Chrome Extensions: Threat Analysis and Countermeasures

Lei Liu* Xinwen Zhang
Vuclip Inc. Huawei R&D Center
Milpitas, CA 95035 Santa Clara, CA 95050
lliu@vuclip.com xinwen.zhang@huawei.com
Guanhua Yan Songging Chen
Los Alamos National Laboratory = George Mason University
Los Alamos, NM 87545 Fairfax, VA 22030
ghyan@lanl.gov sqchen@cs.gmu.edu
Abstract user experience, a large number of browser extensions have

been developed by browser vendors or third party develop-
The widely popular browser extensions now become oneers. The wide popularity of browser extensions has attdacte
of the most commonly used malware attack vectors. Thethe attention of attackers. A recent study [25] shows that
Google Chrome browser, which implements the principles nowadays many malware infections are in the form of add-
of least privileges and privilege separation by design, of- ons on popular web browsers like IE and a majority of mal-
fers a strong security mechanism to protect malicious web-ware have a browser extension implementation. Browser
sites from damaging the whole browser system via exten-helper objects (BHOs), a widely used type of add-ons, is
sions. In this study, we however reveal that Chrome’s ex-named by CERT [24] as one of the techniques that are most
tension security model is not a panacea for all possible at- frequently employed by spyware writers.

tacks with browser extensions. Through a series of prac- The threats posed by malicious browser extensions call
tical bot-based attacks that can be performed even underfor 5 thorough investigation of the security models that web
typical settings, we demonstrate that malicious Chrome ex-prowsers use to execute these extensions. Traditionally,
tensions pose serious threats, including both information 55 prowser extensions run in the same process space as
dispersion and harvesting, to browse,rs. We further con- the prowser itself, such as IE and Firefox, malicious web
duct an in-depth analysis of Chrome’s extension security pages can exploit a buggy extension to steal users’ sen-
model, and conclude that its vulnerabilities are rootedfro gjtive data from the browser or other web pages that the
the violation of the principles of least privileges and priv prowser is visiting. Moreover, the exploited extensions ca
lege separation. Following these principles, we propose a even be used to attack the underlying operating system as

set of countermeasures that enforce the policies of micro-ihey share the same privileges as the browser. To mitigate
privilege management and differentiating DOM elements. hese threats raised under the traditional extension isgcur

Using a prototype developed on the latest Chrome browser,mqgel, a plethora of efforts have been made in the past few

we show that they can effectively mitigate the threats posed ears; such as techniques to track behaviors in browser ex-

by malicious Chrome extensions with little effect on normal {gnsions [21, 25, 26], methods that monitor XPCOM calls

browsing experience. made by extensions [29], and SABRE which tracks tainted
JavaScript objects [20].

] Meanwhile, a few new browser extension security mod-
1 Introduction els have been proposed as well [29, 20, 17, 19]. As a
browser with security in design from scratch, the Google

Web browsers such as Microsoft Internet Explorer (IE) Chrome browser offers a built-in security protection mech-
and Mozilla Firefox are the main vehicle that people use to @nism for dealing with extensions. In Chrome, a typical

surf the Internet today. To enhance their functionalities a €xténsion consists of multiple components, including con-
tent scripts, an extension core, and optional native binary

*Work mainly performed at George Mason University. Chrome runs each extension core in a separated process

from the browser process, and controls its access to browseof the principles of least privileges and privilege separat
objects and system resources with a permission profile [18].In particular, due to the assumption that all extensions are
The content script is injected into a tab when the web pagebenign, Chrome unnecessarily offers the same set of per-
is loaded, and runs in the same process space of the renmissions to the extension core and the content scripts si-
derer of the web tab and can thus access its DOM objectsmultaneously.

Injected content scripts in a tab can only communicate with Following the principles of least privileges and privilege
the extension core via Chrome’s inter-process communica-separation, we propose a set of countermeasures that en-
tion channel (IPC). This design effectively enhances the se force the policies of micro-privilege management and dif-
curity of the browser, as compromising an extension doesferentiating DOM elements. With the former, the extension
not affect the execution of the browser. The Chrome ex- core and the content script can have different types of per-
tension support assumes that an extension would not launcimissions; with the latter, we can assign different serigjtiv
active attacks against the browser or the underlying systemlevels to the DOM elements of a web page. Our implemen-
that s, all attacks are assumed to come from malicious webtation works transparently with existing web applications
sites, e.g., those with malicious web pages or JavaScriptand Chrome extensions. Using a prototype that works for
code. By giving least privileges to an extension, Chrome the latest Chrome and older versions from version 7, we
expects that the attacking capability of a malicious web sit demonstrate that our new policies can effectively mitigate
through an extension is limited. the threats posed by malicious Chrome extensions with lit-

Although the multi-process architecture and the least € €ffect on normal browsing experience.
privilege principle for extensions improve the overallisec The rest of the paper is organized as follows. We de-
rity of the Chrome browser, it still lacks an effective pro- scribe f[he Ch_rome extension arch|tecture and its secun_ty
tection mechanism againstaliciousextensions. While the model in Section 2 and demonstrate various bot attacks in
Chrome extension security model mainly considers threatsS€ction 3. We further perform detailed security analysis in
from malicious web sites, it does not protect the browser S€ction 4 and propose a few countermeasures in Section 5,
from being exploited by malicious extensions. For this ex- followed by the implementation in Section 6. We present
tension security model to function correctly, users are re- the e\{aluatlo_n results in Section 7 and_dlscuss some related
quired to install only trusted extensions. In practice, how WOrk in Section 8. We make concluding remarks in Sec-

ever, ensuring the trustworthiness of every browser exten-tion 9.

sion is difficult, if not impossible. Google and the Chrome

community encourage the development of extensions from2 Primer on Chrome Extensions

third party developers. Currently, the Google Chrome ex-

tension gallery has about 10,000 extensions available for |n this section we briefly describe some background
download from diverse developers. As suggested by previ-ahout Chrome extensions, mainly about Chrome’s exten-

ous analysis on Firefox add-ons [17], itis a daunting task to sjon architecture and the corresponding security model.
make sure that none of these extensions is malicious. On the

other hand, there is no effective mechanism yet to prevent2 1 Architecture of Chrome Extensions
a user from installing extensions downloaded from other
sources, e.g., embedded links from spam emails or phish- chrome uses a multi-process architecture, where a sin-
ing web pages. The recent Trojan posed as a fake Chromeye prowser kernel process runs in the privileged mode to
extension suggests that su.ch threats are not f|ct|.t|ous [16] 5ccess platform and system resources, on behalf of multi-
In fact, fraudulent and malicious Chrome extensions have e renderer processes. Each renderer process corresponds
been reported [7, 14], and Google is taking actions againsty, 5 weh page running as a tab. A renderer process runs in
malicious extension developers, e.g., one-time sign-8p fe 5 sandhoxed environment so it cannot directly access sys-
for an extension developer, and domain verification [5]. tem resources such as the filesystem and the network. It can
To investigate the current extension security model only send such requests to the browser process.
in Chrome, we conduct an experiment-based study with The design of Chrome extension architecture is based on
Chrome browsers. First, we demonstrate a few practicalthe assumption that extensions are benign-but-buggy. The
bot-based attacks with Chrome extensions. Through thesanost possible attacks on Chrome extensions are malicious
extensions, we show that malicious attacks, such as infor-JavaScript from web pages. Thus the goal of the security
mation dispersion (e.g., email spam and DDoS), and infor- architecture is to protect extensions from being exploited
mation harvesting (e.g., password sniffing), can be easilyby these attacks, and control the potential damage done to
mounted via cross-site HTTP requests and cross-site forgthe browser process if an extension is exploited. As an ex-
eries. Our in-depth analysis reveals that Chrome’s incapa-tension may access DOM objects in a web page and net-
bility of preventing these attacks is rooted fromthe vimat ~ work resources, Chrome uses a multi-component architec-

ture with fine-grained privileges to minimize its exposwret tween origins, that is, the same origin policy (SOP) [13].
malicious web content. Chrome defines the origin of an extension by including a
In Chrome, an extension usually includes content scriptspublic key to the extension’s URL, which is the origin of

and an extension core. A content script is written in all its files in the local filesystem. By default, an extension

JavaScript that can be injected into a web page when thecan access all the resources of the origin. If an extension
page is loaded. It then runs in the renderer process spac@eeds to access another origin, the cross-origin permissio
to access the DOM tree. The extension core includesis required. Since the Chrome extension security model
one or more background web pages written in HTML and forbids an extension to access a web page directly by de-
JavaScript, and runs in a separate renderer process. Th&ult, an extension has to access a web page by injecting
content script has the least privileges so it cannot accesssome content scripts to the web page. To do this, a cross-
any object out of its renderer process space and has trigin request permission is also needed if the web page
communicate with the extension core via Chrome’s inter- does not belong to the origin of the extension, which is of-

process communication (IPC). While the extension core ten the case. If the permission is given, the injected canten
contains the bulk of the extension privileges, it runs in a script can also access the origin of the web page by invok-
sandboxed environment. Therefore, it cannot access reing XMLHttpRequest . Cross-origin permissions can be

sources of the host platform and the network directly. It granted inmanifest.json of the extension as follows.

can only communicate with external web resources via permissions™ |

XMLHttpRequest . Optionally, an extension can have bi- "tabs", "http://www.google.com/"

nary code, which is launched as an NPAPI plugin. Chrome

supports a--safe-plugins mode to run plugins in With the above permissions, the extension has the privi-

sandboxed environments. Note that in Chrome, plugins arejege to inject content scripts into a web page with the origin

different from extensions and are not part of the extensionsgefined by URLhttp://www.google.com _Note that

we discuss here. this permission also grants the extension core to access the
specified origin (e.ghttp://www.google.com) with

2.2 Security Model of Chrome Extensions the XMLHttpRequest method!

The second level of isolation lies on the multi-process
Chrome’s extension architecture follows three security architecture of Chrome browser. Each component of an ex-

principles:least privilege privilege separationandstrong tension runs in different processes. The content script is
isolation Chrome defines a set of permissions, which in- injected into a tab and runs in the same process space of
cludes executing native binary, accessing web sites, and acthat sandboxed renderer process, while the extension core
cessing browser modules such as tabs, bookmarks, history;uns in another isolated process. The native binary of an
cookies, and geolocation. For the least privilege purpose,extension runs in an isolated plugin process. This level of
each extension has to declare the permissions that it reiSolation helps preventing a compromised renderer process
quires in amanifestjson file, as part of the extension ~ from accessing the extension core’s functions.
package. Chrome users are encouraged to download exten- The third level of isolation is to run content scripts in
sions from the Google-controlled extension gallery in orde @ Separate JavaScript engine, which is caltedated
to avoid installing extensions with inappropriate prigis. world . This provides an additional layer of isolation be-
Chrome further separates privileges between differenttWeen the content script and the untrusted Jav_aScript enyi—
components of an extension. In particular, the conterpscri fonment of associate web pages. Content scripts from dif-
of an extension can directly interact with web contents. ferentorigins run in differentisolated worlds. Each iseta
However, by default it does not have the permissions to ac-World has its own DOM copy, making it impossible to ex-
cess browser modules, except that it can communicate to th&hange JavaScript pointers.

extension core vipostMessage . The extension core has Even with such a comprehensive security model, we find
most assigned privileges, but it is insulated from web pages Various attacks can still be mounted via Chrome extensions.
It has to use content scripts or invoXKMLHttpRequest We next will show how we exploit Chrome extensions for

to communicate with the web content. The native binary differentattacks.
of an extension, running as an NPAPI plugin, has the most
privileges as it can run arbitrary code or access any files. 3 Attack Cases with Chrome Extensions

To further control the damage of an exploited extension
by malicious web pages, Chrome leverages three levels of To demonstrate potential security risks of malicious
strong isolations. First of all, privileges to access webssi Chrome extensions, we have developed an extension
are defined based on origins. Similar to other browsers, theé i1pore permission descripton can be found at
basic security mechanism in Chrome is the isolation be- http://code.google.com/chrome/extensions/manifest.h tml .

B spam.txt - Netepad

Fle Edt Format Yiew Help

toaddress = "dickon_secretgardeni Gyzhoo. con”;
subject = "RE: Balenciaga’;
text = "Dear Sir/Madan , \n\y
- Weare great online seller.now we open & new online store Better

serving than ather.quality 100k saiticfied. there online stare
such astwatchesh, Hermes £\shoesht-shirtsdsunglasses and so on.

we'come visite our website and 1f *uu Tove any itens.Please I
you chaase us 1 belive that you will get lowest price here...... iy
= My ~0-n-1-i-n-2 Store W-e-b www, b2c-good, comyr Usemame smelse]
- Hgykkek -1 danghong2 C108hotmall, cam--KEAnY
- Payral.The safer, easier way 10 pay...... W, I
- Junjun UL
Login
(a) Step 1: receiving spam content from the botmaster viensidn (b) Step 2: passively monitoring user’s login wilang! extension
update
Welome! help YAHOO!:,MA”. - | @t S0 1My Yoo
‘ ‘ ‘ ‘ ‘ ‘ ‘ ChezcHal l PN ERUCETET inbox 48 emis
i et
Qr Seerhlle. | 6o Srw
GCompose Reply Reply All Forvard Delete 4dd Addvesses | Previous Nest | Close .w ~
o i, [] FE 3tlzciaga el ¢)
B)] FE g S48 014 Pl
o) I € et - e et P
Sent Saturday, hovember -3, 2010 10:07 pm S [] E:Balncaga Set 113, 1108 ¥
To s by o
[LI RE: Balenciaga Fillien
S b Conladte A o ’
Subject RE: Balendaga Garlre i
DearSifHad:m, T
- We are grastonlre sellnow ve oper a new online e Better Serung than otherOuslity 100% satidfied.There online store suck asatches Hemes sshoas - 0
shittssunglasses and so cnvelome visie ourvebete and f vou leve any iems.Please IF you choose us ballve thatyou wll get lowest price ... Deer SiMladem -2 we gieat onlne seler o vz ooer @ s cline stoe Beter Sanvin than other Quelty 110% safiffec Trete onlre o suen
. T»Z&SM"SW*:*S:;:W‘:nbmwnwagfég,::tdm:mam%% aswatshes Hemes eshoss -shitssurglasces and o on veleame viste ourvebst axd fyou b anyeme Pleac o choos2 us el tht yeu il
- patalhe Safeyleas‘ewamizv “““) geclonestpreebere. - My~Covkn Store Week wum b2eoed com - *= SN S%d angrorc 201 kot corv- %
- Jutjun | PayPal The saer easierneytopsy. . - Jrjm
(c) Step 3: automatically sending out the spam email (d) Step 4: received spam email

Figure 1. Chrome Extension for Email Spam

Bang! that works for the latest Chrome and older versions 3.1 Email Spamming

from version 7.Bang! can be used as an automatic bot

to mount large-scale email spamming, DDoS, and phishing Today botnets are notoriously responsible for most of
attacks. Our attacks are based on the assumption that a mapam emails on the Internet [11]. A spammer controls or
licious Chrome extension has already been installed on therents a botnet and sends spamming commands to bots. Af-
Chrome browser. ter receiving spamming commands, bots send spam emails

. . to victims. To defeat various malware detection mecha-
For successful bot attacks, an essential component is a

nhisms, a bot, instead of keeping sending spam emails at a
command and control channel. In our attacks, we lever- ping 9sp

age extension update for this purpose. Usually, a Chromehlgh rate, can be instructed to send spam emails only spo-

:) . radically, which makes detection more difficult.

browser checks the update information of an extension from : .

. . . To send out spam emailBang! has the following per-
the update web site every few hours. If an update is avail- mission-
able, the browser downloads the update and updates the ex- '
tension files on disk. Therefore, this mechanism provides “permissions™ [o)
an ideal approach for establishing the command and con- , tbs". "http:/ et thttpsidl)
trol channel between the bot and the botmaster. The bot-
master can simply use these periodic updates to distribute The http:// */* and https:// */* permissions
commands in the botnet, where the extension directly readsare very common in popular extensions. They enable
commands from an extension file without explicitly requir- Bang! to send HTTP requests to all destinations. Table 1
ing any network access. shows the permissions of top 30 popular extensions (as of

Table 1. Permissions of Top 30 Popular Extensions

[Rank] Name | Permissions

1 AdBlock "http:// *[*" "https:// *[" "contextMenus", "tabs"

2 Google Mail Checker "tabs", "http:// * .google.com/", "https:// * ,google.com/"

3 FastestChrome "tabs", "http:// *[«" “https:// IES

4 IETab "tabs", "bookmarks"

5 Browser Button for AdBlock "http:// *[«" "https:// *[+" "tabs"

6 Docs PDF/PowerPoint Viewer

7 Downloads "tabs"

8 Google Translate "http:// *[«" "https:// *[+" "tabs"

9 Facebook Photo Zoom "contextMenus", "tabs", "http:// * .facebook.com/ ",
"http://facebook.com/ *" “https:// + facebook.com/ =",
"https://facebook.com/ *"

10 Google Dictionary "tabs", "http:// *[+" "https:// IES

11 Turn Off the Lights "contextMenus", "tabs", "http:// *[+" "https:// S

12 Firebug Lite "tabs", "http:// *[+" "https:// *[+" "http://127.0.0.1/ *"
"http://localhost/ * "

13 Download Master "contextMenus”, "cookies", "tabs", "http:// EN
"https:// *f "

14 Google Mail Checker Plus "notifications"”, "tabs", "http:// *[«" "https:// M
"http:// *.google.com/ ", “https:// *.google.com/ "

15 Adblock Plus "tabs", "http:// *[+" "https:// *[+" "contextMenus"

16 RSS Subscription Extension "tabs", "http:// *[+" "https:// IES

17 Clip to Evernote "cookies", "tabs", "http:// *[+" "https:// IES

18 Google Chrome to Phone Exten- "contextMenus", "tabs", "http:// *[+" "https:// S

sion

19 Webpage Screenshot "tabs", "http:// *[«" “https:// IES

20 Xmarks Bookmark Sync "bookmarks", "tabs", "unlimited _storage",
"http:// * xmarks.com/", "https:// * . Xmarks.com/",
"http:// * foxmarks.com/", "https:// * foxmarks.com/",
"http:// *[" "https:// *f "

21 SmileyCentral

22 SocialPlus!

23 Facebook for Google Chrome "tabs", "http:// * .facebook.com/"

24 Speed Dial "bookmarks", "tabs", "http:// IES

25 Google Voice "tabs", "http:// * .google.com/", "https:// * ,google.com/"

26 Cooliris "tabs", "http:// *[«" “https:// IES

27 FlashBlock "tabs", "http:// IES

28 Smooth Gestures "tabs", "bookmarks", "notifications", "idle", "cookies" ,
"unlimitedStorage”, " \u003Call _urls \uOO3E"

29 Awesome Screenshot "tabs", "http:// *[«" “https:// IES

30 WOT "tabs", "http://www.mywot.com/ * " "http://api.mywot.com/ * "
"https://api.mywot.com/ *"

May 18th 2011) from Chrome extension galley. As shown There are different ways to achieve the access to an email
in the table, 19 extensions (out of 30) have been grantedaccount. For example, this information can be saved in
privileges ofhttp:// */* orhttps:// */ . spam.txt which has been provided by the botmaster, or

We use the extension update for the command and Con_the spammer may have registered some free email accounts.

trol channel. Accordingly, the spam information is stored
in a file calleds.pam.txt unde_r the extension dlre_ctory, information beforehand. Instead, it utilizes the user’s
and the extension can read this file and then obtain span| i S .

egitimate account when the user logins into her email

information including victims’ email addresses and spam system. This approach can evade detection more effec-
content. . .
tively, because spam emails are sent out when the user

Figure 1 shows the email spam attack we have imple-logins into her web email system as shown in Figure 1(b).
mented via this extension. Basically, after acquiring the In the figure, the extensioBang! is our bot extension
spam information that is shown in Figure 1(a), to send out to monitor the user login. In this example, we experi-
spam emails, the extension still needs additional informa- mented with the popular iPlanet email system [15]. As
tion such as an email account to login into a mail server. the extension is granted the privilege tfabs" , it

Our implementation does not need email account

listens to the update notification of tabs with the method
of chrome.tabs.onUpdated.addListener() .
When the user logs into a web email system, the login

| DDoS.txt - Motepad

File. Edit Format Wiew Help

credential is represented by a sessionsid () and rewrit- gﬁ#E==h§EE:S{‘:‘“‘gb%§°g1e' e
ten to the URL of subsequent HTTP requests. As the bot ||TIME = 12: 3{
extension has the tab permission, it can listen to the tab EUFT{E-FF}’QE - 1000

update notice. With this credential information, an HTTP
request to the iPlanet mail server is authorized to take any
action on behalf of the user, instead of sending the user (4) step 1: receiving DDoS command from the botmaster viension

name and password in each transaction. update

Figure 1(c) shows the sent email in tkent box of R
the user. In this example, the extension sends out the spam |z & = « aw sz se _ —
email through the mail server with the user’s legitimate ac- SedeMCa RO ResnTLER QAN BEEX

Elter: v Cgrason. Jew dpide

count. :
Figure 1(d) shows the received spam email in the victim

account. In this email spamming attack, our extension sends

outthe HTTP requests, which in turn triggers the web server

to send spam emails to the victim. As the victim email ad-

dress can be embedded in the extension (apam.txt),

¢
16 5.03530€

the bot can always obtain new victim emails by updating the it

19 5,0355%
<

extension from the botnet master’s server, which is allowed
by default in the Chrome ecosystem.

3.2 DDoS Attack

(b) Step 2: sending DDoS packets
Although http:// +/* is common, cautious users

might prefer privileges with limited resource access, such Figure 2. Chrome Extension for DDoS

as:

"oermissions™ [instructed by thg DDoS commano_l. _Fi_g_ure 2(b) shows the
"tabs", "http:// « yahoo.com/ " packet level traffic after the DDoS is initiated.

]

_ . _ 3.3 Password Sniffing
With above privilege, an extension can only ac-

cess resources from.yahoo.com , and should not be Nowadays, many Internet surfers use web browsers to

able to launch a DDoS attack against victims such 4Sdo online shopping and access online bank accounts and
www.google.com . However, we note that the ex- financial services. Sensitive information such as bank ac-
tension can inject content scripts into web pages from ., 0t and password in these transactions is often saved by

* ._ya_lhoo.com , and the injected content scripts have full the web browser, temporarily or permanently, which makes
privileges to access '_[h_e DOM elements of the web pages. If .y browsers a major target of spyware. We have imple-
the extension is malicious, it can change sne property

mented password sniffing Bang! and in our experiment,
of a D.OM element tcwvyw.google.com , and therefore the attack is againsginline.citibank.com . When the
the injected content script can send out HTTP requests t0,i.tim web page is loadedang! injects content script

the victim. Therefore, an extension does not need to makeInto the web page, which can access all DOM elements in-
an explicit cross-site HTTP request to launch DDoS attaCks'cluding the form v:/ith the user name and password. Such
Figure 2 shows the DDoS attack against a victim server via;, o -ation can then be sent to the designated email ad-
this approach. dress

Figure 2(a) shows the command information that is | orger to access sensitive information in the Chrome

obtained from an extension update. In this exam- qyser, our extension needs to access the DOM tree of a
ple, the DDoS information includes the victim’s URL ey page. Therefore it needs the cross-site permission to
(www.google.com), aftack start time 12:35), re- jnqart the content script when a web page is rendered. The

quest interval 1 second), and attack duration1000 following manifest shows the permission specification.
seconds). After obtaining the victim's URL, the exten-

sion can make cross-site HTTP requests to the victim as "content _scripts™ [

P password.ixt - Motepad
File Edit Formak Wiew Help

Toaddress = botmastertestiloywahoo. com

subject = Password found

URL = https: Jonline.citibhank. comsusaPsportal Index.dao
ID = udsernama

pas=sword = pwd

(a) Step 1: receiving command from the botmaster via exdengpdate

T YAHOOLMAIL i mmm - | ® st | Sin 0wt vatoo! |y Vaoos QL 5zare
Nhat's Nev ® HauTr
€ C' B htips:/jonine.citbank com/Ls/1P/portIndex.co B O &~ Check Lail l Hew ~ Wikats Hew 9. g TR &
ol Mo ssarcnian o I Deleie l Reply |~ | Forward [l Spam [l tove~ l Actions Augmm-l
OpenanAccount ¥ Find Citi Locations © Search Help Contactls | Securly Privacy € D Pratection 0] hfom S P
item Exparian - ts Sun 11114, 1:23 P A
) 14,10
Citi never sleeps’ & inbox (2} & [| Password found Sun 11114, 101 PH
'l Drafts _— Password found Sun 1114, 12:57 |
=1 sent AT
Banking CreditCards Lines & Loans Investing Planing #Signon My e =h EasaWEoul Sat 1113, 1118 Pl
p TD : ; = E [| RE: Balenciaga Sat 11113, PA
N Trash { ey
EHenes — RE: Balenciaga §at 11113, 10:08 PLIM |
» Contacts o v o~
Sign on ta ¢ - N - — P d f d —
g Welcome to Citibank? Online j | Fasswordfoun Eil Ve
) 5 v hss B From g < BN =
I ths your frsttme here? e e |
Password Fo It's easy to get started. If you already have a Citibank HIoanw:Anine lrans
account, you just need to set up a UserID and INTER INSTITUTION TRAN 00 Atach LargeFlles — -
Password by entering your WIRE TRAN: BB Automatic Organizer Ilé’RL=m'ns fonline citibank com/US/IPSiportal/index do
(| " =user
* ATH/ Dabit Card Numbsr LS (3] calendar || pessword=1234
o AT RN & EditPhotos 2
\ 0 et =
= nmk“m N”mm; S— % Get det o8 Flick % |+ | 10087 1112 Ho events. Cick the plus sign to-add an event,
% Quick start Guids
Dane & & interrer
(b) Step 2: passively monitoring the user login (c) Step 3: emailing the password to the botmaster

Figure 3. Chrome Extension for Password Sniffing

{ 4 Attack Analysis
"matches": ["https://online.citibank.com/ * "],
"is": ["jquery.js", "myscript.js"] .
We have demonstrated a few attacks with Chrome ex-
. tensions in the last section. Given that a significant num-
peE?;Ess'l'or]'?lt:t S_[//on”ne sitibank.com/ . ber of malware have been identified in the form of browser
1 oS ' ' extensions in |IE [25] and Firefox [27] and the number of
Chrome users is on the rise [3], it is reasonable to believe
that there will be more malicious Chrome extensions. In
this section, we conduct a comprehensive analysis on the
current Chrome extension security model to reveal its vul-
nerabilities that can be exploited by malicious extensions

]

With the above specification, when the user browses the
page frononline.citibank.com , two content scripts
(jquery.js and myscript.js) are injected into the
target web page, and the JavaScripts have full privileges#-1 Threat Model
to access all DOM elements including the form with user
name and password. With the received command shown in Similar to the design of Chrome extensions, in this study
Figure 3(a)myscript.js reads the values of user name we assume the browser kernel and plugins are trustworthy.
and password elements when the user inputs, as shown iffhat is, we do not consider the attacks by exploiting the
Figure 3(b), and sends to a designated email address. Figvulnerabilities in the browser and plugins. In addition, we
ure 3(c) shows that the password information is succegsfull assume that the underlying operating system, which pro-
sent out with a similar mechanism as that in the previous vides sandboxing mechanisms for renderer processes and
DDoS attack. Note that with enough permissions such asextension core processes, works benignly. Thus we do not
cross-site access withttp:// =/ * or https:// =/ *, consider attacks against the host system from malicious ex-
the content script can also send sensitive informationdo th tensions. We further assume that a malicious extension does
extension core, which in turn sends the data to the outsidenot use native code to launch attacks, e.g., all native cbde o
network. an extension runs in a sandboxed environment. With the

above exclusions, we focus on the attacks from maliciousthe image, the browser sends an HTTP GET request to
extensions against web applications including web pageshttp://www.bank.com/withdraw . If this is the
rendered at the browser side and user data at the web serverase, the HTTP GET request is ignored. However, with ma-
side. licious extensions, the attacker can launch a more sophisti
In order to launch a successful attack, a malware instancecated cross-site forgery attack by sending an HTTP POST
typically needs two access authorizations: accessing-sens request from the injected content script. Since the request
tive information in the browser process and accessing theincludes user credentials such as cookies, the bank server
network for data transmission. The Chrome extension ar-can be fooled to authorize the transaction.
chitecture makes these two accesses easily available to ma-
licious extensions because they can not only access DOM4.3 Cross-site Requests with Extension Core
and browser objects but also issue cross-site requests. By
default, the content script of an extension has the permis- gegides the cross-site forgery with content scripts, in a
sion to access all DOM and browser objects of a web page.chrome browser, cross-site requests can be made with the
including sensitive HTML elements such as password input, extension core as well. In Chrome, the content script of an
and modify the DOM tree, the page’s URL, and cookie in- extension can be injected into many web pages (tabs) con-
formation. Furthermore, the content script can freely com- ¢rrently in a browsing session, while the extension core of
municate with the origin of the associated web page via 4, extension runs as a global process that is able to commu-
XMLHttpRequest . The remainder of this section shows picate with content script instances in different tabs. sThi
that these default permissions pose serious threats to th%pens a door for a malicious content script to collude with

browser with malicious extensions. the extension core to generate cross-site attacks.
))] By default, the content script injected into a web page
4.2 Cross-site Forgery with Content Script cannot communicate with any other origin except the origin

of the associated web page due to the same origin policy.

An extension has to use some content script to access aVith a malicious extension, however, its extension core can
web page’s DOM objects. According to the current Chrome be used to make cross-site accesses to transfer sensttive da
extension design, the content script cannot make cross-sit from one origin to another. In particular, suppose there are
requests without authorized permissions. In fact, a con-multiple tab processes concurrently running in a Chrome
tent script has the privilege of the origin of the associated browser. Thus these tab processes share one extension core
web page, so it is capable of making HTTP requests toprocess. Assume tab 1 is a page from origin A and tab 2
the current web page. Because the requests are regarded from origin B. As two tab processes are isolated, active
to have the same origin, all user credentials associatdd wit web content (e.g., JavaScript embedded in the page) in tab
the origin, such as cookies, can be included in the request2 cannot access the web content in tab 1. However, with
Many web sites use cookies as an authentication mechaappropriate permissions, a malicious extension core can in
nism, which makes cross-site forgery attack possible whenject content scripts into tab 1 and 2 when the web pages are
a content script abuses the trust between the browser andiownloaded and rendered. The content script in tab 1 can
the servef. The email spam attack in the previous section access all information in the DOM of tab 1. Through IPC
could also be done with this approach. messages, the content script can forward the information to

To better understand this, consider another exam-the extension core, which then passes the information to the
ple in which an attacker lures the browser to load content script injected into tab 2. With this approach, the
a well crafted image elemenkimg src="http: content script in tab 2 can send information to the server
Ilwww.bank.com/withdraw?account=bob \ of tab 2 viaXMLHttpRequest , or write the information
&amount=1000000 \&for=mallory"). If the bank’'s to the DOM of tab 2, which can be further read by em-
web server keeps authentication information in a cookie bedded JavaScript of the web page in tab 2 and sent to the
and if the cookie has not expired, the attempt by the web server. Alternatively, the extension core can directly
browser to load the image will submit the withdrawal form file cross-site HTTP requests to the origin of tab 2, due to
with the cookie, thus authorizing a transaction without the the fact that the cross-site permission is enabled in order t
user’s approval. allow the extension core to insert content scripts.

In practice, the above cross-site forgery attack may not
be able to succeed, as usually a bank server only ac4.4 Unlimited Cross-site HTTP Requests
cepts a withdrawal transaction via an HTTP POST re-

quest rather than an HTTP GET request. By loading \ithout cross-site privileges, a running content script

2\We call this attack as cross-site forgery, as formally thetent script can only _make HTTP requests to the same origin as
has a different origin from the web page which it is injectetbi the associated web page. However, the content script

can access all DOM elements including modifying the privilege principle is not strictly enforced with this dgasi
DOM tree without requiring extra permissions. This If we assume the extension is benign, the extra privileges
capability enables a malicious content script to have may not hurt the browser. If used by a malicious exten-
unlimited cross-site HTTP requests. In particular, after sion, however, these extra privileges open a door for adtack
being injected into a target web page, the content scriptsuch as communicating command and control information
can read any data content in the DOM tree, including for botnets and exfiltrating sensitive user data.

sensitive data such as password. With this capability,

the content script can insert an iframe element to theg Security Enhanced Chrome Extensions

DOM tree, where thearc property of the iframe element
can be a malicious destination with the password, such as
http://evil.org/attack.msc?password=xxxx .
After this modification, the page is refreshed by the browser
automatically, which in turn sends an HTTP GET request
to the destination. The script iattack.msc at the
http://evil.org can then handle this HTTP GET
request and obtain the user password. Alternatively, the
content script can also change teec property of an
existing DOM element such as an image to trigger the
HTTP request.

The root of the problem lies in the fact that the content
script has full privileges to change the DOM of a page. As
a result, it can add arbitrary new origins into DOM. To ad-
dress this problem, a content script should request the priv
ilege needed for introducing any new origin to a web page.
By default, this capability should be denied by the browser.

The previous section shows that the attacks demonstrated
in Section 3 are made possible because malicious exten-
sions are able to exfiltrate information through cross-site
accesses and are granted unnecessary permissions fer infor
mation stealing. Considering that the major security threa
is either information dispersion or information harvegtin
attacks, we propose to usgcro-privilege managemettiat
disables illegal cross-site accesses so as to prevent infor
mation exfiltration, and tdifferentiate DOM elements with
sensitivityso as to prevent sensitive information harvesting.

5.1 Micro-Privilege Management

As shown in the attack examples, cross-site accesses re-
sult from the same privilege shared by different components
of an extension. Such coarse-level privilege management,
. . L while convenient for some applications, leaves a loophole
4.5 Undifferentiated Permissions that extensions can exploit to achieve cross-site accesses

To enforce micro-privilege management, we propose to sep-

Chrome permission specifications are based on origins.arate the privileges of different components first, and then
Once the privilege of an origin is granted, the extension canassign the most appropriate privilege to each component.
access almost all resources from that origin. These include Privilege Separation. Multiple components of a
the following: the extension can make cross-site requestsChrome extension share the same set of access permissions
to the origin withXMLHttpRequest and inject content for particular operations, which leads to non-least peiyé
scripts to the web page from this origin; the injected con- for some components or operations. To address this prob-
tent script can access all DOM elements of the web page,lem, we need to strictly apply the privilege separation {rin
and even introduce new origins to the web page by insert-ciple. In our approach, we not only separate the permission
ing or modifying thesrc property of an element. Itis clear specifications for different components of an extensioh, bu
that once the privilege of one origin is granted, all exten- also separate the permissions of particular operatiorseof t
sion components including the extension core and the con-same component. Table 2 shows these two levels of per-
tent script have the same set of permissions to the origin.mission separation. First, the privileges of the extension
This is actually an all-or-nothing policy. core and the content script are separated. Second, within

Consider an extension which usually needs to read con-each component, the privileges for different operatioes ar
tents from all web pages while only communicating to one specified by introducing new permission names. For ex-
particular web site, e.g., a language translator or a dictio ample, new permissions, such imgect _script and
nary extension. The extension needs to inject contenttscrip cross _site , are defined to distinguish these two types
to web pages in order to read the corresponding DOM con-of permissions.
tent, which requires the cross-site permission to all thie we Least Privilege. Security threats can come from extra
origins specified abttp:// */*. However, for atransla- permissions granted to extension components that are be-
tor extension, the only reasonable and necessary cr@ss-sityond necessity. To strictly follow the least privilege mmin
request is to origins of the translator service web site.t Tha ple, we need to assign the most appropriate set of permis-
is, in order to enable the content script injection, the ex- sions (the least privilege) to each component. Thus, after
tension is granted unnecessary privileges to many origins,separation, we further downgrade the default permissibns o
rather than only the one it really needs. Obviously, thetleas an extension and split existing permissions into fine-ggain

Table 2. Micro-Privilege Management — Privi-
lege Separation and Privilege Specification

[[Permissions [Example Permission Spec
Extension inject _script "http:// ES
"https:// *fx"
core Cross _site "http://www.translate.com"
Content | sensitivity _level "medium”
script same.origin _request | “false"
new_origin "http://www.translate.com"

ones such that extra permissions can only be obtained vi
explicit requests.

Downgrading default permissionsAccording to the
analysis in the last section, a content script is allowedto a
cess all DOM elements and modify the DOM tree without
any permission check. Further, the content script is altbwe
to communicate with the origin of the associated web page
freely. To prevent unlimited cross-site HTTP requests and

sensitive information leakage, we should disable the capa-

bilities of content scripts to introduce a new origin into a
DOM tree and read sensitive information. To prevent cross-
site forgery attacks, we should not allow a content script to
send HTTP requests to the origin of the web page by de-
fault.

Fine-grained permission specification®isabling de-
fault permissions certainly blocks many useful functions

of benign extensions. To enable these functions whenever

necessary for these applications, we define explicit permis
sions, including sensitive data accesses, requests taithe o

gin of the associated web page, and introducing new origins

to DOM. Without explicitly granted permissions, a content

script cannot have the corresponding permissions. Table 2

summarizes fine-grained permission specification for con-
tent scripts.

With micro-privilege management, we can achieve bet-
ter least privilege and privilege separation. Using a papul
translation extension as an example, the following shows
the corresponding permission manifest to mitigate the vul-
nerabilities identified in the previous sections.

"extension _core _permissions":

[

"inject _script":[

"http:// *[*" "https:// * %"
]
"cross _site™[

"tabs", "http://www.translate.com”
]

]

"content _script _permissions": [
"sensitivity _level":[medium]
"same _origin _request":[false]

"new _origin™:[

"http://www.translate.com”

]
]

In the above specification, the permission that allows
an extension core to inject content scripts is separated
from that of cross-site HTTP requests. The transla-
tor extension has the privilege to inject content scripts
to arbitrary web pagdttp:// */ =/ while it only has
the cross-site access privilege to a web site with origin
http://www.translate.com . Even if the extension
is malicious and can thus acquire sensitive informatiomfro
the browser, it cannot send information to a malicious des-
tination. Furthermore, the content script can only intraelu
origin http://www.translate.com into the DOM
tree, which can be accessed by the extension by default.

alI'herefore it cannot send any sensitive information to an ar-

bitrary web site with cross-site HTTP requests by modify-
ing the DOM tree. This effectively mitigates the vulnerabil
ity discussed in section 4.2,

Admittedly micro-privilege management on ex-
tensions is not a panacea for all possible attacks.
For example, if the service origin itself (e.g.,
http://www.translate.com) is malicious, in-
formation leakage is still possible. Using our mechanism,
a user or a system administrator however only needs to
validate one origin rather than arbitrary origins, which
significantly reduces the security risk.

5.2 Differentiating DOM Elements With Sensitiv-
ity

We have discussed that if we can control the access of
sensitive information in DOM, we control the source of in-
formation harvesting attacks. The main challenge to do this
lies in how to identify sensitive information in a web page.
To identify sensitive information in a web page, we can
classify DOM elements based on their contents into three
different sensitivity levels, from high to low. A straigbtf
ward approach to achieve this is to explicitly mark the sensi
tive information by web application developers or web site
administratorstfowever, for the usability and compatibility
with existing extensions, we use our automatic tool Proc-
tor for this purpose as presented in the next segtiofin
attribute ofsensitivity can be assigned to a DOM ele-
ment to represent the sensitivity level of information etbr

in the DOM element. If theensitivity attribute is set,
Chrome knows that the information content in this element
is sensitive and will check theensitivity Jlevel
permission of content scripts when they try to access the
element value. For example, after an input element is
marked withhigh sensitivity, when content scripts with

a medium level permission attempt to access this input el-
ement, Chrome will forbid content scripts to acquire the
value of the input element. More specifically, we introduce
three levels of sensitivity as follows.

e High level High level is defined to label the

highly sensitive elements that are inherently sen- To implement micro-priviiege management, we have

sitive. For example, an element ofinput added finer permission definitions for each component of an
type="password"> implies sensitive information extension. Existing Chrome only saves host permission. We
in thetype . Thus they should be protected with the use new variables to save the permissions for different com-
highest priority. HTML has a list of such inherently ponents. Since content scripts have additional privileges

sensitive elements noted by their types. Besides passwe definesensitivity levels, from high to low, and
word, there are other types suchladden that be- same_origin _request that represents whether content
long to this category. scripts are allowed to make same origin requests.

In previous sections, we indicate that one weakness of
Chrome is that the content script can make illegal crogs-sit
requests by modifying therc attribute of DOM elements.

To thwart such illegal cross-site requests, we only allow
content scripts to modify/append tlsec attribute to ori-
gins in the extension core’s cross-site permissions becaus

format although th_e corrglgtlon 'S not alwayg POSItIVE. o extension core is capable of communicating with these
Hence, we can build a dictionary that contains a num- origins as well

ber of regular expression patterns presenting sensitive Privil d by the b q
information. When Chrome scans web contents and rivileges are managed by the Drowser process an
passed to render processes via struct

finds element names or IDs in the dictionary, the ele- ViewMsa E teCode P We add
ment should be marked wittiedium level sensitivity. iewlvlsg -Executet.ode Farams. Ve add new mem-
bers to include finer privileges. To check fine-grained per-

e Low level By default, all other elements are marked Missions on content scripts, we pass content script privi-
with low level sensitivity. Content scripts are free to leges to the JavaScript engine V8, where the permission in-
access these elements. formation is saved.

. . o To enforce security check for content scripts, we add se-

An extension developer can assign one sensitivity level ity |ogic into a few methods. After obtaining the context

to content scripts at installation. Once the sensitivitele ¢ current JavaScript engine, Chrome knows whether it is in
is granted by a user during installation, the content script |ggjated World or not. If it is not, the JavaScript must
obtains the permission and Chrome enforces the security,5ye come from web pages and no security check is needed.
check according to the protection level. The content script oterwise, the sensitivity level of content scripts is dtezt

with high level sensitivity can access all elements in DOM. 5,4 thesensitivity attribute of current element is ac-
The medium level sensitivity allows content script to asces cassed. For content scripts with lower sensitivity level re
elements with medium or low level sensitivity. By default, questing to read medium or high level DOM element value,

the content script with the low level sensitivity is forb@tl 6 request is forbidden and Chrome returns fake value such
to access elements with high or medium level sensitivity. If ;¢ .0 " instead of the real value of the element.

a content script with a medium level sensitivity attempts to
read properties of a high level DOM element, Chrome will

e Medium level Besides inherently sensitive elements,
the attributes of a DOM element also hint their sen-
sitivity. For example, a DOM element with the name
usernamehighly likely, is related to a user name. They
can be identified by their names, IDs or information

With a similar logic, security check is enforced when

thwart this att t Tob tible with existi ; tcontent scripts attempt to insert an element or modify the
wart this attempt. 10 be compatible with existing content o 54ribte of an element. Our implementation guaran-

script functions, Chro_me does not S"T‘p'y return an error. 1o oq that only origins with cross-site privilege are alldwe
Instead, a fake value is returned. For instance, when unau-) . . e
To implement the policy of differentiating DOM el-

thorized content scripts read the value of a password input, o 2
P P P ements, while it is best for the web application devel-

Chrome will return a *** string with a random length. On - o .
the other hand, unauthorized write operations will be ig- oper to denote d'St'nCt. permissions for DQM eIe_mentg, it
nored. may reduce .the_usablllny. To be clompatlbile Wlth exist-
ing web applications without bothering application devel-
) opers, it is desirable to have a tool to mark the sensitiv-
6 Implementation ity levels of web contents upon loading automatically. For
this, we implement a Chrome extension, callrdctor
In this section, we discuss our prototype implemented, which is a helper extension identifying and labeling sen-
with both policies of micro-privilege management and dif- sitive elements. Once a DOM element is identified as
ferentiating DOM elements. In particular, to be compatible high or medium sensitivity leveRroctor will set an at-
with existing extensions, we have implemented an exten-tribute calledsensitivitywith the proper level to the element
sion for automatically labeling sensitivity levels of DOM e (e.g., element.setAttribute('sensitivity’,
ements as we shall discuss soon. Our implementation works‘high™)). Chrome itself is only responsible for query-
with all Chrome versions from version 7. ing the sensitivity attribute and enforces security protec-

< Ciibark Online - Sian On

& C A https://oniine.citibank.com S IPS/portal/index.do w e = 0O il e ciliban ik.corm USRS por Lalfridex do
o Welcome to Citibank® Online A

s this your first time here? Here. Thacg Everywh
4 Citibank Online Transf=
Its easy to get started. If you alread

y have a Citibank
ccount, you just need to set up a Liser ID and INTER INSTITUTION TRAN
Password by entering your WIRE TRAN
« Al / ebit Card Number SLOBLTRAN,
« ATH PIN
« Account Number » Get detlg
>

Welcome to Citibank® Online a
Is this your first time here? Here. There. Everywh

It's easy to get started. If you already have a Citibank Citibank Online Transt
account, you Just need 1o set Up a User 01 and INTER INSTITUTION TRA
Password by entering your WIRE TRAN

* AT/ Debit Card Number GLOBALTRAN:

o G G Ere G o 1o | [l o Ty Greene s e Qe Lgoroe
<input type="text" id= - = "usernamel’ name="username/'
“usernamel' name="usernamel »Style elemen... onkeydown= s
onkeydown= il Lo "checkUidComplete(event)"”
"checkUidComplete (event)” . _US-'S---- size="12" maxlength="50"
size="12" maxlength="50" #ajsosignon_t71 value sensitivitv="medium">

3_s200

(2135) divfpword </div> :
e input#pwd, </div> div#¢pword
</div> #ajsosignon_t71 v<div id="pword"> input#pwd,
v<div id="pword"> 35202 <label class="formLabel” for= #ajsosignon_t71
<label class="formLabel" for= div#pword "pwd" > 3_s202
"pwd” > input#pwd, Password _dlv#pword
Password #ajsosignon_t71 </1abels m[_:ut#;_:wd,
3_s202 - . #ajsosignon_t71
</label> = »<div class="formHelp">..</div> 3 $202

div#pword
input#pwrd,
#ajsosignon_t71
3.s227
div#pword
input#pwd,

»<div class="formHelp">..</div>
v<div style="clear:both;">
<input type="password" id=

v<div style="clear:both;" div#tpword
<input type="passwor input#pwrd,
"pwd" name="password #ajsosignon_t71
"21" maxlength: 3_s227
sensitivity="h _dlnword

“pwd" name="password" size=
"21" maxlength="50" value>

(a) Step 1: Without Proctor Extension Installed (b) Step 2: After Proctor Extension Installed

Figure 4. Proctor Extension for Chrome

tion. The sensitivity dictionary can be flexibly updated. e If the type of the elements is password or hidden,
Currently, as a demonstration of concept implementation, Proctor marks its sensitivity asligh level.

Proctor separates sensitivity marking from Chrome. Ide-
ally, its function should be integrated into Chrome in order
to avoid any security concerns on tReoctor extension

o If only the element name or its ID is matched, the ele-
ment is marked with dMediumsensitivity level.

itself. e After the element name or its ID has been matched, if
Figure 4 shows an example before and after the the value of element is also match&dpctor marks
Proctor extension was installed. The sensitivity dictio- the element with &ligh sensitivity level.

nary is the key tdProctor . According to HIPAA [8] and

Chesapeake Research Review, Inc. [4], there are 18 types e If neither is matched, Proctor ignores the element. By
of individual identifiers from the security perspective in- default, the element has.aw sensitivity level.

cluding name, telephone number, social security number, _ . o
account number, license number, etc. We also observed that W& show in Table 3 examples in our sensitivity
DOM elements containing these individual identifiers usu- dictionary we have currently implemented in extension
ally have a similar name or ID. Accordingly, we define reg- FTOStor o _

ular expression patterns in the dictionary for each sefsiti Once a DOM element is identified as high or
identifier. By matching the element name or id to patterns in Medium sensitivity levelProctor will set an attribute

the dictionaryProctor is capable of identifying potential ~ Calléd sensitivity with the proper I_ev,el to the element
sensitive elements. (e.g., element.setAttribute('sensitivity’,

To improve the accuracy ofProctor , besides "high") .). Chrome itself is only responsible for query-
element names and ids. Proctor matches the INdthesensitivityattribute and enforces security protection.
value of elements for fu’rther verification. Some The benefit oProctor is to separate sensitivity marking

sensitive information has a unique format. For ex- from Chrome. Proctor working as a Chrome extension also
ample, an email address can be represented b)prings more fl_exibi_lity with sensitivity diction_ar)_/ update
\b[A-Z0-9. %+]+@[A-Z0-9.-]+ \.[AZ] {24 }\b. As shown in Figure 4, befor@roctor is installed,
Thus, afterProctor matches element name or id, it there is not sensitivity attribute associated with the -user

matches the value of the elements to value patterns. If both'a@Me and password elements. Afegoctor is installed,
matches are successf@ioctor has more confidence to When the web page is loaded, the username element is

mark the element as sensitive. Following the above idea,Marked asmedium levelbecause the name of the ele-
Proctor uses the following logic. ment is matched from the dictionary (sensitivity attribase

medium) and the password element is markeligk level
o If the elements already have a sensitivity attribute, because the element has a password type (sensitivity at-
Proctor respectsit. tribute as high). After that, whenever content scriptsafie

With this permission seAdBlock is able to make unlim-

Table 3. Dictionary of Proctor ited cross-site requests to all destinations althougheéisdo

"name _patterns™: [

{ not need to make any cross-site requests at all. If it costain
"social security number": ['SSN", malicious code or is compromised, various attacks can be
_ "social ??CU”W number’], , launched through it, as demonstrated in Section 3. Simi-
username: username’, "uname .
massword” ['password”, "pword”, "pwd"] lar to AdBIock , most of the ext.en.smr:s frqnl ih:e Google
"email”; ["email’, "mail to"] Extension Gallery request permission “http://*/*/", no tha
“telephone™: ["telephone”, "tel"] ter whether they need the privilege or not. For example,
"IBAN": t ["'Bt_AN"'I "k?a”i'(‘ aCCO““tt‘:'v among the top 30 popular Chrome extensions, besides Ad-
'n ermational bank account’} Block (No. 1), the following all have such a permission:
} Fastestchrome (No. 3), Browser Button for AdBlock (No.
.) 5), Google Translate (No. 8), Google Dictionary (No. 10),
Va'?e -patterns™ | Turn Off the Lights (No. 11), Firebug Lite (No. 12), Down-
"social security number”: ™ \d{3}- \d{2}- \d{4}$"] load Master (No. 13), Google Mail Chegker Plus (No. 14),
"l email": Adblock Plus (No. 15), RSS Subscription Extension (No.

[" \Bb[A-Z0-9. %+[+@[A-Z0-9.-]+ \.[A-Z] {24 }\b'] 16), Clip to Evernote (No. 17), Google Chrome to Phone

"telephone: . Extension (No. 18), Webpage Screenshot (No. 19), Xmarks
"IBAN[":/ ..[\;_?Z(A_\Zd]{s}) \{)27}[»[0];% {é‘ifiﬁ'_z]g_‘g] A Bookmark Sync (No. 20), Speed Dial (No. 24), Cooliris
[{4}[0-9] {7}([a-zA-Z0-9]?) {0,16 }" (No. 26), FlashBlock (No. 27), Awesome Screenshot (No.
29).
} On the other hand, many extensions also use con-

tent scripts to communicate with web contents. In
many cases, this demands permissitiip:// */ */

and https:// */=*/. However, these extensions
should not make cross-site requests to arbitrary destina-
to access elements with a sensitivity attribute, Chrome en-tions. For example Auto-translate [2] is an ex-
forces access control on them. tension that automatically translates selected textsgusin
google translate . As Auto-translate does

not have its own translation service, it depends on the
google translate service to conduct the translation.

Auto-translate requires the following privileges:
To evaluate the effectiveness of our solution, we first

study whether existing Chrome extensions in the Google "Permissions™ [

7 Compatibility and Security Evaluation

Chrome Extension Gallery are compatible with the required ﬁ?:// " gﬁgleegﬁé,’ﬂ? ap'f-??m/tp;// lan
modifications. As we target malicious extensions, we fur- “hitp://google.com/ *" httpsl el
ther evaluate whether the modified Chrome browser can
prevent attacks via malicious extensions.
Because Auto-translate uses content scripts
7.1 Compatibility Study to read selected texts in arbitrary web pages, it

is reasonable to have thehttp:// +/x/ and

) , , https:// =/ =/ privileges in order for content script
We first download the first 30 most popular extensions injection. But it only requires cross-site requests to

from the Google Chrome Extension Gallery and check their http://translate.google.com Thus. it should
privilege configuration. Our analysis shows that among ot he granted the cross-site privilege to any destination
these 30 extensions, 24 have been granted network accessiner thanhttp://translate.google.com With

permissions, among which 19 (about 80%) request higherg,, mqgified Chrome, the following permission will be
privileges than necessary. Table 4 summarizes our analysi@iven toAuto-translate

on these 30 most popular Chrome extensions.

For example, the most popular extensiddBlock [1], e aepemissons’t
requests the following privileges in mainfest.json: “httpif *l %", httpsdli) *"
I8
" . "cross _site":
permlSSl.(.)hr;tS " [) e hitpsyf) en "tabs", "http://ajax.googleapis.com/ "
p:) ps:) "http://google.com/ *",

"contextMenus", "tabs"], “hitp:// *.google.com/ ="

1

Table 4. Summary of Top 30 Chrome Extension Privilege Analys is
[rank | name | over-privileged?]| rank | name | over-privileged?|
1 | AdBlock 16 | RSS Subscription Extension
2 | Google Mail Checker 17 | Clip to Evernote
3 | FastestChrome 18 | Google Chrome to Phone Extensig
4 | IETab 19 | Webpage Screenshot
5
6
7
8

=}

Browser Button for AdBlock 20 | Xmarks Bookmark Sync

DocsPDF/PowerPoint Viewe 21 | SmileyCentral

Downloads 22 | SocialPlus!

Google Translate 23 | Facebook for Google Chrome
9 | Facebook Photo Zoom 24 | Speed Dial

10 | Google Dictionary 25 | Google Voice

11 | Turn Off the Lights 26 | Cooliris

12 | Firebug Lite 27 | FlashBlock

13 | Download Master 28 | Smooth Gestures

14 | Google Mail Checker Plus 29 | Awesome Screenshot

15 | Adblock Plus 30 | WOT

OoO0Ooo0oogooOoobo b o .
o | | | | | | | | |]] | o

1 . o In the password sniffing attack, Figure 4 also shows the
content _script permissions” [situation when the web page of citibank is loaded, before
sensitivity level":[low], . ..
"same _origin _request"[false] and after thé’roctor extension is installed. Proctor
] is installed on our modified Chrome browser, it marks the

password inputasHigh level sensitivity andisername

With this configuration,Auto-translate can in- asMedium level sensitivity. When the malicious extension
ject content scripts to read the texts, but it is only al- attempts to read the password, Chrome can detect that the
lowed to communicate with th&oogle Translate extension only has Bow sensitivity privilege and thus re-

service. Our experiments with a number of websites showturns a fake string "******” instead of the real password.
that Auto-translate performs translation without any
problem. Note that under our configuration, even when
Auto-translate contains malicious code or is compro-
mised, its attack capability is still limited because it can
only send sensitive information collected from the web- Browser extensions have gained great popularity with

8 Related Work

pages it has accessedgoogle.com . add-on functions to enrich user browsing experience. How-
ever, due to insufficient security protection in the design
7.2 Bot Attack Mitigations and implementation of existing browsers, browser exten-

sions today also pose significant threats to Internet users.

After compatibility study, we further test whether our Many extension vulnerabilities have been found and attacks
prototype can defend against attacks we have shown beforehave been reported in Firefox [27]. For untrusted browser

For this purpose, we udgang! to test the botnet attacks extensions, some flow-tracking techniques have been devel-

we have shown in Section 3. oped to monitor their behaviors [21]. The extension and
In our modified Chrome browser, we assign the follow- browser interactions have also been used for better protec-
ing permissions t@ang! . tion [25, 26].
"extension _core _permissions”: [With increasing attacks by exploiting and compromising
"injethnF;_S/;?fipt";[/*" hpsll el web browsers, lots of efforts have been made to re-define
1 ' ’ ' the browser architecture to enhance its security. These ap-
"cross site"[proaches include the OP browser [22], Gazelle [30], and

1 abs” IBOS [28]. All these browsers use a multi-process archi-

, _ » tecture to isolate different components of a browser, based
"content _script _permissions™ [. . . L .

"sensitivity level"[low] on different isolation principles and granularity. Howgve
"same _origin _request"[false] these new architectures do not consider the threats from ma-

licious browser extensions.

With the above specification, we repeat attacks on the The Chrome browser [19] leverages a multi-component
security-enhanced Chrome with Proctor and Table 5 showsextension development to enforce the least privilege and
the results. privilege separation principles [18]. The strong isolatity

1

Table 5. Re-Evaluation of Bot Attacks

| attack | result] reason |
spamming O unauthorized cross-site requests are completely blocked
DDoS O unauthorized cross-site requests are completely blocked
password sniffing O Proctor forbids sensitive information access
cross-site forgery O content scripts are not allowed to make same origin request
unlimited cross-site requests [content scripts cannot change #re property
by content scripts of DOM elements to unauthorized origins

running different components in isolated processes pesvid control and data flow properties for browser extensions [23]
privilege separation. Chrome, however, does not considerTargeting for extensions on variant browsers, this apgroac
threats from malicious extensions, and therefore unnecescan specify very flexible and fine-grained security policies
sarily gives extra permissions to the extension core and thewith DOM elements and other browser objects, and pro-
content script by default. vides static analysis capability for extension developeid
Mozilla Firefox [6] has a sandbox mechanism to provide end users. As offline analysis tools, we believe these are
indirect accesses through a wrapper to the DOM of a webcomplementary to real-time protection mechanisms such as
page, and Mozilla runs an online extension gallery to rec- the one proposed in this paper.
ommend extensions that have been subjected to a review
process using this sandbox technique. However, the sand-
box mechanism relies on the discretionary compliance of 9 Conclusion
web application developers [12]. In addition, recommended
extensions are unfortunately still in the minority, in con-
trast to the large number of installed add-ons in Firefox [9] Recent years malware developers have increasingly ex-
Clearly, many developers do not submit Firefox extensions ploited browser extensions for various attacks. In this
for reviewing. study, we have conducted an experiment-based study on
JetPack [10] is a Firefox extension SDK. From the se- the security of the extension support in Google Chrome
curity perspective, it aims to reduce interaction integfac browsers. We have shown that under the existing secu-
between extensions and browser resources and functionalirity model for extensions in Chrome, it is not difficult to
ties. However, the current implementation of Jetpack tech-launch large-scale bot attacks. Through in-depth analysis
nology is fully-privileged. That is, an extension develdpe we find the problems are rooted from the coarse-grained
with JetPack runs with the user’s full privileges and has ac- privilege management for the extension components and
cess to the complete Firefox extension API. undifferentiated access permissions for DOM elements in
Ter-Louw et al. [29] were the first to address the secu- web pages. Accordingly, we propose new policies to en-
rity of JavaScript based extensions. However, as discussedorce micro-privilege management and differentiate DOM
before, their work was based on monitoring XPCOM calls; elements, both of which have been implemented in our pro-
being coarse-grained, their approach leads to both fakse po totype. In particular, considering the compatibility with
itives and negatives, and incurs a performance overhead ofxisting web applications, we develop an extension to au-
19% for a particular policy. On the other hand, to prevent tomate the sensitivity assignment for different DOM ele-
extensions from accessing sensitive information, SABRE ments. Our experiments show our design can effectively
keeps track of tainted JavaScript objects [20] and can dealmitigate the security threats without affecting usersviso
with both exploited and malicious extensions. However, ing experience.
such an approach slows down all Javascript executions in
the browser.
Besides aforementioned techniques with runtime per- Acknowledgment
mission restriction and containment, static analysis h&s a
been proposed. Aiming to reduce human efforts in ex-
tension reviewing, VEX uses information-flow analysis on ~ We thank the anonymous referees for providing con-
JavaScript code to identify potential security vulneritib# structive comments. The work has been supported in part by
in browser extensions [17]. Similar to Chrome, VEX does U.S. AFOSR under grant FA9550-09-1-0071, and by U.S.
not detect malicious extensions. A Datalog-based policy National Science Foundation under grants CNS-0746649
language is recently proposed to specify and verify accessand CNS-1117300 .

References

[1]

(2]
(3]
[4]
[5]

(6]
[7]

(8]
9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

Adblock,
google.com/extensions/detail/
gighmmpiobklfepjocnamgkkbiglidom?hi=
en-US.

Auto translate,
google.com/extensions/detail/
obgoiaeapddkeekbocomnijlckbbfapmk

Browser statistics, http://www.w3schools.com/
browsers/browsers _stats.asp

Chesapeake irthttp://chesapeakeirb.com/

Chromium blog: Security improvements and registration
updates for google chrome extensions galldyp://
codeonfire.cthru.biz/?p=96

Firefox web browser, http://www.mozilla.com/
en-US/firefox/firefox.html .

Google giving amazon top links in search re-
sults? no!, http://www.seroundtable.com/
google-amazon-treatment-13881.html

Health information privacy, http://www.hhs.gov/
ocr/privacy/

How many firefox users customized their browser?
http://blog.mozilla.com/metrics/2009/08/11/how-many
firefox-users-customize-their-browser.

Jetpack, https://jetpack.mozillalabs.com/
sdk/0.1/docs/#guide/security-roadmap .

Most spam comes from just six botnetshttp:
/len.wikipedia.org/wiki/Usage share _

of _web_browsers .

Mozilla sandbox review systemhttps://addons.
mozilla.org/en-US/firefox/pages/sandbox

Same origin policy. http://en.wikipedia.org/

wiki/Same _origin _policy

Smooth gestures spyware http://codeonfire.
cthru.biz/?p=96

Sun software product maytp://www.oracle.com/
us/sun/sun-products-map-075562.html

Trojan poses as fake google
http://www.bitdefender.com/NW1487-en—Trojan-Posgs-a
Fake-Google-Chrome-Extension.html.

S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslet
Vex: Vetting browser extensions for security vulneralgit

In Proc. of USENIX Security Symposiu2®10.

A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protgcin
browsers from extension vulnerabilities. Broc. of NDSS
2010.

A. Barth,

https://chrome.

https://chrome.

C. Jackson, C. Reis, and T. G. C.
Team. The security architecture of the chromium
browser. In Stanford Technical Report, htt p:

/I secl ab. st anf ord. edu/ websec/ chrom um
chrom um security-architecture. pdf,2008.

M. Dhawan and V. Ganapathy. Analyzing information flow
in javascript-based browser extensions.Phoc. of Annual
Computer Security Applications Conferen2609.

M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dy-
namic spyware analysis. Proceedings of the 16th USENIX
Security Symposiundune 2007.

chrome extension.

(22]

(23]

(24]
(25]

(26]

(27]

(28]

(29]

(30]

C. Grier, S. Tang, and S. King. Secure web browsing with
the op web browser. IRroceedings of the 2008 IEEE Sym-
posium on Security and Privacg008.

A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Veri-
fied security for browser extensions. Pnoc. of IEEE Sym-
posium on Security and Privacg011.

A. Hackworth. Spyware. us-cert publication, 2005.

E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer
Behavior-based spyware detection. Rroceedings of 15th
USENIX Security Symposiudugust 2006.

Z.Li, X. Wang, and J. Choi. Spyshield: Preserving pciva
from spy add-ons. IfProceedings of the 10th International
Symposium, RAI2007.

R. S. Liverani and N. Freeman. Abusing firefox exten-
sions. InDefcon 17,htt ps://ww. def con. or g/

i mages/ def con- 17/ dc- 17- present ati ons/

def con- 17-robert ol i verani - ni ck_

freeman- abusi ng firef ox. pdf , 2009.

S. Tang, H. Mai, and S. T. King. Trust and protection ia th
illinois browser operating system. Rroc. of the 2010 Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2010.

M. Ter-Louw, J. S. Lim, and V. N. Venkatakrishnan. En-
hancing web browser security against malware extensions.
Journal of Computer Virology(3), 2008.

H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudhury,
and H. Venter. The multi-principal os construction of the
gazelle web browser. IRroceedings of the 18th USENIX
Security Symposiunfugust 2009.

