
Chrome Extensions: Threat Analysis and Countermeasures

Lei Liu∗ Xinwen Zhang
Vuclip Inc. Huawei R&D Center

Milpitas, CA 95035 Santa Clara, CA 95050
lliu@vuclip.com xinwen.zhang@huawei.com

Guanhua Yan Songqing Chen
Los Alamos National Laboratory George Mason University

Los Alamos, NM 87545 Fairfax, VA 22030
ghyan@lanl.gov sqchen@cs.gmu.edu

Abstract

The widely popular browser extensions now become one
of the most commonly used malware attack vectors. The
Google Chrome browser, which implements the principles
of least privileges and privilege separation by design, of-
fers a strong security mechanism to protect malicious web-
sites from damaging the whole browser system via exten-
sions. In this study, we however reveal that Chrome’s ex-
tension security model is not a panacea for all possible at-
tacks with browser extensions. Through a series of prac-
tical bot-based attacks that can be performed even under
typical settings, we demonstrate that malicious Chrome ex-
tensions pose serious threats, including both information
dispersion and harvesting, to browsers. We further con-
duct an in-depth analysis of Chrome’s extension security
model, and conclude that its vulnerabilities are rooted from
the violation of the principles of least privileges and privi-
lege separation. Following these principles, we propose a
set of countermeasures that enforce the policies of micro-
privilege management and differentiating DOM elements.
Using a prototype developed on the latest Chrome browser,
we show that they can effectively mitigate the threats posed
by malicious Chrome extensions with little effect on normal
browsing experience.

1 Introduction

Web browsers such as Microsoft Internet Explorer (IE)
and Mozilla Firefox are the main vehicle that people use to
surf the Internet today. To enhance their functionalities and

∗Work mainly performed at George Mason University.

user experience, a large number of browser extensions have
been developed by browser vendors or third party develop-
ers. The wide popularity of browser extensions has attracted
the attention of attackers. A recent study [25] shows that
nowadays many malware infections are in the form of add-
ons on popular web browsers like IE and a majority of mal-
ware have a browser extension implementation. Browser
helper objects (BHOs), a widely used type of add-ons, is
named by CERT [24] as one of the techniques that are most
frequently employed by spyware writers.

The threats posed by malicious browser extensions call
for a thorough investigation of the security models that web
browsers use to execute these extensions. Traditionally,
as browser extensions run in the same process space as
the browser itself, such as IE and Firefox, malicious web
pages can exploit a buggy extension to steal users’ sen-
sitive data from the browser or other web pages that the
browser is visiting. Moreover, the exploited extensions can
even be used to attack the underlying operating system as
they share the same privileges as the browser. To mitigate
these threats raised under the traditional extension security
model, a plethora of efforts have been made in the past few
years, such as techniques to track behaviors in browser ex-
tensions [21, 25, 26], methods that monitor XPCOM calls
made by extensions [29], and SABRE which tracks tainted
JavaScript objects [20].

Meanwhile, a few new browser extension security mod-
els have been proposed as well [29, 20, 17, 19]. As a
browser with security in design from scratch, the Google
Chrome browser offers a built-in security protection mech-
anism for dealing with extensions. In Chrome, a typical
extension consists of multiple components, including con-
tent scripts, an extension core, and optional native binary.
Chrome runs each extension core in a separated process

from the browser process, and controls its access to browser
objects and system resources with a permission profile [18].
The content script is injected into a tab when the web page
is loaded, and runs in the same process space of the ren-
derer of the web tab and can thus access its DOM objects.
Injected content scripts in a tab can only communicate with
the extension core via Chrome’s inter-process communica-
tion channel (IPC). This design effectively enhances the se-
curity of the browser, as compromising an extension does
not affect the execution of the browser. The Chrome ex-
tension support assumes that an extension would not launch
active attacks against the browser or the underlying system;
that is, all attacks are assumed to come from malicious web
sites, e.g., those with malicious web pages or JavaScript
code. By giving least privileges to an extension, Chrome
expects that the attacking capability of a malicious web site
through an extension is limited.

Although the multi-process architecture and the least
privilege principle for extensions improve the overall secu-
rity of the Chrome browser, it still lacks an effective pro-
tection mechanism againstmaliciousextensions. While the
Chrome extension security model mainly considers threats
from malicious web sites, it does not protect the browser
from being exploited by malicious extensions. For this ex-
tension security model to function correctly, users are re-
quired to install only trusted extensions. In practice, how-
ever, ensuring the trustworthiness of every browser exten-
sion is difficult, if not impossible. Google and the Chrome
community encourage the development of extensions from
third party developers. Currently, the Google Chrome ex-
tension gallery has about 10,000 extensions available for
download from diverse developers. As suggested by previ-
ous analysis on Firefox add-ons [17], it is a daunting task to
make sure that none of these extensions is malicious. On the
other hand, there is no effective mechanism yet to prevent
a user from installing extensions downloaded from other
sources, e.g., embedded links from spam emails or phish-
ing web pages. The recent Trojan posed as a fake Chrome
extension suggests that such threats are not fictitious [16].
In fact, fraudulent and malicious Chrome extensions have
been reported [7, 14], and Google is taking actions against
malicious extension developers, e.g., one-time sign-up fee
for an extension developer, and domain verification [5].

To investigate the current extension security model
in Chrome, we conduct an experiment-based study with
Chrome browsers. First, we demonstrate a few practical
bot-based attacks with Chrome extensions. Through these
extensions, we show that malicious attacks, such as infor-
mation dispersion (e.g., email spam and DDoS), and infor-
mation harvesting (e.g., password sniffing), can be easily
mounted via cross-site HTTP requests and cross-site forg-
eries. Our in-depth analysis reveals that Chrome’s incapa-
bility of preventing these attacks is rooted from the violation

of the principles of least privileges and privilege separation.
In particular, due to the assumption that all extensions are
benign, Chrome unnecessarily offers the same set of per-
missions to the extension core and the content scripts si-
multaneously.

Following the principles of least privileges and privilege
separation, we propose a set of countermeasures that en-
force the policies of micro-privilege management and dif-
ferentiating DOM elements. With the former, the extension
core and the content script can have different types of per-
missions; with the latter, we can assign different sensitivity
levels to the DOM elements of a web page. Our implemen-
tation works transparently with existing web applications
and Chrome extensions. Using a prototype that works for
the latest Chrome and older versions from version 7, we
demonstrate that our new policies can effectively mitigate
the threats posed by malicious Chrome extensions with lit-
tle effect on normal browsing experience.

The rest of the paper is organized as follows. We de-
scribe the Chrome extension architecture and its security
model in Section 2 and demonstrate various bot attacks in
Section 3. We further perform detailed security analysis in
Section 4 and propose a few countermeasures in Section 5,
followed by the implementation in Section 6. We present
the evaluation results in Section 7 and discuss some related
work in Section 8. We make concluding remarks in Sec-
tion 9.

2 Primer on Chrome Extensions

In this section we briefly describe some background
about Chrome extensions, mainly about Chrome’s exten-
sion architecture and the corresponding security model.

2.1 Architecture of Chrome Extensions

Chrome uses a multi-process architecture, where a sin-
gle browser kernel process runs in the privileged mode to
access platform and system resources, on behalf of multi-
ple renderer processes. Each renderer process corresponds
to a web page running as a tab. A renderer process runs in
a sandboxed environment so it cannot directly access sys-
tem resources such as the filesystem and the network. It can
only send such requests to the browser process.

The design of Chrome extension architecture is based on
the assumption that extensions are benign-but-buggy. The
most possible attacks on Chrome extensions are malicious
JavaScript from web pages. Thus the goal of the security
architecture is to protect extensions from being exploited
by these attacks, and control the potential damage done to
the browser process if an extension is exploited. As an ex-
tension may access DOM objects in a web page and net-
work resources, Chrome uses a multi-component architec-

ture with fine-grained privileges to minimize its exposure to
malicious web content.

In Chrome, an extension usually includes content scripts
and an extension core. A content script is written in
JavaScript that can be injected into a web page when the
page is loaded. It then runs in the renderer process space
to access the DOM tree. The extension core includes
one or more background web pages written in HTML and
JavaScript, and runs in a separate renderer process. The
content script has the least privileges so it cannot access
any object out of its renderer process space and has to
communicate with the extension core via Chrome’s inter-
process communication (IPC). While the extension core
contains the bulk of the extension privileges, it runs in a
sandboxed environment. Therefore, it cannot access re-
sources of the host platform and the network directly. It
can only communicate with external web resources via
XMLHttpRequest . Optionally, an extension can have bi-
nary code, which is launched as an NPAPI plugin. Chrome
supports a--safe-plugins mode to run plugins in
sandboxed environments. Note that in Chrome, plugins are
different from extensions and are not part of the extensions
we discuss here.

2.2 Security Model of Chrome Extensions

Chrome’s extension architecture follows three security
principles: least privilege, privilege separation, andstrong
isolation. Chrome defines a set of permissions, which in-
cludes executing native binary, accessing web sites, and ac-
cessing browser modules such as tabs, bookmarks, history,
cookies, and geolocation. For the least privilege purpose,
each extension has to declare the permissions that it re-
quires in amanifest.json file, as part of the extension
package. Chrome users are encouraged to download exten-
sions from the Google-controlled extension gallery in order
to avoid installing extensions with inappropriate privileges.

Chrome further separates privileges between different
components of an extension. In particular, the content script
of an extension can directly interact with web contents.
However, by default it does not have the permissions to ac-
cess browser modules, except that it can communicate to the
extension core viapostMessage . The extension core has
most assigned privileges, but it is insulated from web pages.
It has to use content scripts or invokeXMLHttpRequest
to communicate with the web content. The native binary
of an extension, running as an NPAPI plugin, has the most
privileges as it can run arbitrary code or access any files.

To further control the damage of an exploited extension
by malicious web pages, Chrome leverages three levels of
strong isolations. First of all, privileges to access web sites
are defined based on origins. Similar to other browsers, the
basic security mechanism in Chrome is the isolation be-

tween origins, that is, the same origin policy (SOP) [13].
Chrome defines the origin of an extension by including a
public key to the extension’s URL, which is the origin of
all its files in the local filesystem. By default, an extension
can access all the resources of the origin. If an extension
needs to access another origin, the cross-origin permission
is required. Since the Chrome extension security model
forbids an extension to access a web page directly by de-
fault, an extension has to access a web page by injecting
some content scripts to the web page. To do this, a cross-
origin request permission is also needed if the web page
does not belong to the origin of the extension, which is of-
ten the case. If the permission is given, the injected content
script can also access the origin of the web page by invok-
ing XMLHttpRequest . Cross-origin permissions can be
granted inmanifest.json of the extension as follows.

"permissions": [
"tabs", "http://www.google.com/"

]

With the above permissions, the extension has the privi-
lege to inject content scripts into a web page with the origin
defined by URLhttp://www.google.com . Note that
this permission also grants the extension core to access the
specified origin (e.g.,http://www.google.com) with
theXMLHttpRequest method.1

The second level of isolation lies on the multi-process
architecture of Chrome browser. Each component of an ex-
tension runs in different processes. The content script is
injected into a tab and runs in the same process space of
that sandboxed renderer process, while the extension core
runs in another isolated process. The native binary of an
extension runs in an isolated plugin process. This level of
isolation helps preventing a compromised renderer process
from accessing the extension core’s functions.

The third level of isolation is to run content scripts in
a separate JavaScript engine, which is calledisolated
world . This provides an additional layer of isolation be-
tween the content script and the untrusted JavaScript envi-
ronment of associate web pages. Content scripts from dif-
ferent origins run in different isolated worlds. Each isolated
world has its own DOM copy, making it impossible to ex-
change JavaScript pointers.

Even with such a comprehensive security model, we find
various attacks can still be mounted via Chrome extensions.
We next will show how we exploit Chrome extensions for
different attacks.

3 Attack Cases with Chrome Extensions

To demonstrate potential security risks of malicious
Chrome extensions, we have developed an extension

1More permission description can be found at
http://code.google.com/chrome/extensions/manifest.h tml .

(a) Step 1: receiving spam content from the botmaster via extension
update

(b) Step 2: passively monitoring user’s login withBang! extension

(c) Step 3: automatically sending out the spam email (d) Step 4: received spam email

Figure 1. Chrome Extension for Email Spam

Bang! that works for the latest Chrome and older versions
from version 7. Bang! can be used as an automatic bot
to mount large-scale email spamming, DDoS, and phishing
attacks. Our attacks are based on the assumption that a ma-
licious Chrome extension has already been installed on the
Chrome browser.

For successful bot attacks, an essential component is a
command and control channel. In our attacks, we lever-
age extension update for this purpose. Usually, a Chrome
browser checks the update information of an extension from
the update web site every few hours. If an update is avail-
able, the browser downloads the update and updates the ex-
tension files on disk. Therefore, this mechanism provides
an ideal approach for establishing the command and con-
trol channel between the bot and the botmaster. The bot-
master can simply use these periodic updates to distribute
commands in the botnet, where the extension directly reads
commands from an extension file without explicitly requir-
ing any network access.

3.1 Email Spamming

Today botnets are notoriously responsible for most of
spam emails on the Internet [11]. A spammer controls or
rents a botnet and sends spamming commands to bots. Af-
ter receiving spamming commands, bots send spam emails
to victims. To defeat various malware detection mecha-
nisms, a bot, instead of keeping sending spam emails at a
high rate, can be instructed to send spam emails only spo-
radically, which makes detection more difficult.

To send out spam emails,Bang! has the following per-
mission:

"permissions": [
"tabs", "http:// * / * ", "https:// * / * "

]

The http:// * / * and https:// * / * permissions
are very common in popular extensions. They enable
Bang! to send HTTP requests to all destinations. Table 1
shows the permissions of top 30 popular extensions (as of

Table 1. Permissions of Top 30 Popular Extensions
Rank Name Permissions

1 AdBlock "http:// * / * ", "https:// * / * ", "contextMenus", "tabs"
2 Google Mail Checker "tabs", "http:// * .google.com/", "https:// * .google.com/"
3 FastestChrome "tabs", "http:// * / * ", "https:// * / * "
4 IETab "tabs", "bookmarks"
5 Browser Button for AdBlock "http:// * / * ", "https:// * / * ", "tabs"
6 Docs PDF/PowerPoint Viewer
7 Downloads "tabs"
8 Google Translate "http:// * / * ", "https:// * / * ", "tabs"
9 Facebook Photo Zoom "contextMenus", "tabs", "http:// * .facebook.com/ * ",

"http://facebook.com/ * ", "https:// * .facebook.com/ * ",
"https://facebook.com/ * "

10 Google Dictionary "tabs", "http:// * / * ", "https:// * / * "
11 Turn Off the Lights "contextMenus", "tabs", "http:// * / * ", "https:// * / * "
12 Firebug Lite "tabs", "http:// * / * ", "https:// * / * ", "http://127.0.0.1/ * ",

"http://localhost/ * "
13 Download Master "contextMenus", "cookies", "tabs", "http:// * / * ",

"https:// * / * "
14 Google Mail Checker Plus "notifications", "tabs", "http:// * / * ", "https:// * / * ",

"http:// * .google.com/ * ", "https:// * .google.com/ * "
15 Adblock Plus "tabs", "http:// * / * ", "https:// * / * ", "contextMenus"
16 RSS Subscription Extension "tabs", "http:// * / * ", "https:// * / * "
17 Clip to Evernote "cookies", "tabs", "http:// * / * ", "https:// * / * "
18 Google Chrome to Phone Exten-

sion
"contextMenus", "tabs", "http:// * / * ", "https:// * / * "

19 Webpage Screenshot "tabs", "http:// * / * ", "https:// * / * "
20 Xmarks Bookmark Sync "bookmarks", "tabs", "unlimited storage",

"http:// * .xmarks.com/", "https:// * .xmarks.com/",
"http:// * .foxmarks.com/", "https:// * .foxmarks.com/",
"http:// * / * ", "https:// * / * "

21 SmileyCentral
22 SocialPlus!
23 Facebook for Google Chrome "tabs", "http:// * .facebook.com/"
24 Speed Dial "bookmarks", "tabs", "http:// * / * "
25 Google Voice "tabs", "http:// * .google.com/", "https:// * .google.com/"
26 Cooliris "tabs", "http:// * / * ", "https:// * / * "
27 FlashBlock "tabs", "http:// * / * "
28 Smooth Gestures "tabs", "bookmarks", "notifications", "idle", "cookies" ,

"unlimitedStorage", " \u003Call urls \u003E"
29 Awesome Screenshot "tabs", "http:// * / * ", "https:// * / * "
30 WOT "tabs", "http://www.mywot.com/ * ", "http://api.mywot.com/ * ",

"https://api.mywot.com/ * "

May 18th 2011) from Chrome extension galley. As shown
in the table, 19 extensions (out of 30) have been granted
privileges ofhttp:// * / * or https:// * / * .

We use the extension update for the command and con-
trol channel. Accordingly, the spam information is stored
in a file calledspam.txt under the extension directory,
and the extension can read this file and then obtain spam
information including victims’ email addresses and spam
content.

Figure 1 shows the email spam attack we have imple-
mented via this extension. Basically, after acquiring the
spam information that is shown in Figure 1(a), to send out
spam emails, the extension still needs additional informa-
tion such as an email account to login into a mail server.

There are different ways to achieve the access to an email
account. For example, this information can be saved in
spam.txt which has been provided by the botmaster, or
the spammer may have registered some free email accounts.

Our implementation does not need email account
information beforehand. Instead, it utilizes the user’s
legitimate account when the user logins into her email
system. This approach can evade detection more effec-
tively, because spam emails are sent out when the user
logins into her web email system as shown in Figure 1(b).
In the figure, the extensionBang! is our bot extension
to monitor the user login. In this example, we experi-
mented with the popular iPlanet email system [15]. As
the extension is granted the privilege of"tabs" , it

listens to the update notification of tabs with the method
of chrome.tabs.onUpdated.addListener() .
When the user logs into a web email system, the login
credential is represented by a session id (sid) and rewrit-
ten to the URL of subsequent HTTP requests. As the bot
extension has the tab permission, it can listen to the tab
update notice. With this credential information, an HTTP
request to the iPlanet mail server is authorized to take any
action on behalf of the user, instead of sending the user
name and password in each transaction.

Figure 1(c) shows the sent email in thesent box of
the user. In this example, the extension sends out the spam
email through the mail server with the user’s legitimate ac-
count.

Figure 1(d) shows the received spam email in the victim
account. In this email spamming attack, our extension sends
out the HTTP requests, which in turn triggers the web server
to send spam emails to the victim. As the victim email ad-
dress can be embedded in the extension (as inspam.txt),
the bot can always obtain new victim emails by updating the
extension from the botnet master’s server, which is allowed
by default in the Chrome ecosystem.

3.2 DDoS Attack

Although http:// * / * is common, cautious users
might prefer privileges with limited resource access, such
as:

"permissions": [
"tabs", "http:// * .yahoo.com/ * "

]

With above privilege, an extension can only ac-
cess resources from* .yahoo.com , and should not be
able to launch a DDoS attack against victims such as
www.google.com . However, we note that the ex-
tension can inject content scripts into web pages from
* .yahoo.com , and the injected content scripts have full
privileges to access the DOM elements of the web pages. If
the extension is malicious, it can change thesrc property
of a DOM element towww.google.com , and therefore
the injected content script can send out HTTP requests to
the victim. Therefore, an extension does not need to make
an explicit cross-site HTTP request to launch DDoS attacks.
Figure 2 shows the DDoS attack against a victim server via
this approach.

Figure 2(a) shows the command information that is
obtained from an extension update. In this exam-
ple, the DDoS information includes the victim’s URL
(www.google.com), attack start time (12:35), re-
quest interval (1 second), and attack duration (1000
seconds). After obtaining the victim’s URL, the exten-
sion can make cross-site HTTP requests to the victim as

(a) Step 1: receiving DDoS command from the botmaster via extension
update

(b) Step 2: sending DDoS packets

Figure 2. Chrome Extension for DDoS

instructed by the DDoS command. Figure 2(b) shows the
packet level traffic after the DDoS is initiated.

3.3 Password Sniffing

Nowadays, many Internet surfers use web browsers to
do online shopping and access online bank accounts and
financial services. Sensitive information such as bank ac-
count and password in these transactions is often saved by
the web browser, temporarily or permanently, which makes
web browsers a major target of spyware. We have imple-
mented password sniffing inBang! and in our experiment,
the attack is againstonline.citibank.com . When the
victim web page is loaded,Bang! injects content script
into the web page, which can access all DOM elements in-
cluding the form with the user name and password. Such
information can then be sent to the designated email ad-
dress.

In order to access sensitive information in the Chrome
browser, our extension needs to access the DOM tree of a
web page. Therefore it needs the cross-site permission to
insert the content script when a web page is rendered. The
following manifest shows the permission specification.

"content scripts": [

(a) Step 1: receiving command from the botmaster via extension update

(b) Step 2: passively monitoring the user login (c) Step 3: emailing the password to the botmaster

Figure 3. Chrome Extension for Password Sniffing

{
"matches": ["https://online.citibank.com/ * "],
"js": ["jquery.js", "myscript.js"]
}

],
"permissions": [

"tabs", "https://online.citibank.com/ * "
],

...

With the above specification, when the user browses the
page fromonline.citibank.com , two content scripts
(jquery.js and myscript.js) are injected into the
target web page, and the JavaScripts have full privileges
to access all DOM elements including the form with user
name and password. With the received command shown in
Figure 3(a),myscript.js reads the values of user name
and password elements when the user inputs, as shown in
Figure 3(b), and sends to a designated email address. Fig-
ure 3(c) shows that the password information is successfully
sent out with a similar mechanism as that in the previous
DDoS attack. Note that with enough permissions such as
cross-site access withhttp:// * / * or https:// * / * ,
the content script can also send sensitive information to the
extension core, which in turn sends the data to the outside
network.

4 Attack Analysis

We have demonstrated a few attacks with Chrome ex-
tensions in the last section. Given that a significant num-
ber of malware have been identified in the form of browser
extensions in IE [25] and Firefox [27] and the number of
Chrome users is on the rise [3], it is reasonable to believe
that there will be more malicious Chrome extensions. In
this section, we conduct a comprehensive analysis on the
current Chrome extension security model to reveal its vul-
nerabilities that can be exploited by malicious extensions.

4.1 Threat Model

Similar to the design of Chrome extensions, in this study
we assume the browser kernel and plugins are trustworthy.
That is, we do not consider the attacks by exploiting the
vulnerabilities in the browser and plugins. In addition, we
assume that the underlying operating system, which pro-
vides sandboxing mechanisms for renderer processes and
extension core processes, works benignly. Thus we do not
consider attacks against the host system from malicious ex-
tensions. We further assume that a malicious extension does
not use native code to launch attacks, e.g., all native code of
an extension runs in a sandboxed environment. With the

above exclusions, we focus on the attacks from malicious
extensions against web applications including web pages
rendered at the browser side and user data at the web server
side.

In order to launch a successful attack, a malware instance
typically needs two access authorizations: accessing sensi-
tive information in the browser process and accessing the
network for data transmission. The Chrome extension ar-
chitecture makes these two accesses easily available to ma-
licious extensions because they can not only access DOM
and browser objects but also issue cross-site requests. By
default, the content script of an extension has the permis-
sion to access all DOM and browser objects of a web page,
including sensitive HTML elements such as password input,
and modify the DOM tree, the page’s URL, and cookie in-
formation. Furthermore, the content script can freely com-
municate with the origin of the associated web page via
XMLHttpRequest . The remainder of this section shows
that these default permissions pose serious threats to the
browser with malicious extensions.

4.2 Cross-site Forgery with Content Script

An extension has to use some content script to access a
web page’s DOM objects. According to the current Chrome
extension design, the content script cannot make cross-site
requests without authorized permissions. In fact, a con-
tent script has the privilege of the origin of the associated
web page, so it is capable of making HTTP requests to
the current web page. Because the requests are regarded
to have the same origin, all user credentials associated with
the origin, such as cookies, can be included in the request.
Many web sites use cookies as an authentication mecha-
nism, which makes cross-site forgery attack possible when
a content script abuses the trust between the browser and
the server.2 The email spam attack in the previous section
could also be done with this approach.

To better understand this, consider another exam-
ple in which an attacker lures the browser to load
a well crafted image element<img src="http:
//www.bank.com/withdraw?account=bob \
&amount=1000000 \&for=mallory" 〉. If the bank’s
web server keeps authentication information in a cookie
and if the cookie has not expired, the attempt by the
browser to load the image will submit the withdrawal form
with the cookie, thus authorizing a transaction without the
user’s approval.

In practice, the above cross-site forgery attack may not
be able to succeed, as usually a bank server only ac-
cepts a withdrawal transaction via an HTTP POST re-
quest rather than an HTTP GET request. By loading

2We call this attack as cross-site forgery, as formally the content script
has a different origin from the web page which it is injected into.

the image, the browser sends an HTTP GET request to
http://www.bank.com/withdraw . If this is the
case, the HTTP GET request is ignored. However, with ma-
licious extensions, the attacker can launch a more sophisti-
cated cross-site forgery attack by sending an HTTP POST
request from the injected content script. Since the request
includes user credentials such as cookies, the bank server
can be fooled to authorize the transaction.

4.3 Cross-site Requests with Extension Core

Besides the cross-site forgery with content scripts, in a
Chrome browser, cross-site requests can be made with the
extension core as well. In Chrome, the content script of an
extension can be injected into many web pages (tabs) con-
currently in a browsing session, while the extension core of
an extension runs as a global process that is able to commu-
nicate with content script instances in different tabs. This
opens a door for a malicious content script to collude with
the extension core to generate cross-site attacks.

By default, the content script injected into a web page
cannot communicate with any other origin except the origin
of the associated web page due to the same origin policy.
With a malicious extension, however, its extension core can
be used to make cross-site accesses to transfer sensitive data
from one origin to another. In particular, suppose there are
multiple tab processes concurrently running in a Chrome
browser. Thus these tab processes share one extension core
process. Assume tab 1 is a page from origin A and tab 2
is from origin B. As two tab processes are isolated, active
web content (e.g., JavaScript embedded in the page) in tab
2 cannot access the web content in tab 1. However, with
appropriate permissions, a malicious extension core can in-
ject content scripts into tab 1 and 2 when the web pages are
downloaded and rendered. The content script in tab 1 can
access all information in the DOM of tab 1. Through IPC
messages, the content script can forward the information to
the extension core, which then passes the information to the
content script injected into tab 2. With this approach, the
content script in tab 2 can send information to the server
of tab 2 viaXMLHttpRequest , or write the information
to the DOM of tab 2, which can be further read by em-
bedded JavaScript of the web page in tab 2 and sent to the
web server. Alternatively, the extension core can directly
file cross-site HTTP requests to the origin of tab 2, due to
the fact that the cross-site permission is enabled in order to
allow the extension core to insert content scripts.

4.4 Unlimited Cross-site HTTP Requests

Without cross-site privileges, a running content script
can only make HTTP requests to the same origin as
the associated web page. However, the content script

can access all DOM elements including modifying the
DOM tree without requiring extra permissions. This
capability enables a malicious content script to have
unlimited cross-site HTTP requests. In particular, after
being injected into a target web page, the content script
can read any data content in the DOM tree, including
sensitive data such as password. With this capability,
the content script can insert an iframe element to the
DOM tree, where thesrc property of the iframe element
can be a malicious destination with the password, such as
http://evil.org/attack.msc?password=xxxx .
After this modification, the page is refreshed by the browser
automatically, which in turn sends an HTTP GET request
to the destination. The script inattack.msc at the
http://evil.org can then handle this HTTP GET
request and obtain the user password. Alternatively, the
content script can also change thesrc property of an
existing DOM element such as an image to trigger the
HTTP request.

The root of the problem lies in the fact that the content
script has full privileges to change the DOM of a page. As
a result, it can add arbitrary new origins into DOM. To ad-
dress this problem, a content script should request the priv-
ilege needed for introducing any new origin to a web page.
By default, this capability should be denied by the browser.

4.5 Undifferentiated Permissions

Chrome permission specifications are based on origins.
Once the privilege of an origin is granted, the extension can
access almost all resources from that origin. These include
the following: the extension can make cross-site requests
to the origin withXMLHttpRequest and inject content
scripts to the web page from this origin; the injected con-
tent script can access all DOM elements of the web page,
and even introduce new origins to the web page by insert-
ing or modifying thesrc property of an element. It is clear
that once the privilege of one origin is granted, all exten-
sion components including the extension core and the con-
tent script have the same set of permissions to the origin.
This is actually an all-or-nothing policy.

Consider an extension which usually needs to read con-
tents from all web pages while only communicating to one
particular web site, e.g., a language translator or a dictio-
nary extension. The extension needs to inject content scripts
to web pages in order to read the corresponding DOM con-
tent, which requires the cross-site permission to all the web
origins specified ashttp:// * / * . However, for a transla-
tor extension, the only reasonable and necessary cross-site
request is to origins of the translator service web site. That
is, in order to enable the content script injection, the ex-
tension is granted unnecessary privileges to many origins,
rather than only the one it really needs. Obviously, the least

privilege principle is not strictly enforced with this design.
If we assume the extension is benign, the extra privileges
may not hurt the browser. If used by a malicious exten-
sion, however, these extra privileges open a door for attacks,
such as communicating command and control information
for botnets and exfiltrating sensitive user data.

5 Security Enhanced Chrome Extensions

The previous section shows that the attacks demonstrated
in Section 3 are made possible because malicious exten-
sions are able to exfiltrate information through cross-site
accesses and are granted unnecessary permissions for infor-
mation stealing. Considering that the major security threat
is either information dispersion or information harvesting
attacks, we propose to usemicro-privilege managementthat
disables illegal cross-site accesses so as to prevent infor-
mation exfiltration, and todifferentiate DOM elements with
sensitivityso as to prevent sensitive information harvesting.

5.1 Micro-Privilege Management

As shown in the attack examples, cross-site accesses re-
sult from the same privilege shared by different components
of an extension. Such coarse-level privilege management,
while convenient for some applications, leaves a loophole
that extensions can exploit to achieve cross-site accesses.
To enforce micro-privilege management, we propose to sep-
arate the privileges of different components first, and then
assign the most appropriate privilege to each component.

Privilege Separation. Multiple components of a
Chrome extension share the same set of access permissions
for particular operations, which leads to non-least privilege
for some components or operations. To address this prob-
lem, we need to strictly apply the privilege separation prin-
ciple. In our approach, we not only separate the permission
specifications for different components of an extension, but
also separate the permissions of particular operations of the
same component. Table 2 shows these two levels of per-
mission separation. First, the privileges of the extension
core and the content script are separated. Second, within
each component, the privileges for different operations are
specified by introducing new permission names. For ex-
ample, new permissions, such asinject script and
cross site , are defined to distinguish these two types
of permissions.

Least Privilege. Security threats can come from extra
permissions granted to extension components that are be-
yond necessity. To strictly follow the least privilege princi-
ple, we need to assign the most appropriate set of permis-
sions (the least privilege) to each component. Thus, after
separation, we further downgrade the default permissions of
an extension and split existing permissions into fine-grained

Table 2. Micro-Privilege Management – Privi-
lege Separation and Privilege Specification

Permissions Example Permission Spec

Extension inject script "http:// * / * ",
"https:// * / * "

core cross site "http://www.translate.com"
Content sensitivity level "medium"
script same origin request "false"

new origin "http://www.translate.com"

ones such that extra permissions can only be obtained via
explicit requests.

Downgrading default permissionsAccording to the
analysis in the last section, a content script is allowed to ac-
cess all DOM elements and modify the DOM tree without
any permission check. Further, the content script is allowed
to communicate with the origin of the associated web page
freely. To prevent unlimited cross-site HTTP requests and
sensitive information leakage, we should disable the capa-
bilities of content scripts to introduce a new origin into a
DOM tree and read sensitive information. To prevent cross-
site forgery attacks, we should not allow a content script to
send HTTP requests to the origin of the web page by de-
fault.

Fine-grained permission specificationsDisabling de-
fault permissions certainly blocks many useful functions
of benign extensions. To enable these functions whenever
necessary for these applications, we define explicit permis-
sions, including sensitive data accesses, requests to the ori-
gin of the associated web page, and introducing new origins
to DOM. Without explicitly granted permissions, a content
script cannot have the corresponding permissions. Table 2
summarizes fine-grained permission specification for con-
tent scripts.

With micro-privilege management, we can achieve bet-
ter least privilege and privilege separation. Using a popular
translation extension as an example, the following shows
the corresponding permission manifest to mitigate the vul-
nerabilities identified in the previous sections.

"extension core permissions": [
"inject script":[

"http:// * / * ", "https:// * / * "
]

"cross site":[
"tabs", "http://www.translate.com"

]
]

"content script permissions": [
"sensitivity level":[medium]
"same origin request":[false]
"new origin":[

"http://www.translate.com"
]

]

In the above specification, the permission that allows
an extension core to inject content scripts is separated
from that of cross-site HTTP requests. The transla-
tor extension has the privilege to inject content scripts
to arbitrary web pagehttp:// * / * / while it only has
the cross-site access privilege to a web site with origin
http://www.translate.com . Even if the extension
is malicious and can thus acquire sensitive information from
the browser, it cannot send information to a malicious des-
tination. Furthermore, the content script can only introduce
origin http://www.translate.com into the DOM
tree, which can be accessed by the extension by default.
Therefore it cannot send any sensitive information to an ar-
bitrary web site with cross-site HTTP requests by modify-
ing the DOM tree. This effectively mitigates the vulnerabil-
ity discussed in section 4.2.

Admittedly micro-privilege management on ex-
tensions is not a panacea for all possible attacks.
For example, if the service origin itself (e.g.,
http://www.translate.com) is malicious, in-
formation leakage is still possible. Using our mechanism,
a user or a system administrator however only needs to
validate one origin rather than arbitrary origins, which
significantly reduces the security risk.

5.2 Differentiating DOM Elements With Sensitiv-
ity

We have discussed that if we can control the access of
sensitive information in DOM, we control the source of in-
formation harvesting attacks. The main challenge to do this
lies in how to identify sensitive information in a web page.

To identify sensitive information in a web page, we can
classify DOM elements based on their contents into three
different sensitivity levels, from high to low. A straightfor-
ward approach to achieve this is to explicitly mark the sensi-
tive information by web application developers or web site
administrators (however, for the usability and compatibility
with existing extensions, we use our automatic tool Proc-
tor for this purpose as presented in the next section). An
attribute ofsensitivity can be assigned to a DOM ele-
ment to represent the sensitivity level of information stored
in the DOM element. If thesensitivity attribute is set,
Chrome knows that the information content in this element
is sensitive and will check thesensitivity level
permission of content scripts when they try to access the
element value. For example, after an input element is
marked withhigh sensitivity, when content scripts with
a medium level permission attempt to access this input el-
ement, Chrome will forbid content scripts to acquire the
value of the input element. More specifically, we introduce
three levels of sensitivity as follows.

• High level: High level is defined to label the

highly sensitive elements that are inherently sen-
sitive. For example, an element of<input
type="password"> implies sensitive information
in the type . Thus they should be protected with the
highest priority. HTML has a list of such inherently
sensitive elements noted by their types. Besides pass-
word, there are other types such ashidden that be-
long to this category.

• Medium level: Besides inherently sensitive elements,
the attributes of a DOM element also hint their sen-
sitivity. For example, a DOM element with the name
username, highly likely, is related to a user name. They
can be identified by their names, IDs or information
format although the correlation is not always positive.
Hence, we can build a dictionary that contains a num-
ber of regular expression patterns presenting sensitive
information. When Chrome scans web contents and
finds element names or IDs in the dictionary, the ele-
ment should be marked withMedium level sensitivity.

• Low level: By default, all other elements are marked
with low level sensitivity. Content scripts are free to
access these elements.

An extension developer can assign one sensitivity level
to content scripts at installation. Once the sensitivity level
is granted by a user during installation, the content script
obtains the permission and Chrome enforces the security
check according to the protection level. The content script
with high level sensitivity can access all elements in DOM.
The medium level sensitivity allows content script to access
elements with medium or low level sensitivity. By default,
the content script with the low level sensitivity is forbidden
to access elements with high or medium level sensitivity. If
a content script with a medium level sensitivity attempts to
read properties of a high level DOM element, Chrome will
thwart this attempt. To be compatible with existing content
script functions, Chrome does not simply return an error.
Instead, a fake value is returned. For instance, when unau-
thorized content scripts read the value of a password input,
Chrome will return a *** string with a random length. On
the other hand, unauthorized write operations will be ig-
nored.

6 Implementation

In this section, we discuss our prototype implemented,
with both policies of micro-privilege management and dif-
ferentiating DOM elements. In particular, to be compatible
with existing extensions, we have implemented an exten-
sion for automatically labeling sensitivity levels of DOM el-
ements as we shall discuss soon. Our implementation works
with all Chrome versions from version 7.

To implement micro-privilege management, we have
added finer permission definitions for each component of an
extension. Existing Chrome only saves host permission. We
use new variables to save the permissions for different com-
ponents. Since content scripts have additional privileges,
we definesensitivity levels, from high to low, and
same origin request that represents whether content
scripts are allowed to make same origin requests.

In previous sections, we indicate that one weakness of
Chrome is that the content script can make illegal cross-site
requests by modifying thesrc attribute of DOM elements.
To thwart such illegal cross-site requests, we only allow
content scripts to modify/append thesrc attribute to ori-
gins in the extension core’s cross-site permissions because
the extension core is capable of communicating with these
origins as well.

Privileges are managed by the browser process and
passed to render processes via struct
ViewMsg ExecuteCode Params . We add new mem-
bers to include finer privileges. To check fine-grained per-
missions on content scripts, we pass content script privi-
leges to the JavaScript engine V8, where the permission in-
formation is saved.

To enforce security check for content scripts, we add se-
curity logic into a few methods. After obtaining the context
of current JavaScript engine, Chrome knows whether it is in
Isolated World or not. If it is not, the JavaScript must
have come from web pages and no security check is needed.
Otherwise, the sensitivity level of content scripts is checked
and thesensitivity attribute of current element is ac-
cessed. For content scripts with lower sensitivity level re-
questing to read medium or high level DOM element value,
the request is forbidden and Chrome returns fake value such
as" ***** " instead of the real value of the element.

With a similar logic, security check is enforced when
content scripts attempt to insert an element or modify the
src attribute of an element. Our implementation guaran-
tees that only origins with cross-site privilege are allowed.

To implement the policy of differentiating DOM el-
ements, while it is best for the web application devel-
oper to denote distinct permissions for DOM elements, it
may reduce the usability. To be compatible with exist-
ing web applications without bothering application devel-
opers, it is desirable to have a tool to mark the sensitiv-
ity levels of web contents upon loading automatically. For
this, we implement a Chrome extension, calledProctor ,
which is a helper extension identifying and labeling sen-
sitive elements. Once a DOM element is identified as
high or medium sensitivity level,Proctor will set an at-
tribute calledsensitivitywith the proper level to the element
(e.g., element.setAttribute(’sensitivity’,
‘‘high’’)). Chrome itself is only responsible for query-
ing the sensitivityattribute and enforces security protec-

(a) Step 1: Without Proctor Extension Installed (b) Step 2: After Proctor Extension Installed

Figure 4. Proctor Extension for Chrome

tion. The sensitivity dictionary can be flexibly updated.
Currently, as a demonstration of concept implementation,
Proctor separates sensitivity marking from Chrome. Ide-
ally, its function should be integrated into Chrome in order
to avoid any security concerns on theProctor extension
itself.

Figure 4 shows an example before and after the
Proctor extension was installed. The sensitivity dictio-
nary is the key toProctor . According to HIPAA [8] and
Chesapeake Research Review, Inc. [4], there are 18 types
of individual identifiers from the security perspective in-
cluding name, telephone number, social security number,
account number, license number, etc. We also observed that
DOM elements containing these individual identifiers usu-
ally have a similar name or ID. Accordingly, we define reg-
ular expression patterns in the dictionary for each sensitive
identifier. By matching the element name or id to patterns in
the dictionary,Proctor is capable of identifying potential
sensitive elements.

To improve the accuracy ofProctor , besides
element names and ids,Proctor matches the
value of elements for further verification. Some
sensitive information has a unique format. For ex-
ample, an email address can be represented by
\b[A-Z0-9. %+-]+@[A-Z0-9.-]+ \.[A-Z] {2,4 }\b.
Thus, afterProctor matches element name or id, it
matches the value of the elements to value patterns. If both
matches are successful,Proctor has more confidence to
mark the element as sensitive. Following the above idea,
Proctor uses the following logic.

• If the elements already have a sensitivity attribute,
Proctor respects it.

• If the type of the elements is password or hidden,
Proctor marks its sensitivity asHigh level.

• If only the element name or its ID is matched, the ele-
ment is marked with aMediumsensitivity level.

• After the element name or its ID has been matched, if
the value of element is also matched,Proctor marks
the element with aHigh sensitivity level.

• If neither is matched, Proctor ignores the element. By
default, the element has aLowsensitivity level.

We show in Table 3 examples in our sensitivity
dictionary we have currently implemented in extension
Proctor .

Once a DOM element is identified as high or
medium sensitivity level,Proctor will set an attribute
called sensitivity with the proper level to the element
(e.g., element.setAttribute(’sensitivity’,
"high") .). Chrome itself is only responsible for query-
ing thesensitivityattribute and enforces security protection.
The benefit ofProctor is to separate sensitivity marking
from Chrome. Proctor working as a Chrome extension also
brings more flexibility with sensitivity dictionary update.

As shown in Figure 4, beforeProctor is installed,
there is not sensitivity attribute associated with the user-
name and password elements. AfterProctor is installed,
when the web page is loaded, the username element is
marked asmedium levelbecause the name of the ele-
ment is matched from the dictionary (sensitivity attributeas
medium) and the password element is marked ashigh level
because the element has a password type (sensitivity at-
tribute as high). After that, whenever content scripts attempt

Table 3. Dictionary of Proctor
"name patterns": [

{
"social security number": ["SSN",

"social security number"],
"username": ["username", "uname"]
"password": ["password", "pword", "pwd"]
"email": ["email", "mail to"]
"telephone": ["telephone", "tel"]
"IBAN": ["IBAN", "bank account",

"international bank account"]
...

}
],

"value patterns": [
{
"social security number": "ˆ \d{3}- \d{2}- \d{4}$"]
"! email":

[" \b[A-Z0-9. %+-]+@[A-Z0-9.-]+ \.[A-Z] {2,4 }\b"]
"telephone":

["/ˆ \(?(\d{3}) \)?[-]?(\d{3})[-]?(\d{4})$/"]
"IBAN": "[a-zA-Z] {2}[0-9] {2}[a-zA-Z0-9]

[{4}[0-9] {7}([a-zA-Z0-9]?) {0,16 }"]
...

}
],

...

to access elements with a sensitivity attribute, Chrome en-
forces access control on them.

7 Compatibility and Security Evaluation

To evaluate the effectiveness of our solution, we first
study whether existing Chrome extensions in the Google
Chrome Extension Gallery are compatible with the required
modifications. As we target malicious extensions, we fur-
ther evaluate whether the modified Chrome browser can
prevent attacks via malicious extensions.

7.1 Compatibility Study

We first download the first 30 most popular extensions
from the Google Chrome Extension Gallery and check their
privilege configuration. Our analysis shows that among
these 30 extensions, 24 have been granted network access
permissions, among which 19 (about 80%) request higher
privileges than necessary. Table 4 summarizes our analysis
on these 30 most popular Chrome extensions.

For example, the most popular extension,AdBlock [1],
requests the following privileges in mainfest.json:

"permissions": [
"http:// * / * ", "https:// * / * ",

"contextMenus", "tabs"],
...

With this permission set,AdBlock is able to make unlim-
ited cross-site requests to all destinations although it does
not need to make any cross-site requests at all. If it contains
malicious code or is compromised, various attacks can be
launched through it, as demonstrated in Section 3. Simi-
lar to AdBlock , most of the extensions from the Google
Extension Gallery request permission “http://*/*/”, no mat-
ter whether they need the privilege or not. For example,
among the top 30 popular Chrome extensions, besides Ad-
Block (No. 1), the following all have such a permission:
Fastestchrome (No. 3), Browser Button for AdBlock (No.
5), Google Translate (No. 8), Google Dictionary (No. 10),
Turn Off the Lights (No. 11), Firebug Lite (No. 12), Down-
load Master (No. 13), Google Mail Checker Plus (No. 14),
Adblock Plus (No. 15), RSS Subscription Extension (No.
16), Clip to Evernote (No. 17), Google Chrome to Phone
Extension (No. 18), Webpage Screenshot (No. 19), Xmarks
Bookmark Sync (No. 20), Speed Dial (No. 24), Cooliris
(No. 26), FlashBlock (No. 27), Awesome Screenshot (No.
29).

On the other hand, many extensions also use con-
tent scripts to communicate with web contents. In
many cases, this demands permissionshttp:// * / * /
and https:// * / * / . However, these extensions
should not make cross-site requests to arbitrary destina-
tions. For example,Auto-translate [2] is an ex-
tension that automatically translates selected texts using
google translate . As Auto-translate does
not have its own translation service, it depends on the
google translate service to conduct the translation.
Auto-translate requires the following privileges:

"permissions": [
"tabs", "http://ajax.googleapis.com/ * ",
"http:// * .google.com/ * ", "http:// * / * ",
"http://google.com/ * ", "https:// * / * "

],
...

Because Auto-translate uses content scripts
to read selected texts in arbitrary web pages, it
is reasonable to have thehttp:// * / * / and
https:// * / * / privileges in order for content script
injection. But it only requires cross-site requests to
http://translate.google.com . Thus, it should
not be granted the cross-site privilege to any destination
other thanhttp://translate.google.com . With
our modified Chrome, the following permission will be
given toAuto-translate :

"extension core permissions": [
"inject script":[

"http:// * / * ", "https:// * / * "
],

"cross site":[
"tabs", "http://ajax.googleapis.com/ * ",
"http://google.com/ * ",
"http:// * .google.com/ * "

],

Table 4. Summary of Top 30 Chrome Extension Privilege Analys is
rank name over-privileged? rank name over-privileged?

1 AdBlock ✔ 16 RSS Subscription Extension ✔

2 Google Mail Checker ✗ 17 Clip to Evernote ✔

3 FastestChrome ✔ 18 Google Chrome to Phone Extension ✔

4 IE Tab ✗ 19 Webpage Screenshot ✔

5 Browser Button for AdBlock ✔ 20 Xmarks Bookmark Sync ✔

6 DocsPDF/PowerPoint Viewer ✗ 21 SmileyCentral ✗

7 Downloads ✗ 22 SocialPlus! ✗

8 Google Translate ✔ 23 Facebook for Google Chrome ✗

9 Facebook Photo Zoom ✗ 24 Speed Dial ✔

10 Google Dictionary ✔ 25 Google Voice ✗

11 Turn Off the Lights ✔ 26 Cooliris ✔

12 Firebug Lite ✔ 27 FlashBlock ✔

13 Download Master ✔ 28 Smooth Gestures ✗

14 Google Mail Checker Plus ✔ 29 Awesome Screenshot ✔

15 Adblock Plus ✔ 30 WOT ✗

],
"content script permissions": [

"sensitivity level":[low],
"same origin request":[false]

],
...

With this configuration,Auto-translate can in-
ject content scripts to read the texts, but it is only al-
lowed to communicate with theGoogle Translate
service. Our experiments with a number of websites show
thatAuto-translate performs translation without any
problem. Note that under our configuration, even when
Auto-translate contains malicious code or is compro-
mised, its attack capability is still limited because it can
only send sensitive information collected from the web-
pages it has accessed togoogle.com .

7.2 Bot Attack Mitigations

After compatibility study, we further test whether our
prototype can defend against attacks we have shown before.
For this purpose, we useBang! to test the botnet attacks
we have shown in Section 3.

In our modified Chrome browser, we assign the follow-
ing permissions toBang! .

"extension core permissions": [
"inject script":[

"http:// * / * ", "https:// * / * "
],

"cross site":[
"tabs"

],
],

"content script permissions": [
"sensitivity level":[low]
"same origin request":[false]

],

With the above specification, we repeat attacks on the
security-enhanced Chrome with Proctor and Table 5 shows
the results.

In the password sniffing attack, Figure 4 also shows the
situation when the web page of citibank is loaded, before
and after theProctor extension is installed. IfProctor
is installed on our modified Chrome browser, it marks the
password input asHigh level sensitivity andusername
asMedium level sensitivity. When the malicious extension
attempts to read the password, Chrome can detect that the
extension only has aLow sensitivity privilege and thus re-
turns a fake string ”******” instead of the real password.

8 Related Work

Browser extensions have gained great popularity with
add-on functions to enrich user browsing experience. How-
ever, due to insufficient security protection in the design
and implementation of existing browsers, browser exten-
sions today also pose significant threats to Internet users.
Many extension vulnerabilities have been found and attacks
have been reported in Firefox [27]. For untrusted browser
extensions, some flow-tracking techniques have been devel-
oped to monitor their behaviors [21]. The extension and
browser interactions have also been used for better protec-
tion [25, 26].

With increasing attacks by exploiting and compromising
web browsers, lots of efforts have been made to re-define
the browser architecture to enhance its security. These ap-
proaches include the OP browser [22], Gazelle [30], and
IBOS [28]. All these browsers use a multi-process archi-
tecture to isolate different components of a browser, based
on different isolation principles and granularity. However,
these new architectures do not consider the threats from ma-
licious browser extensions.

The Chrome browser [19] leverages a multi-component
extension development to enforce the least privilege and
privilege separation principles [18]. The strong isolation by

Table 5. Re-Evaluation of Bot Attacks
attack result reason

spamming ✗ unauthorized cross-site requests are completely blocked
DDoS ✗ unauthorized cross-site requests are completely blocked
password sniffing ✗ Proctor forbids sensitive information access
cross-site forgery ✗ content scripts are not allowed to make same origin request
unlimited cross-site requests ✗ content scripts cannot change thesrc property
by content scripts of DOM elements to unauthorized origins

running different components in isolated processes provides
privilege separation. Chrome, however, does not consider
threats from malicious extensions, and therefore unneces-
sarily gives extra permissions to the extension core and the
content script by default.

Mozilla Firefox [6] has a sandbox mechanism to provide
indirect accesses through a wrapper to the DOM of a web
page, and Mozilla runs an online extension gallery to rec-
ommend extensions that have been subjected to a review
process using this sandbox technique. However, the sand-
box mechanism relies on the discretionary compliance of
web application developers [12]. In addition, recommended
extensions are unfortunately still in the minority, in con-
trast to the large number of installed add-ons in Firefox [9].
Clearly, many developers do not submit Firefox extensions
for reviewing.

JetPack [10] is a Firefox extension SDK. From the se-
curity perspective, it aims to reduce interaction interfaces
between extensions and browser resources and functionali-
ties. However, the current implementation of Jetpack tech-
nology is fully-privileged. That is, an extension developed
with JetPack runs with the user’s full privileges and has ac-
cess to the complete Firefox extension API.

Ter-Louw et al. [29] were the first to address the secu-
rity of JavaScript based extensions. However, as discussed
before, their work was based on monitoring XPCOM calls;
being coarse-grained, their approach leads to both false pos-
itives and negatives, and incurs a performance overhead of
19% for a particular policy. On the other hand, to prevent
extensions from accessing sensitive information, SABRE
keeps track of tainted JavaScript objects [20] and can deal
with both exploited and malicious extensions. However,
such an approach slows down all Javascript executions in
the browser.

Besides aforementioned techniques with runtime per-
mission restriction and containment, static analysis has also
been proposed. Aiming to reduce human efforts in ex-
tension reviewing, VEX uses information-flow analysis on
JavaScript code to identify potential security vulnerabilities
in browser extensions [17]. Similar to Chrome, VEX does
not detect malicious extensions. A Datalog-based policy
language is recently proposed to specify and verify access

control and data flow properties for browser extensions [23].
Targeting for extensions on variant browsers, this approach
can specify very flexible and fine-grained security policies
with DOM elements and other browser objects, and pro-
vides static analysis capability for extension developersand
end users. As offline analysis tools, we believe these are
complementary to real-time protection mechanisms such as
the one proposed in this paper.

9 Conclusion

Recent years malware developers have increasingly ex-
ploited browser extensions for various attacks. In this
study, we have conducted an experiment-based study on
the security of the extension support in Google Chrome
browsers. We have shown that under the existing secu-
rity model for extensions in Chrome, it is not difficult to
launch large-scale bot attacks. Through in-depth analysis,
we find the problems are rooted from the coarse-grained
privilege management for the extension components and
undifferentiated access permissions for DOM elements in
web pages. Accordingly, we propose new policies to en-
force micro-privilege management and differentiate DOM
elements, both of which have been implemented in our pro-
totype. In particular, considering the compatibility with
existing web applications, we develop an extension to au-
tomate the sensitivity assignment for different DOM ele-
ments. Our experiments show our design can effectively
mitigate the security threats without affecting users’ brows-
ing experience.

Acknowledgment

We thank the anonymous referees for providing con-
structive comments. The work has been supported in part by
U.S. AFOSR under grant FA9550-09-1-0071, and by U.S.
National Science Foundation under grants CNS-0746649
and CNS-1117300 .

References

[1] Adblock, https://chrome.
google.com/extensions/detail/
gighmmpiobklfepjocnamgkkbiglidom?hl=
en-US .

[2] Auto translate, https://chrome.
google.com/extensions/detail/
obgoiaeapddkeekbocomnjlckbbfapmk .

[3] Browser statistics, http://www.w3schools.com/
browsers/browsers stats.asp .

[4] Chesapeake irb,http://chesapeakeirb.com/ .
[5] Chromium blog: Security improvements and registration

updates for google chrome extensions gallery,http://
codeonfire.cthru.biz/?p=96 .

[6] Firefox web browser, http://www.mozilla.com/
en-US/firefox/firefox.html .

[7] Google giving amazon top links in search re-
sults? no!, http://www.seroundtable.com/
google-amazon-treatment-13881.html .

[8] Health information privacy, http://www.hhs.gov/
ocr/privacy/ .

[9] How many firefox users customized their browser?
http://blog.mozilla.com/metrics/2009/08/11/how-many-
firefox-users-customize-their-browser.

[10] Jetpack, https://jetpack.mozillalabs.com/
sdk/0.1/docs/#guide/security-roadmap .

[11] Most spam comes from just six botnets,http:
//en.wikipedia.org/wiki/Usage share
of web browsers .

[12] Mozilla sandbox review system,https://addons.
mozilla.org/en-US/firefox/pages/sandbox .

[13] Same origin policy. http://en.wikipedia.org/
wiki/Same origin policy .

[14] Smooth gestures spyware,http://codeonfire.
cthru.biz/?p=96 .

[15] Sun software product map,http://www.oracle.com/
us/sun/sun-products-map-075562.html .

[16] Trojan poses as fake google chrome extension.
http://www.bitdefender.com/NW1487-en–Trojan-Poses-as-
Fake-Google-Chrome-Extension.html.

[17] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett.
Vex: Vetting browser extensions for security vulnerabilities.
In Proc. of USENIX Security Symposium, 2010.

[18] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecing
browsers from extension vulnerabilities. InProc. of NDSS,
2010.

[19] A. Barth, C. Jackson, C. Reis, and T. G. C.
Team. The security architecture of the chromium
browser. In Stanford Technical Report,http:
//seclab.stanford.edu/websec/chromium/
chromium-security-architecture.pdf, 2008.

[20] M. Dhawan and V. Ganapathy. Analyzing information flow
in javascript-based browser extensions. InProc. of Annual
Computer Security Applications Conference, 2009.

[21] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dy-
namic spyware analysis. InProceedings of the 16th USENIX
Security Symposium, June 2007.

[22] C. Grier, S. Tang, and S. King. Secure web browsing with
the op web browser. InProceedings of the 2008 IEEE Sym-
posium on Security and Privacy, 2008.

[23] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Veri-
fied security for browser extensions. InProc. of IEEE Sym-
posium on Security and Privacy, 2011.

[24] A. Hackworth. Spyware. us-cert publication, 2005.
[25] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer.

Behavior-based spyware detection. InProceedings of 15th
USENIX Security Symposium, August 2006.

[26] Z. Li, X. Wang, and J. Choi. Spyshield: Preserving privacy
from spy add-ons. InProceedings of the 10th International
Symposium, RAID, 2007.

[27] R. S. Liverani and N. Freeman. Abusing firefox exten-
sions. In Defcon 17, https://www.defcon.org/
images/defcon-17/dc-17-presentations/
defcon-17-roberto liverani-nick
freeman-abusing firefox.pdf, 2009.

[28] S. Tang, H. Mai, and S. T. King. Trust and protection in the
illinois browser operating system. InProc. of the 2010 Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2010.

[29] M. Ter-Louw, J. S. Lim, and V. N. Venkatakrishnan. En-
hancing web browser security against malware extensions.
Journal of Computer Virology, (3), 2008.

[30] H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudhury,
and H. Venter. The multi-principal os construction of the
gazelle web browser. InProceedings of the 18th USENIX
Security Symposium, August 2009.

