be solved for indepen-
dently.

For the sake of notational simplicity, we suppose
there are M irreducible flow variables, renamed as
λ1, λ2, . . . , λM ; let Λ be the M -vector of these values. Ev-
ery irreducible flow variable is the output from a port rep-
resented in the reduced dependency graph, and is thus
expressed by Equation (1) as a function of the port’s in-
put flow rates—at least one of which must be irreducible.
The port’s non-irreducible input flows are known, hav-
ing been computed either in a previous time-step, dur-
ing the graph reduction, or as the result of computing flows
from a port that will serve only backlogged traffic in the
next epoch. From the point of view of Equation (1) ap-
plied at this point in the computation, non-irreducible flow
variables are constants. Let fi(Λ) be the equation express-
ing λi, let Fi(Λ) = λi − fi(Λ), and let F (Λ) express the
system of M equations, the ith such being Fi(Λ). Our prob-
lem is to find a solution to F (Λ) = 0.

This system of equations is non-linear, because the com-
ponent equations fi(Λ) are not linear combinations of the
variables. Our equations are more complex because the
flows from a congested port have a decidedly non-linear re-
sponse to changes in input flows.

The general problem of solving non-linear systems is
known to be very hard. A non-linear system may have
between 0 and many solutions, depending on the prob-
lem specifics. Solution approaches to non-linear systems
are typically iterative, meaning that given an estimated so-
lution Λk, one creates another estimate Λk+1 that (hope-
fully) is closer to a true solution. Typically one iterates until
some norm of the difference between successive iterations
||Λk+1 − Λk|| is less than a tolerance ε. Any given itera-
tive algorithm may or may not converge to a solution, de-
pending on the starting point Λ0.

Some forms of iteration create Λn+1 from Λn us-
ing derivative information. The widely known Newton-
Raphson method [18] computes

Λn+1 = Λn − J−1(Λn)F (Λn)

where J−1(Λn) is the inverse of F ’s Jacobian evaluated at
Λn, and F (Λn) is the vector resulting from applying Λn to
each equation Fi. Recall that the ijth entry of F ’s Jacobi
matrix is the value of the partial derivative of F i with re-
spect to λj . Newton’s method converges fast on sufficiently
well-behaved systems, using sufficiently close starting ap-
proximations Λ0. It has the computational drawback of re-
quiring, at each iteration, the inversion of a large dimen-
sion sparse matrix. That in itself is a significant computa-
tional challenge. It also leaves us with the issue of what traf-
fic matrix to use if it should happen that the Jacobian cannot
be inverted or the iterations diverge.

Equation (1) itself suggests an iterative method. We de-
fine the first approximation Λ0 by computing the output of
each port using as input a flow’s ingress flow rate; the ap-

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

λ 11

λ1

λ 6

λ5
p6

λ9λ1+ µ< λ + λ5 > µ9λ1+ λ5 > µ

flow entry

9
Flow C

settled variable

λ

p2

p1

λ

λ

λ λ

λ

λ12λ 3

7 8

2

10

4

Flow A

Flow B

p4
p5

p3

Topology

Step Rule Processing

1. 2 S[p2] ← transparent ,S[λ2] ← settled
2. 1 S[p4] ← resolved ,S[λ6] ← settled ,

S[λ3] ← settled
3. 1 S[p5] ← resolved ,S[λ4] ← settled
4. 1 S[p6] ← resolved ,S[λ7] ← settled ,

S[λ10] ← settled
5. 1 S[p1] ← resolved ,S[λ8] ← settled
6. 1 S[p2] ← resolved ,S[λ11] ← settled
7. 1 S[p3] ← resolved ,S[λ12] ← settled

Dependency reduction processing

Figure 1. Example Topology, and Sequence of Rules Applied

proximation is good if there is relatively little loss. Given
approximate solution Λn, we compute

Λn+1 = f(Λn) = (f1(Λn), f2(Λn), . . . , fm(Λn)).

This formulation is also known as a fixed-point computa-
tion. The intuition is that if we hold the flow rates into
the network constant, over time the flows across each link
should stabilize (although as yet we have no formal proof
of this). If this were the case then the suggested iterative
method is equivalent to pushing the network state along
in time until it settles. The converged state is the “fixed-
point”, in the sense that reapplying the traffic shaping rules
expressed by Equation (1) does not alter the flow rates.
Naturally, a very significant question to ask is whether
the fixed point computation will converge to some solu-
tion Λ∗ = f(Λ∗). The literature identifies a general con-
dition under which convergence may be proven. Function
f : IRn → IRM is said to be a contraction mapping if there
exists 0 < q < 1 such that for all Λ1, Λ2 ∈ IRM and norm
||x||

||f(Λ1) − f(Λ2)|| < q||Λ1 − Λ2||.
The Banach fixed point theorem [6] states that there ex-
ists a unique fixed point Λ∗, e.g., Λ∗ = f(Λ∗), and that
Λ∗ may be found by choosing arbitrary Λ0, and iterate as
Λn = f(Λn−1). This sequence converges to the limit Λ∗.

Formally proving convergence, or circumstances under
which convergence is achieved remains an important goal
of our research. It is a challenging goal though, as it seems
that to achieve it we will have to use specific properties of
our problem domain. In particular, it seems that the contrac-
tion parameter q is dependent on the network being con-

sidered, which makes discovery of a general result for our
application domain all the more challenging. Nevertheless,
Banach’s fixed point theorem gives the foundation for our
approach. Our experimental section will directly study how
convergence behaves on certain motivating networks.

We are in the uncomfortable position of lacking assur-
ance of convergence by Newton’s method or the fixed point
method suggested by Equation (1). If it should happen that
we observe divergence after some number of iterations, we
have still to construct some representation of background
traffic. In our training application context we can justify us-
ing a traffic matrix that doesn’t satisfy Equation (1), but is
in some weaker sense “plausible”. Unfortunately interme-
diate steps of Newton’s method may create an estimate Λn

that is physically unrealizable, in the sense that it may as-
sign outflow rates to a link such that their sum exceeds the
link capacity, or in the sense that volume of a given flow
that leaves the system exceeds the sum of what is entering
plus what was buffered. These things can happen because
the Newton method computes the next solution by follow-
ing a linear projection out from the old solution. No con-
straints are placed on the solution that is so computed. Thus,
if we should find that J is not invertible at some iteration, or
that the iterations are diverging, we are left with the prob-
lem of using something reasonable for the traffic loads, and
the intermediate solution Λn may not be reasonable.

The fixed point algorithm is a more attractive option with
respect to this problem because respect for system con-
straints is built into Equation (1). We formalize this respect
by the definition of a plausible approximation.

Definition 1 Approximation Λn is plausible if

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

1. every flow rate expressed by Λn is non-negative,

2. across every link the sum of flow rates assigned by Λn

to that link does not exceed the link bandwidth,

3. for every pair of POPs Pi and Pj , between times tk
and tk+1 the volume of Pi-to-Pj traffic leaving the sub-
network represented by the reduced graph is no larger
than the sum of the volume of Pi-to-Pj traffic enter-
ing the subnetwork, plus the Pi-to-Pj traffic that is
buffered along its path through the subnetwork.

The fixed-point method suggested by Equation (1) en-
sures plausibility.

Theorem 1 Let Λn be any approximation with non-
negative flow values. Then
Λn+1 = (f1(Λn), f2(Λn), . . . , fm(Λn)) is a plausible ap-
proximation.

Proof: Given non-negative values for flow variables, it is
not possible for Equation (1) to create negative values, thus
fi(Λn) ≥ 0 for all i and the first condition for plausibility is
satisfied. By construction it is not possible for Equation (1)
to assign flows across a link that exceed the link’s allocated
capacity for background traffic, so the second condition for
plausibility is also satisfied. To establish the third condition,
choose any flow Pi-to-Pj that passes through the subnet-
work, and consider the sequence of ports p1, p2, . . . , pz it
follows through the subnetwork. Now in Equation (1) the
value of the expression used in Case 1 is always larger than
the value used in Case 2. Therefore an upper bound on the
flow value associated with the flow leaving the subnetwork
is obtained by assuming that the case 1 expression is used
at each port along the path. That upper bound is simply the
sum of the rate at which the Pi-to-Pj flow enters the subnet-
work, plus (1/∆) times the sum of Pi-to-Pj traffic buffered
along the path. This establishes the third condition for plau-
sibility. �

Our experience has yet to show a case where conver-
gence did not occur; future work will look at firming up
the theoretical basis for the convergence we observe.

5. Experimental Results

We now consider the results of experiments designed
to examine the resource requirements of the algorithm, on
four realistic topologies derived from the Internet, and flows
across them. Their characteristics are given by the table be-
low:

Topology # routers # links # flows Mbps
Top-1 27 88 702 100
Top-2 244 1080 12200 2488
Top-3 610 3012 61000 2488
Top-4 1126 6238 168900 2488

Top-1 is the a model of the ATT USA backbone, de-
scribed in [10]. Each node is assumed to be a POP. We cre-
ate a flow between every possible of the 27 ∗ 26 = 702
POPs. The link bandwidth (100Mbps) is artificially low to
enable us to make a direct comparison of accuracy and per-
formance with equivalent packet-based flows. Top-2, Top-
3, and Top-4 are derived from topologies from the Rock-
etfuel [19] database. Top-2 is the Exodus backbone; every
POP directs a flow to 50 others. Top-3 is Top-2 augmented
through some peering points with the Above.Net backbone;
and Top-4 is Top-3 augmented through some peering points
with the Sprint backbone. Shortest-path routing is assumed.
In Top-2, Top-3 and Top-4 each POP directs 50 flows to
POPs in its own backbone, and 50 to each other backbone
in the topology. Thus a Top-2 POP sends 50 flows, a Top-3
POP sends 100 flows, and a Top-4 POP sends 150 flows.
Each flow is derived from a Poisson-Pareto-Burst-Process
(PPBP) [27]. A Poisson process generates arrivals, each of
which contributes a random traffic volume that is sampled
from a Pareto distribution. The volumes are additive; one
can describe a PPBP at time t in terms of the number of
bursts that are active at time t. The PPBP is recognized as a
good model of traffic arrival to a backbone. There are three
parameters to a PPBP. In our experiments we choose them
to create desired average link utilizations, and to a lesser de-
gree, variance. The Hurst parameter for the Pareto distribu-
tion is 0.8.

5.1. Convergence Behavior

We first consider how the algorithm behaves in terms of
the number of ports on cycles analyzed by the fixed point
step, and the number of iterations required to achieve con-
vergence. In all of these experiments we consider a solu-
tion to be converged when the maximum relative difference
between successive approximations to any flow variable is
0.001, e.g., when |λn+1−λn|/λn ≤ 0.001 for all flow vari-
ables λ.

Figure 2 gives histograms of the number of ports on
cycles in a time-step, and the number of iterations used
on a time-step, on single runs of 200 time-steps. A time-
step spans 5 simulation seconds. Top-2, Top-3, and Top-4
topologies are represented. The Top-1 topology very rarely
formed cycles, even at high utilitization. In the Top-2 and
Top-4 experiments the traffic parameters are selected to cre-
ate close to 50% link utilization. At these loads, and under
these traffic patterns, to a first approximation the number of
ports in dependency cycles is proportional to the square root
of the number of ports, and the number of iterations is pro-
portional to the square root of the number of ports on cy-
cles. The same measurements at 10% link utilization con-
firm the intuition that cycles form very infrequently at low
utilization.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

N
um

be
r

of
 ti

m
e-

st
ep

s

Number of ports

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7

N
um

be
r

of
 ti

m
e-

st
ep

s

Number of iterations

Top-2 Backbone 50% Link Utilization

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

N
um

be
r

of
 r

ou
nd

s

Number of ports

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10

N
um

be
r

of
 r

ou
nd

s

Number of iterations

Top-3 Backbone 50% Link Utilization

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 ti

m
e-

st
ep

s

Number of ports

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12

N
um

be
r

of
 ti

m
e-

st
ep

s

Number of iterations

Top-4 Backbone 50% Link Utilization

Figure 2. Histogram of Ports on Cycles, and Iterations per Time-step, for Top-2, Top-3, and Top-4

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

5.2. Execution Time

Execution speed is a crucial aspect for us, because of our
need to execute large network simulations in real-time. The
table below gives the average time per time-step for these
four topologies, at 20% and 50% link utilizations. The ex-
periments were run using our high-performance simulation
engine, on a 1.5GHz PC with 3Gb of memory, taking aver-
ages over 10 independent runs. For a given traffic load and
topology, variation in run time was quite small.

Topology secs/time-step secs/time-step
(20% link util.) (50% link util.)

Top-1 0.0026 0.0026
Top-2 0.051 0.051
Top-3 0.283 0.285
Top-4 0.852 0.907

Since a time-step takes 5 seconds, all of these experi-
ments run much faster than real-time on a laptop scale ma-
chine. Observe that Top-4 at 50% utilization represents traf-
fic movement equivalent to 970 million packet per second
(assuming 1000 byte packets). To move this much traffic
in real time on a packet-oriented parallel simulation engine
that could scalably deliver 1 million simulated packets per
second per CPU would require a supercomputer with 970
CPUs.

We did experiments on Top-1 computing the real
speedup delivered by the coarse-grained algorithm against
the equivalent packet-oriented flows, using our frame-
work’s simulation engine. The table below gives the re-
sults, as a function of link utilization. Each data point
represents 10 independent experiments, variance was ex-
tremely small. Speedup initially increases with link
utilization because the amount of work the packet sim-
ulator must do increases linearly, while the coarse
grained solution’s work remains comparatively sta-
ble. At higher link utilization we do see the effects
though of more cycle resolution, which is more costly.

link util. speedup link util. speedup
10 213 50 3436
20 1665 60 3725
30 2112 70 1023
40 2728 80 1135

5.3. Accuracy

The applications that motivate this work do not require
close accuracy. Nevertheless, we ought to develop some
sense, if we can, of the impact that using such a coarse-
grained flow representation has on foreground traffic. In
these experiments the foreground traffic consists of both
TCP flows and UDP flows. We attach an end host to each
router; the host has a TCP server, TCP client, UDP server,

and UDP client. Each client’s behavior is modeled by an
on-off process. In the on phase the client chooses a server
uniformly at random from among the other hosts in the net-
work, and requests a 5Mb data transfer. The on phase ends
when the transfer is completed, at which point the client
is idle for 5 simulation seconds, and then repeats. On the
server side, the inter-packet transmission time is 10 mil-
liseconds. We ran the same foreground traffic against back-
ground traffic generated by packet processes, and against
background traffic generated by our coarse flow approach.
In the coarse grained approach the foreground traffic “sees”
the effect of background traffic by a diminished available
link capacity.

TCP behavior is very sensitive to random fluctuations
in flows, because a single packet loss triggers a dramatic
change in TCP sending behavior. We observed a great deal
of variation in many TCP metrics across all our experi-
ments. We have studied relative error in the number of bytes
successfully delivered (e.g., the average goodput) for both
UDP and TCP flows . While we hesitate to ascribe quantifi-
able statistical meaning to these results, the general trends
are

• UDP traffic is relatively insensitive to the differences
in background traffic generation

• TCP behavior is relatively insensitive when link uti-
lization is low (because then its behavior is less driven
by packet loss). With higher utilization more differ-
ences are observable. Indeed the largest differences ap-
pear when TCP behavior is most variant—in the mid-
dle range of low loss and high loss. Averaged over all
the experiments we did, the relative error in goodput is
17%.

Evidence from this study is that the accuracy of fore-
ground flow behavior against coarse-grained background
traffic will be quite adequate for the training application of
interest.

6. Conclusions

This paper proposes an approach for simulating network
traffic flows at a coarse scale. The approach is motivated
by an application where we must deliver real-time perfor-
mance, and “look-and-feel” accuracy. We develop an op-
timized means of performing the simulation, and study its
behavior on a set of large topologies based on known In-
ternet backbones. We find that it is fast—very very fast rel-
ative to packet-based flows—and accurate enough for our
purposes.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Acknowledgements

This research was supported in part by DARPA Con-
tract N66001-96-C-8530, and NSF Grant CCR-0209144.
Accordingly, the U.S. Government retains a non-exclusive,
royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S.
Government purposes. In addition this project was sup-
ported under Award No. 2000-DT-CX-K001 from the Of-
fice for Domestic Preparedness, U.S. Department of Home-
land Security. Points of view in this document are those of
the author(s) and do not necessarily represent the official
position of the U.S. Department of Homeland Security.

References

[1] A. Adams, T. Bu, R. Cáceres, N. Duffield, T. Friedman,
J. Horowitz, F.L. Presti, S. Moon, V. Paxson, and D. Towsley.
The use of end-to-end multicast measurement for charac-
terizing internal network behavior. IEEE Communications
Magazine, May 2000.

[2] C. Barakat, P. Thiran, G. Iannaccone, C. Diot, and
P. Owezarski. A flow-based model for internet backbone
traffic. In Internet Measurement Workshop’02, San Fran-
cisco, CA, November 2002.

[3] T. Bu and D. Towsley. Fixed point approximations for TCP
behavior in an AQM network. In Proceedings of ACM SIG-
METRICS 2001, Cambridge, Massachusetts, June 2001.

[4] J. Cao, D. Davis, S.V. Wiel, and B. Yu. Time-varying
network tomography. J. Americal Statistical Association,
95:1063–1075, 2000.

[5] M. Coates, A. Hero, R. Nowak, and B. Yu. Internet tomog-
raphy. IEEE Signal Processing Magazine, May 2002.

[6] L. Debnath and P. Mikusinksi. Introduction to Hilbert Spaces
with Applications. Academic Press, San Diego, CA, 1990.

[7] Anja Feldmann, Albert G. Greenberg, Carsten Lund, Nick
Reingold, Jennifer Rexford, and Fred True. Deriving traf-
fic demands for operational IP networks: methodology and
experience. In SIGCOMM, pages 257–270, 2000.

[8] G. Kesidis, A. Singh, D. Cheung, and W. W. Kwok. Feasibil-
ity of fluid-driven simulation for atm network. In Proceed-
ings of IEEE Globecom’96, London, GB, November 1996.

[9] C. Kiddle, R. Simmonds, C. Williamson, and B. Unger. Hy-
brid packet/fluid flow network simulation. In Proceedings of
the Seventeenth Workshop on Parallel and Distributed Simu-
lation (PADS’03), San Diego, California, June 2003.

[10] M. Liljenstam and A. Andy Ogielski. Tier-1 in-
ternet provider networks with multiple peering points.
http://www.ssfnet.org/Exchange/gallery/usa/index.html.

[11] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley.
A study of networks simulation efficiency: Fluid simulation
vs. packet-level simulation. In Proceedings of IEEE Info-
com’01, Anchorage, Alaska, April 2001.

[12] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong. Fluid
simulation of large scale networks: Issues and tradeoffs. In
Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, Las
Vegas, Nevada, June 1999.

[13] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu. Scalable
fluid models and simulations for large-scale ip networks.
ACM Transactions on Modeling and Computer Simulation,
14(3):305–324, 2004.

[14] D. Nicol, M. Goldsby, and M. Johnson. Fluid-based simula-
tion of communication networks using SSF. In Proceedings
of the 1999 European Simulation Symposium, Erlangen, Ger-
many, October 1999.

[15] D. Nicol, M. Liljenstam, and J. Liu. Large-scale network
simulation using SSF. In Proceedings of the 2003 Winter
Simulation Conference, New Orleans, LA, December 2003.

[16] D. Nicol and G. Yan. Discrete event fluid modeling of back-
ground TCP traffic. ACM Transactions on Modeling and
Computer Simulation, 14:1–39, July 2004.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical valida-
tion. In Proceedings of ACM SIGCOMM’98, Vancouver, CA,
September 1998.

[18] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Nu-
merical Recipes in C++ : The Art of Scientific Computing
(2nd Edition). Cambridge University Press, 2002.

[19] RocketFuel Project. http://www.cs.washington.
edu/research/networking/rocketfuel/.

[20] C. Tebaldi and M. West. Bayesian inference on network traf-
fic using link count data. J. Americal Statistical Association,
93:557–576, 1998.

[21] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a large-
scale network emulator. In Proceedings of 5th Symposium
on Operating Systems Design and Implementation (OSDI),
December 2002.

[22] Y. Vardi. Network tomography : Estimating source-
destination traffic intensities from link data. J. Americal Sta-
tistical Association, 91:365–377, 1996.

[23] A. Yan and W. B. Gong. Time-driven fluid simulation
for high-speed networks with flow-based routing. In Pro-
ceedings of the Applied Telecommunications Symposium’98,
Boston, MA, April 1998.

[24] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
accurate computation of large-scale ip traffic matrices from
link loads, 2003.

[25] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An
information-theoretic approach to traffic matrix estimation,
2003.

[26] J. Zhou, Z. Ji, M. Takai, and R. Bagrodia. Maya:integrating
hybrid network modeling to the physical world. ACM
Trans. on Modeling and Computer Simulation, 14(2):149–
169, April 2004.

[27] M. Zukerman, T. Neame, and R. Addie. Internet traffic mod-
eling and future technology implications, 2003.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

