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Abstract—The numerous malware variants existing in the
cyberspace have posed severe threats to its security. Supervised
learning techniques have been applied to automate the process of
classifying malware variants. Supervised learning, however, suffers
in situations where we have only scarce labeled malware samples.
In this work, we propose a transductive malware classification
framework, which propagates label information from labeled
instances to unlabeled ones. We improve the existing Harmonic
function approach based on the maximum confidence principle.
We apply this framework on the structural information collected
from malware programs, and propose a PageRank-like algorithm
to evaluate the distance between two malware programs. We
evaluate the performance of our method against the standard
Harmonic function method as well as two popular supervised
learning techniques. Experimental results suggest that our method
outperforms these existing approaches in classifying malware
variants when only a small number of labeled samples are
available.

I. INTRODUCTION
The numerous malware variants existing in the cyberspace

have posed severe threats to its security. The Internet Security
Report by Symantec revealed that it blocked 5.5 billion malware
in 2011, an 81% increase over 2010, and discovered 403 million
new malware variants, a 41% increase over 2010 [1]. In contrast
to the large number of malware variants, however, is that the
majority of them originated from only a handful of malware
lineages. It is found, for instance, that as few as 25 families
accounted for more than 75% of malware variants, according
to the 2006 Microsoft Security Intelligence report [2].

For purposes of studying common characteristics of mal-
ware variants in the same family, as well as predicting trends
of their evolution, it is urgent to develop methods that can
automatically classify a large number of malware variants into
their corresponding families. Automated malware classification
requires techniques that are more accurate than the error-prone
signature-based approach, which is commonly deployed by
existing AV (Anti-Virus) software, and more scalable than
manual reverse engineering by malware experts. Naturally,
supervised learning has been suggested for the task of au-
tomated malware classification [3], as in essence, supervised
learning is using a set of labeled samples to train a model
(or a classifier in parlance of machine learning), which is
further relied on to predict the classes of new unobserved data
automatically. Hence, supervised learning allows us to leverage
malware experts’ knowledge about existing malware instances
and foretell which family a new malware variant belongs to,
based on how similar it is to those labeled ones in a predefined
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Fig. 1: (a) A motivating example that shows malware classification
with limited training samples. Malware are from two families. Two
labeled malware are marked as red and blue squares. The other
unlabeled malware are shown as open circles. The ideal boundary
(red line) indicates an ideal classification boundary between the two
families, and the real boundary (blue line) is the one obtained from
a supervised learning method. (b) Selection of discriminative data in
balanced class expansion. Unlabeled malware: a, b, c, d.

feature space.
Applying supervised learning for malware classification

requires sufficient labeled malware samples to obtain an ac-
curate estimate of the boundaries that divide different mal-
ware families. In practice, however, we are often faced with
situations where labeled malware samples are scarce. This is
because identification of malware lineages, a task often done by
malware experts who reverse engineer malware executables or
observe malware behaviors in a controlled environment, is time
consuming and also demands advanced domain knowledge in
malware analysis.

Against the backdrop that performance of supervised learn-
ing deteriorates when only scarce labeled malware samples are
available, we introduce a new paradigm, transductive malware
classification, to infer family information of malware variants
under such circumstances. Transductive malware classification
is built on the concept of transductive learning, originally
introduced by Vapnik [4] to contrast with inductive learning
which infers general rules (e.g., discriminative models) from
observed training cases, which has close relations with manifold
learning. Transductive malware classification is only aimed at
propagating label information from observed labeled malware
instances to observed unlabeled ones based on clustering struc-
tures formed by both labeled and unlabeled samples, instead
of solving a more general problem (as done by supervised
learning), which is to find a good model capable of predicting
label information of unseen test instances. Transductive mal-
ware classification is particularly suitable for situations where
we own only a small number of labeled malware samples but
want to classify a large set of unlabeled instances already
available. To our best knowledge, this is the first work that978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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applies transductive learning to classify malware variants into
their corresponding families. Even so, we still manage to
improve the performance of a standard transductive learning
technique, the Harmonic Function’s approach for the purpose
of automated malware classification. The crux of this work is
more about a new paradigm for malware classification, rather
than a comparison of different transductive learning techniques.

We summarize the contributions of this work. (1) We
present a general transductive malware classification frame-
work, and propose an improved label propagation algorithm
based on the maximum consistency principle to infer malware
families of unlabeled malware instances from known samples.
(2) To apply transductive malware classification on structural
information inherent in malware programs, we compute pair-
wise malware distances using a PageRank-like algorithm [5]
on function call graphs of malware programs. (3) We perform
extensive experiments and demonstrate the performance of our
proposed transductive malware classification framework against
two widely used supervised learning methods as well as the
original Harmonic function approach.

II. PROBLEM STATEMENT AND MOTIVATION
Suppose we have (n = n�+nu) malware instances in X =

{xi}n�+nu

i=1 , where the first n� are labeled and the remaining
ones are not. The labeled malware instance xi belongs to family
yi where 1 ≤ i ≤ n� and yi ∈ {1, 2, ...,K}. In practice, we
have nl � nu. Our goal is to learn the class labels of unlabeled
malware instances in X, i.e., {yi}ni=n�+1. Let Y ∈ �n×K be a
class indicator matrix, Yij = 1 if xi is labeled as class yi = j;
and Yij = 0 otherwise. 1

The conventional wisdom is to apply supervised learn-
ing techniques to train a model based on training instances
in {xi}n�

i=1 and their corresponding label information. This
approach, however, suffers significantly when only a limited
number of labeled malware samples are available. This is
because without sufficient training data, the classifiers learned
from them cannot predict the boundaries among instances in
different malware families accurately. This is manifested in the
example illustrated in Figure 1a.

Suppose there is only one labeled malware in each family.
A supervised learning method can be easily misled to produce
an incorrect decision boundary (blue line in Fig. 1a) far away
from the ideal one (red line in Fig. 1a). The reason is that the
limited labeled malware available can not capture the structure
of all malware data. In contrast, using label propagation, we
can spread the label information from the two labeled instances
to those belonging to their respective clusters. In this way,
although no model or classifier is explicitly trained from the
labeled malware samples, we can still classify other unlabeled
instances correctly.

In another case, although several (or more) labeled samples
are known from each family, if these labeled malware are close
in distance (e.g., those malware samples inside the red and
blue circles shown in Fig. 1a), the decision boundary can be
still misled (shown as the purple dashed line in Fig. 1a). This
is because the labeled samples are densely concentrated in a
small region and their distribution is thus far different from
that of the entire malware dataset. For supervised learning to

1In this paper, scalars are denoted by lower-case letters (n, i, · · · ),
vectors in bolded lower-case letters (e,u, · · · ), and matrices in bolded
upper-case letters (X,Y,W, · · · ).

function correctly, we expect that the structure formed by those
unlabeled test samples be similar to that by the labeled instances
from which we train a discriminative model.

Note for the problem stated above, training a classifier able
to classify unseen malware samples outside X is unnecessary.
Instead, we can rely on the clustering structure (formed by
both labeled and unlabeled data) to propagate label information
from labeled instances to unlabeled ones. It is this intuition
that drives us to develop a transductive malware classification
framework.

III. TRANSDUCTIVE MALWARE CLASSIFICATION
Our transductive malware classification framework works

on any pairwise malware similarity matrix W in which each
element measures the similarity between two malware instances
in the data sample space, regardless of being labeled or not.
The similarity of two malware programs can be evaluated on
a number of factors, such as their PE header information, n-
gram byte sequences, disassembly code, and dynamic execution
traces. In the next section, we shall apply the transductive
malware classification framework on the structural information
of malware programs. Here, we introduce the rationale behind
a generic framework that works on any pairwise malware sim-
ilarity W. Our transductive malware classification framework
uses a label propagation algorithm that improves the existing
Harmonic function approach [6].

A. Review on Harmonic function approach
The Harmonic function approach [6] views both labeled

and unlabeled samples as vertices in a weighted graph, with
edge weights (W) encoding the similarities between differ-
ent samples. Label information is propagated from labeled
samples to unlabeled ones using the harmonic function. Let

W =

(
Wll Wlu

Wul Wuu

)
, where Wll ∈ �nl×nl represents the

similarity among nl labeled data, Wlu ∈ �nl×nu the similarity
between nl labeled data and nu unlabeled data, Wul ∈ �nu×nl

the similarity between nu unlabeled data with nl labeled data,
and Wuu ∈ �nu×nu the similarity among nu unlabeled data.
Let D = diag(di) be the node degree diagonal matrix with
entries di =

∑n

j=1 Wij , and F = [Fl;Fu] ∈ �n×K be the
class indicator, where Fl ∈ �nl×K is the class indicator for
the first nl labeled data and Fu ∈ �nu×K is the predicted
class indicator for those nu unlabeled instances. Our goal is to
predict the class indicator Fu for the nu unlabeled instances,
which is given by

Fu = QulFl, Qul = (Duu −Wuu)
−1

Wul; (1)

where Duu ∈ �nu×nu is the node degree diagonal matrix for
the nu unlabeled instances in diagonal matrix D, and Q is label
propagation operator. Then for each unlabeled malware xi is
assigned a class label according to k = argmax

1≤j≤c

(Fu)ij .

B. Problems of standard harmonic function algorithm
Note that in Eq. (1), given the similarity matrix for all n

malware and label information of Fl for nl labeled malware,
we can label nu unlabeled malware through Fu in one shot.
However, some unlabeled malware may lie near labeled mal-
ware in the data manifold while others lie far away from the
labeled data. Therefore, the confidence we have about the class
labels obtained from the Harmonic function approach may vary
significantly across different data points.
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Consider two unlabeled malware instances xi and xj , whose
score distributions are given by

[(Fu)i1, · · · , (Fu)ic] = [0.1, 0.04, 0.8, 0.3],

[(Fu)j1, · · · , (Fu)jc] = [0.2, 0.35, 0.48, 0.40]. (2)

Although both malware xi,xj are assigned to family 3 (be-
cause family 3 obtains the largest confidence value 0.8 or 0.48),
the confidence levels of two label assignments are different: we
have high confidence in assigning malware xi to family 3 as
(Fu)i3 = 0.8 is much higher than those of the other families,
but low confidence in assignment of xj because (Fu)j3 = 0.48
is only marginally higher than (Fu)j4 = 0.40. In other words,
for xi the propagation score distribution has a sharp distribution
while for xj the propagation score distribution is relatively flat.

C. Maximum confidence harmonic function algorithm
Motivated by this observation, we break the actual label

assignment process into a number of iterations. Under the
aforementioned circumstance, we assign class label for xi and
move it to a pool of already-labeled malware, while deferring
the decision for xj in later rounds. As the pool of already-
labeled data expands to the neighborhood of xj , the propagation
score distribution for xj is likely to become sharper and we thus
have a higher confidence in assigning a label to xj .

Therefore, our algorithm, which is guided by the maximum
confidence principle, consists of multiple label propagation
steps, and at step t:

Fu
t = Q

t−1
ul Fl

t−1
, (3)

where for t = 1, 2, ..., Fl
t ∈ �nl×K is the label assign-

ment matrix using the current available labeled data during
propagation step t, and Qt

ul is the label propagation computed
according to Eq. (1) using the current labeled and unlabeled
malware. In each label propagation step, we use the current
labeled data matrix Fl

t to update the label prediction matrix
Fu

t. At the end of each propagation step, only those unlabeled
data points whose class labels are confidently predicted are
actually assigned class labels and moved into the pool of labeled
data (Lpool). The rest of unlabeled data points remain in the
pool of unlabeled data (Upool). The process repeats itself until
all malware instances are assigned with class labels.

Due to class imbalance concern, the pool of labeled malware
(Lpool) should have approximately the same number of new
members for each malware family. Hence, our algorithm allows
each malware family to add one new member after each
propagation step. We call this balanced class expansion (BCE).
One critical issue in a BCE step is how to select the malware
with the maximum confidence for each class. To address this
issue, consider an example illustrated in Fig. 1b. Ideally, we
want to add malware a instead of malware b to family 1,
because a is far away from both families 2 and 3, and although
b is closer to family class 1 as compared to a, it is also close
to family 2 and 3. Similarly, it is preferable to add malware c
rather than d to family 3.

Motivated by the above observation, we introduce the dis-
criminative score computation for choosing malware with max-
imum confidences. For each unlabeled malware xi, we compute
the confidence scores according to Eq. (3) and then sort them
in non-increasing order:(Fu)ik1

≥ (Fu)ik2
≥ (Fu)ik3

≥ ....
We consider the three classes with the highest scores, k1,

k2, and k3, and assign the malware to one of them. The

discriminative score of class kj (where j = 1, 2, 3) is

E(i, ckj
) = (Fu)

2
ickj

∑3
h=1 |(Fu)ickj

− (Fu)ickh

|
√

(Fu)ick1
+ (Fu)ick2

+ (Fu)ick3

. (4)

The denominator provides a mild scale normalization. Without
this term, the class with the largest (Fu)ikj

score may dominate
the score computation process. It is a heuristic approach, and
from the experiments we observe that using the highest three
classes tends to lead to good results. Note that these scores
are computed once for each BCE step. For each unlabeled data
point xi in Upool, it is assigned to class k, which has the
largest (Fu)ik scores among all classes. For each family k,
we select the malware xi, which has the largest discriminative
score E(xi, ck) among all malware in Upool assigned to
family k.

If the initial distribution is unbalanced, we try to balance
the number of labelled malware samples in different families
until no more samples can be added to a family. To take
into consideration the prior distribution for different malware
families, we multiply the score tuple of a malware family (i.e.,
F in Eq. (2)) with the reciprocal of the number of samples in
this malware family so that the contribution from each family
is approximately the same.

D. Detailed Algorithm
The details of the algorithm are presented in Algorithm 1.

The performance of our algorithm depends on the number of
iterations executed, which can be controlled by how many
instances are added to each malware group in an iteration. The
execution time of each iteration is dominated by the inversion
of the similarity matrix. We admit that our algorithm takes
more time than the original Harmonic function’s approach, as
in the latter, only one iteration and thus one matrix inversion
are required. Our algorithm also takes more time than kNN,
which uses only O(n2) time. For SVM, a significant amount
of time is spent on training the classifier as it requires to solve
a convex optimization problem; once the classifier is trained,
the time spent on classifying test data depends on both the size
of the support vector and the amount of unlabelled input data.
The improved classification accuracy, however, offsets the extra
execution time incurred to our algorithm as we shall see later.

IV. TRANSDUCTIVE CLASSIFICATION ON STRUCTURAL
INFORMATION OF MALWARE

In this section, we discuss how to prepare the similarity
matrix W for the transductive malware classification framework
based on the structural information extracted from malware
programs. We use an attributed function call graph (FCG) to
represent the structural information contained in a malware
program, as described next.

A. Construction of Attributed FCG
The FCG captures the calling relationship of an executable

program, and in an FCG each vertex represents a local function.
For each local function, we first translate it into an intermediate
language and then extract six types of attributes from it.
They include opcode (the frequency of appearances for each
opcode), API (the number of times each library API function is
called), memory (the number of memory reading and writing
operations made in this function), IO (the number of I/O
reading and writing operations), Register (the number of
reading and writing operations on each register), and Flag
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Algorithm 1 Maximum confidence label propagation
Input: labeled data L = {(xi, yi)}

�
i=1, unlabeled data U = {xj}

�+u
j=�+1, T

Output: predicted class labels for unlabeled malware
Procedure:
1: t = 0
2: while t < T & U is not empty do
3: Compute current label malware indicator Fl

t with labeled malware L

4: Compute label propagation operator Qt
ul with Eq. (1) using current labeled

malware L and unlabeled malware U

5: Compute the label indicator for all unlabeled malware Fu
t+1 with Eq. (1)

6: for each unlabeled data do
7: Compute its corresponding discriminative score using Eq. (4)
8: end for
9: for k = 1 to K do

10: Search all unlabeled data whose 1st choice target class is k {Balanced class
expansion}

11: if the above search result is not empty then
12: Pick the one with the largest discriminative score, add it to class k, remove

it from U

13: end if
14: end for
15: Update labeled and unlabeled malware pools L and U . {new labeled data added

to Lpool}
16: t = t + 1
17: end while

start

sub40c245

sub40c22c

sub40c278

Opcode: [pusha:1, call:6, add:1, mov: 2, lea:1,

pop:2,sub:1]

API: [GetprocAddress:1]

Memory: [1,4]

IO: [0,0]

Flag: [3,3,3,3,3,3,0,0,0,0]

Register: [1,1,0,0,0,0,1,1,1,1,1,1,11,11,3,3]

start

sub40a1e1sub40a11d

sub40a1f5

sub40a1e1

Opcode: [pusha:1, call:1, add: 2, mov:12, lea:2, pop:7,

sub:2, cld:2, pop:7, push:9, nop:4, lodsd: 1, jz:1]

API: [WriteFile:1,LoadLibrary:1]

Memory: [6,7]

IO: [0,0]

Flag: [10,8,9,9,9,4,0,0,0,0]

Register: [11,6,3,2,5,4,6,5,7,7,9,8,52,51,31,27]

Opcode: [ ],

API:[ ],

Memory: [ ],

IO: [ ],

Flag:[ ],

Register: [...]

Fig. 2: Attributed FCGs of two malware samples. Each node repre-
sents a local function of disassembly code, where an edge represents
the function call from one local function to another local function.
Different attributes (such as API, register, memory information, etc)
are collected over each function.

(the number of changes on each flag). For each attribute type,
we represent it as a feature vector associated with the local
function.

It is noted that a local function can further break down as a
control flow graph, in which each vertex represents a basic
block. For computational overhead concern, after extracting
feature vectors for each basic block, we aggregate information
of each attribute type by summing feature values over all basic
blocks for each element in a feature vector. In this way, we
do not need branch prediction, which is error-prone due to its
heuristic nature.

B. Malware distance computation
Given the attributed FCGs of two malware programs, we

now calculate their distance in terms of each attribute type as
follows.

Step 1: Pairwise function distance computation First,
we simply use the Euclidean distance to evaluate the dis-
tance between two nodes (i.e., local functions). Take Fig. 2
as an example. Let the flag attribute collected over the
function node sub40c245 in the first malware sample be
a = [2, 1, 2, 2, 2, 2, 0, 0, 0, 0], and the flag attribute col-
lected over the node sub40a11d in the second one be
b = [1, 3, 1, 0, 1, 2, 0, 1, 1, 0]. Then the distance between n-
odes sub40c245 and sub40a11d w.r.t. flag attribute is√∑10

i=1(ai − bi)2 =
√
13.

Intuitively, the distance between two local functions is
affected by not only how similar their feature vectors are
but also whether the functions they call are also similar to
each other. For example, in Fig. 2, the distance between
sub40c245 in G1 and sub40a11d in G2, is not only
determined by their node distance, but also reflected by
the distance between pairs (sub40c278,sub40a1f5)and
(sub40c278,sub40a1e1),which are called by nodes
sub40c245 and sub40a11d,respectively.

Motivated by this observation, we update pairwise distances
among local functions of the attributed FCGs of two malware
programs using a PageRank-like algorithm. Let A(x) denote
the set of outgoing neighbors of node x. That is to say, for any
local function x, A(x) includes all the other functions called
inside x. We also use vector Lin ∈ �n to include the in-degrees
of all the nodes: if there are k edges coming into node x , then
Lin
x = k.

Consider any attribute type. Let D0(Gi,Gj) ∈ �|Vi|×|Vj |

denote the initial pairwise function distance matrix which in-
cludes only the Euclidean distances between the corresponding
feature vectors of the function nodes in the attributed FCGs of
malware i and j. For example, for Fig. 2, the initial distance
matrix D0(Gi,Gj) is:

D0 =

⎛
⎜⎜⎜⎝

start1
40c22c
40c245
40c278

0.65 1 2.3 7 0.4
0.85 0.58 3.3 1.2 0.5
0.9 3.2 0.3 2.3 0.98
3.1 2.1 2.3 1.9 3.8

start2 40a11d 40a1e1 40a1f5 40a1e1

⎞
⎟⎟⎟⎠ ,

where D0(start1, start2) = 0.65 represents the initial func-
tion distance between function node start_1 in Gi and
function node start_2 in Gj . Let Fm

i be node m in the
attributed FCG of malware i, and Fn

j be node n in the attributed
FCG of malware j. Given all these notations, we update the
pairwise function distance matrix: D(Fm

i , Fn
j ) as follows,

D(F
m
i , F

n
j ) = (1 − α)D0(F

m
i , F

m
j ) + α

∑

n′∈W (n),
m′∈W (m)

D(Fm
i , Fn

j )

|Lin(m′)||Lin(n′)|
, (5)

where α is a parameter that balances the effects of the
Euclidean distances between feature vectors and the distances
due to function calls (i.e., edges). Empirically, we set α = 0.10.
For the example shown in Fig. 2, let c= sub40c245, C
= sub40a11d, d = sub40c278,D = sub40a1f5,E =
sub40a1e1,then D(c, C) = (1−α)D0(c, C)+α[D(d,E)+
D(e, E)], because Lin(e) = Lin(d) = Lin(E) = 1. The
convergence of the above algorithm can be similarly proved
as that of PageRank.

Step 2: Malware distance computation We first initialize
the distance between Gi and Gj , i.e., d(Gi,Gj), to be 0. Given
the pairwise function distance matrix D(Gi,Gj), we identify
the pair of function nodes with the smallest distance, i.e., find
(m′, n′) = argmin(m′,n′) D(Fm

i , Fn
j ). We then update mal-

ware distance d(Gi,Gj) = d(Gi,Gj)+D(Fm′

i , Fn′

j ), and set the
node distance D(Fm′

i , Fn′

j ) to infinity in the pairwise function
distance matrix. Hence, no node pairs which involve m′ or
n′ will be considered again. Again, in the remaining pairwise
node, we select the pair (m′′, n′′) (m′′ �= m′, n′′ �= n′) with
the smallest distance in the pairwise function distance matrix,
D(Fi, Fj), update malware distance d(Gi,Gj) = d(Gi,Gj) +
D(Fm′′

i , Fn′′

j ), and set D(Gm′′

i ,Gn′′

j ) to infinity. This process
is repeated until no node pairs can be selected from D(Fi, Fj).
As the attributed FCGs Gi and Gj may have different numbers
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of function nodes, there may be nodes that are left unmatched.
Let V i and V j be the set of nodes in Gi and Gj , respectively.
Assuming that |V i| > |V j |, some nodes in Gi are not matched
against any node in Gj . In this case, we match these unmatched
nodes against virtual nodes in Gj , whose attributes are all set
to 0, which means no functionality. Then the corresponding
distance is added to d(Gi,Gj). Finally, we return the value of
d(Gi,Gj)
|V i||V j | as the distance between malware Gi and Gj . Note here
the normalized term |V i||V j | is used as the dominator to reduce
the effect of the numbers of function nodes in the two attributed
FCGs.

Step 3: Pairwise malware similarity computation Once
we have computed the distances between all pairs of malware
programs, we construct a pairwise malware similarity matrix
W ∈ �n×n (suppose we have n malware) using a standard
Gaussian kernel. This is to say, the similarity between malware
Gi and Gj is defined as

Wij = exp
−γ

D(Gi,Gj)
2

t2 , (6)

where γ is a parameter, and t is the average distance of the
k-nearest neighbors for each malware, and D(Gi,Gj) is the
distance between malware Gi and Gj . This pairwise malware
similarity is computed for each attribute type.

V. EXPERIMENTAL RESULTS
Malware dataset. In this work, we use a malware dataset

from Offensive Computing [7], which contains 526,179 u-
nique malware variants collected in the wild. We upload all
our malware variants to the VirusTotal website [8], and get
the classification results from 43 Anti-Virus software. As the
malware dataset contains both packed and unpacked instances,
in our evaluation, we only use unpacked malware, which we
disassemble using IDA pro [9]. The reason we ignore packed
malware instances is that the information we collect from them
reflects only the functionality of their unpacking procedures
rather than that of the malware programs themselves.

To validate the effectiveness of our approach, we need a
malware dataset with known families. As reverse engineering
each malware variant to figure out its lineage is a daunting
task, we use the majority agreement results from five Anti-
Virus Software (i.e., McAfee, NOD32, Kaspersky, Microsoft,
and Symantec): if more than 3 of them classify a malware
into the same family, we label this malware as a variant in
this family. In this way, we identify instances from 12 families
(Bagle, Bifrose, Ldpinch, Swizzor, Zbot, Hupigon,
Koobface, Lmir, Rbot, Rbot, Sdbot, Vundo, and Zlob).
These malware include worms, backdoor trojans, and also
multi-component malware, which have diverse functionalities,
such as stealing user data, connecting to remote IPs, establish-
ing IRC communication, etc.

A. How biased is the dataset?
Before presenting the experimental results using our

method, we first show the basic characteristics of those malware
instances from the 12 families. Since we use majority agree-
ment results from five Anti-Virus Software, a natural question
is: how biased is the dataset? As sharply observed in [10],
utilizing the concurrence of multiple anti-virus tools to produce
ground-truth data may bias the dataset towards containing easy-
to-cluster instances.

To answer this question, for each of the 12 malware fami-
lies, we randomly select 100 instances, and we thus have 1200

TABLE I: Average F1 measures using different methods over a range
(i.e., [5%, 10%, ···, 40%]) of labeled malware samples under localized
selection. The similarity matrix in Eq. (6) is constructed when k =
12, γ = 1.3. The numbers are shown in percentages.

Classifier
Attribute-type

opcode memory register io flag api
Har 51.24 50.19 59.07 46.85 40.53 54.56
kNN 44.04 40.09 47.99 37.46 31.02 39.12
SVM 45.36 41.67 45.30 36.62 30.76 44.26
M-Har 55.26 52.82 67.27 48.52 43.79 55.25

TABLE II: Average F1 measures using different methods over a range
(i.e., [5%, 10%, · · ·, 40%]) of labeled malware samples under random
selection. The similarity matrix in Eq. (6) is constructed when k =
12, γ = 1.3. The numbers are shown in percentages.

Classifier
Attribute-type

opcode memory register io flag api
Har 52.75 51.94 59.52 47.75 41.72 56.83
kNN 47.54 48.95 57.05 41.87 38.57 46.51
SVM 46.04 45.61 50.93 43.69 41.78 44.23
M-Har 57.09 54.94 66.90 49.80 44.80 58.60

malware instances. These 1200 malware are also used in the
following classification experiments. Following the methodolo-
gy introduced in Section IV, we compute the pariwise malware
similarity using Eq. (6), and then feed the computed similarity
to a state-of-the-art clustering algorithm, spectral clustering
algorithm [11]. As in most of previous works [12], we use
accuracy (ACC), normalized mutual information (NMI) and
purity (PUR) to evaluate clustering results. The higher these
values, the better the clustering results. Note it is actually
unsupervised learning, and thus we use different measurements
here from those when evaluating supervised or transductive
learning methods. As shown in Fig. 3a, the maximum clustering
accuracy is obtained by using register attribute. It is,
however, no more than 62.35%, suggesting that the malware
dataset is not clustered with high accuracy. One can get similar
conclusions by analyzing the normalized mutual information
or purity of clustering results. These statistics also indicate
using the register, opcode and API attributes gives better
clustering results than using the other attribute types.

B. Maximum confidence malware classification
Following the methodology introduced before, we compute

pairwise malware similarity using Eq. (6) for each type of
attributes, and then feed them into four different transductive
learning algorithms: proposed maximum confidence Harmonic
function (M-Har), standard Harmonic function (Har) [6], and
two standard supervised learning methods: k-nearest neighbor
(kNN), and support vector machine (SVM). As KNN and
SVM are two widely used supervised learning techniques, we
use only them for comparison. A key challenge facing any
supervised learning technique is that it requires a significant
number of labelled samples to train a good classifier. This does
not work well for malware classification, when only limited
labelled samples are available in practice. When weighted KNN
is used, the number of nearest neighbors k is consistently set to
be 12. Actually, we observe that varying k within a reasonable
range changes little the classification performance. For SVM,
we use the same kernel as the one used for Har and M-Har
Eq. (6). Given all these considerations, we ensure we are not
comparing apples and oranges.

We vary the fraction of labeled malware among 5%, 10%,
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Fig. 3: (a) Malware clustering results under different attribute types
(γ = 1.3, k = 12). (b) Confusion matrix using the maximum
confidence harmonic function approach, with 40% randomly labeled
malware on the register attribute. Similarity matrix in Eq. (6) is
constructed when k = 12, γ = 1.3.
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Fig. 4: Performance comparisons of classification methods with respect to
each attribute type (opcode, memory, register, io, flag, api) when we vary
the fraction of labeled data under the localized selection scheme. Compared
methods: Original Harmonic function (Har), k nearest neighbor (kNN), support
vector machine (SVM), and maximum confidence Harmonic function (M-Har).
Similarity matrix in Eq. (6) is constructed when k = 12, γ = 1.3.

15%, 20%, · · ·, and 40% for each malware family. We also use
cross validation to test the performances of different classifiers.
For example, if we only have 5% of malware instances as
labelled data, then we use the remaining 95% malware to test
the model. This process is iterated for 20 times, and we report
the averages of classification results. We consider two methods
for selecting labeled malware samples: (1) Random selection:
randomly select a certain percentage of labeled malware from
each malware family. The selection process is iterated for a
number of times according to the cross-validation rule. (2)
Localized selection: Select a certain percentage of malware
from each malware family, but they are always bounded in
a small local region (like malware samples shown in red and
blue circles in Fig. 1a). In our experiments, this is accomplished
as follows: first we randomly select one malware sample from
each family, and then select the one that is closest to any sample

that has already been selected. This process is iterated until the
desired percentage of labeled samples is achieved.

The performance of a classifier can be quantified with
precision, recall, and F1. Larger values of those metrics indicate
better classification results.

C. Experiments with different percentages of labeled malware
Fig. 4 and Fig. 5 compare the average F1 measures of

different classification methods over the 12 malware families
when we vary the fraction of labeled malware from 5% to 40%
under the localized selection and the random selection schemes,
respectively. For each classification method considered, the
general trend is that its classification performance improves
with the amount of labeled data available. This is plausible
because for supervised learning more labeled data mean more
data for training the classifiers to be built, and for transductive
learning, with more labeled data, the label propagation process
starts with more accurate label information. We summarize
these results in Tables I and II, and observe the following:

(1) When a single attribute type is used, the maximum con-
fidence harmonic function algorithm outperforms the original
Harmonic function approach, and is significantly better than the
two supervised learning methods. On average, the maximum
confidence Harmonic function algorithm outperforms the stan-
dard Harmonic function approach, kNN, and SVM by 3.41%,
13.86%, and 13.15% under the localized selection scheme,
respectively, and by 3.60%, 8.61%, and 9.97% under the
random selection scheme, respectively. The sharp performance
improvements of our method over the two standard supervised
learning techniques confirm our intuition stated in Section II.

(2) The discriminative power of an attribute type is strongly
correlated with its performance in clustering. For instance,
we observe from both tables that under our proposed method
(i.e., M-Har), using the register attribute type provides
the best classification accuracy and using the flag attribute
type leads to the worst classification performance. These are
consistent with their relative performances for clustering as
seen in Figure 3a. We are not sure which attribute would
possess the most discriminative power, given a fixed parameter
γ in different methods. There is no such dominant feature or
attribute over all γ values we studied.

(3) Comparing the classification performances under the
two different schemes of choosing initial labeled samples, we
find that the performances of transductive learning methods do
not change significantly. When we use the standard Harmonic
function approach and our proposed method, the average F1

measure improves under the random selection scheme by
merely 1.35% and 1.54% over that under the localized selection
scheme, respectively. For the two supervised learning methods,
however, uniformly choosing initial labeled samples leads to
better classification performance than the localized selection
scheme. The average F1 measure of kNN and SVM under the
random scheme improves by 6.81% and 4.72%, respectively,
over that under the localized selection scheme. These results
confirm our intuition from Figure 1a. Using the localized
selection scheme, the structure formed by selected labeled
samples does not preserve the clustering structures formed by
all malware samples, and it is thus difficult for a supervised
learning technique to find the correct boundaries that separate
different malware families. This contrasts with the random
selection scheme, which keeps the clustering structure inherent
in all malware samples among those selected labeled samples
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(if there are a sufficient number of labeled samples chosen).
It is noted that when scarce labeled data are available, we do

not expect that the classification performance is as good as that
we can typically observe from evaluation of supervised learning
techniques with a large amount of training data available. In
five-fold cross validation, for instance, we use 80% of the data
to train the classifier and only 20% of the data are used for
testing. Consider a naive classification method, which randomly
assigns a label from k classes to any malware instance. Suppose
that there are an equal amount of n samples in each class. Both
the expected recall and precision are 1/k. Hence, the average
F1 measure is also 1/k. In our case, k = 12 and the expected F1

measure under this trivial classification method is only 0.083.
This suggests that even when only scarce labeled malware
samples are available, using the maximum confidence harmonic
function algorithm leads to much more accurate classification
than the trivial random classification method.

D. Cross family analysis
We are also interested in investigating which malware

families are hard to classify, and whether there are some
families similar to each other. Fig. 3b shows the confusion
matrix obtained using the maximum confidence Harmonic func-
tion algorithm with 40% randomly labeled malware w.r.t. the
register attribute. A confusion matrix is a tabular layout in
which a column corresponds to a predicted class while a row a
real class of instances. The (i, j) element of a confusion matrix
shows the fraction of samples from class i are labeled as class
j. From a confusion matrix, we learn how each malware family
is correctly classified as itself from the diagonal elements of the
matrix, as well as how a malware family is incorrectly classified
to another family from an off-diagonal element.

From Figure 3b, we make the following observations.
First, some malware families are easy to distinguish, such as
Swizzor, Vundo, Koobface, etc. Second, some malware
families tend to be recognized as other ones. For instance,
malware instances in the Sdbot family are often mislabeled
as from Rbot. This is because the development of Rbot
was influenced by the source code of Sdbot published on the
Internet [13]. These observations agree well with the results
from our other studies on the same malware dataset.

E. Effects of parameter γ in Eq. (6)
The key parameters in Har and M-Har are the gamma

parameter in pairwise similarity computation of Eq.(6). To
understand the effects of parameter γ in Eq. (6) on the perfor-
mances of different classification methods, we perform another
set of experiments, in which we fix k = 12 to search for the
nearest neighbors and choose γ among [0.1, 0.4, 0.7, 1, 1.3, 1.6].
Fig. 6 shows the average F1 measures at different fractions of
initial labeled data (in [5%, 10%, · · ·, 40%]) against different
γ values using the localized selection scheme. We observe
that under different γ values, our proposed method not only
consistently outperforms the original Harmonic function ap-
proach, but also leads to better performances than the two
standard supervised learning techniques. These results further
confirm our observations made in Section V-C. We can draw
similar conclusions from the results under the random selection
scheme. Due to space limit, we omit them here.

VI. SOFT TRANSDUCTIVE MALWARE CLASSIFICATION
In previous sections, we have explored how to propagate

label information from labeled samples to unlabeled ones, and

this process terminates until all unlabeled samples are assigned
a label. We term this hard transductive malware classification,
as it requires all malware samples eventually to be labeled.
In practice, however, hard transductive malware classification,
as due to lack of labeled samples initially, some samples may
be difficult to classify with only label information of existing
labeled samples.

Motivated by this observation, we further adjust Algorith-
m 1 to provide a mechanism to balance the classification
accuracy and the fraction of malware labeled eventually. Recall
that in Algorithm 1, malware samples are moved from Upool
to Lpool when they are assigned label information. In the soft
version of transductive malware classification, we do so only if
the samples can be labeled with a confidence level higher than
a certain threshold. For malware i, we define the following:
Di =

|(Fu)ik1
−(Fu)ik2

|

(Fu)ik1

. where we recall that (Fu)ik1
and

(Fu)ik2
are the the highest two confidence scores of assigning

unlabeled malware sample i to the existing malware families.
Intuitively, Di provides a metric to evaluate the sharpness for
labeling malware i. The larger Di is, the more confident we
are in assigning the label of malware i. Hence, we use Di to
decide whether to label malware i: if Di < θ, where θ is a
predefined threshold, we will not add malware i to the Lpool.
The reason is the difference between assigning malware i to
class k1 and to class k2 is not significant to make a confident
decision.

Next we evaluate the effects of parameter θ on the accuracy
of malware classification as well as the fraction of malware
samples eventually labeled. In Fig. 7, with the 10% initially
labeled malware, we show both the fractions of malware in
the set of unlabeled 90% malware that are eventually la-
beled and the average F1 measures when we vary θ among
[0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] under the random selection s-
trategy. From the experimental results, we observe that as θ
becomes larger, few malware samples are labeled eventually,
but with higher accuracy on average. This agrees well with our
intuition. Hence, if in practice a high classification accuracy
is important, we can set θ to be a relatively high value. For
instance, when the register attribute is considered, setting
θ to be 0.6 enables us to label confidently 210 malware
samples from a set of malware samples with only 10% of them
originally labeled with the F1 measure as high as 91.25%.

VII. RELATED WORK
Supervised malware classification. Supervised classifica-

tion techniques have been widely used to classify an unknown
file as a malware or a benign file (e.g., [14], [15], [16], [17],
[18], [19], [20], [21], [22]), where a classifier is built using a
large amount of labeled training samples with labels indicating
whether they are malicious or not. In our work, instead of only
making decisions on whether a malware is malicious or not,
we aim at classifying malware into different families using
structural information collected from malware samples with
limited labeled malware. In contrast to these previous works
that rely on supervised learning techniques to classify mal-
ware variants, our work presents a new malware classification
paradigm that differs significantly from supervised malware
classification. Features extracted from both static analysis and
dynamic analysis are used for malware classification or mal-
ware detection, such as n-gram [23], function-call graph [24],
[25], PE-header [26], and system-call [27], run time behaviors
[28], [29], [30], etc. In our previous work, we compared the
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Fig. 5: Performance comparisons of classification methods with respect to
each attribute type (opcode, memory, register, io, flag, api) when we vary
the fraction of labeled data under the random selection scheme. Compared
methods: Original Harmonic function (Har), k nearest neighbor (kNN), support
vector machine (SVM), and maximum confidence Harmonic function (M-Har).
The similarity matrix in Eq. (6) is constructed when k = 12, γ = 1.3.

discriminative power of different types of malware features that
can be represented as vectors of numerical values [31]. In this
work, we extract malware features based on the FCGs obtained
through static analysis. However, our proposed transductive
classification can be used as a general framework for malware
label propagation, and the other types of features (e.g., system
call sequence) that have been considered in these previous
works can be easily incorporated into our transductive malware
classification framework.

Malware detection based on transductive learning. Little
attention has been paid to malware classification using semi-
supervised learning techniques except [32]. In [32], Santos
et al. proposed to use the standard LGC (Local and Global
Consistency) method [33] to detect unknown malware. The key
differences between our work and theirs are as follows. First,
our focus is not malware detection, which aims to distinguish
malware from benign programs. Rather, our goal is to classify
malware variants into their corresponding families. Second,
their work relies on the byte n-gram representation of an
executable program, which is amenable to existing classification
methods as features are represented as vectors of numerical val-
ues. Structural information of an executable program, however,
presents a new challenge in evaluating similarity among mal-
ware variants. To overcome this challenge, we have proposed
a PageRank-like algorithm to estimate malware distances. For
the purpose of transductive malware classification, we improve
an existing transductive learning technique, i.e., the Harmonic
function approach. Although comparison of its performance
against other existing transductive learning techniques such as
LGC [33] and Green’s function [34] is beyond the scope of
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Fig. 6: Performance comparisons of classification methods with respect to each
attribute type (opcode, memory, register, io, flag, api, and mixture) when we
vary the fraction of initial labeled samples among [5%, 10%, · · ·, 40%] under
the localized selection scheme. Compared methods: Original Harmonic function
(Har), k nearest neighbor (kNN), support vector machine (SVM), maximum
confidence Harmonic function (M-Har). The similarity matrix in Eq. (6) is
constructed under different γ values.

this work, our experimental results show that our proposed
method stands out as a viable approach to transductive malware
classification when only a small number of labeled samples are
available.

Malware clustering. In contrast to malware classification,
malware clustering applies to only those situations when no
label information is available. The goal of malware clustering
is to cluster different malware samples into different groups
according to the inherent similarities/distances among malware
instances. The malware clustering results can be further used
for malware signature generation and other malware analysis. A
large number of efforts have been dedicated to this direction,
such as [35], [21], [36], [37], [10], [38], etc. Although our
work has a different goal, which is to classify malware variants
into their corresponding families when a limited number of
labeled instances are available, the method we have proposed
to measure the distances among malware programs can also be
used for malware clustering.

VIII. CONCLUSIONS
Given the numerous malware variants on the Internet, it

is urgent for us to develop effective, yet efficient, methods to
classify them into their corresponding families. As supervised
learning suffers when we do not have sufficient labeled samples
to predict the class boundaries, we propose a new malware
classification paradigm, transductive malware classification,
which propagates label information from labeled instances to
unlabeled ones. We apply this framework on the structural
information collected from malware programs. Using extensive
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Fig. 7: Performance comparisons of classification methods with re-
spect to each attribute type (opcode, memory, register, io, flag, api)
using soft maximum harmonic function when we use 10% labeled
malware under the random selection scheme. The similarity matrix is
constructed at k = 12, γ = 0.3.

experiments on a real-world malware dataset, we demonstrate
that our proposed method outperforms existing methods in
malware classification in situations where only a small number
of labeled malware samples are available.
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