
Sim-Watchdog: Leveraging Temporal Similarity for Anomaly Detection in Dynamic Graphs

Guanhua Yan Stephan Eidenbenz

Los Alamos National Laboratory

{ghyan, eidenben}@lanl.gov

Abstract—Graphs are widely used to characterize relation-
ships or information flows among entities in large networks
or distributed systems. In this work, we propose a systematic
framework that leverages temporal similarity inherent in
dynamic graphs for anomaly detection. This framework relies
on the Neyman-Pearson criterion to choose similarity measures
with high discriminative power for online anomaly detection
in dynamic graphs. We formulate the problem rigorously, and
after establishing its inapproximibility result, we develop a
greedy algorithm for similarity measure selection. We apply
this framework to dynamic graphs generated from email
communications among thousands of employees in a large
research institution and demonstrate that it works effectively
on a set of more than 100 candidate graph similarity measures.

I. INTRODUCTION

Graphs are widely used to characterize relationships or

information flows among entities in large networks or dis-

tributed systems, including but not limited to online social

networks, Internet topology, world wide web, and email

traffic. Due to ubiquity of graph-modeled data from such

systems, finding anomalies in these data has become an

important problem. In this study, we consider the general

problem of anomaly detection on graph-modeled data in

a dynamic environment, where graphs change and evolve

constantly over time. Suppose that a network administrator

wants to find whether an insider attack occurs in a computer

network on a particular day, given the history of communi-

cations among the machines in this network. This real-world

challenge can be cast into a problem of anomaly detection

on temporal graphs by modeling daily computer communi-

cations as graphs, where vertices represent computer hosts

and edges the communications among them.

Networks or distributed systems evolve according to

certain laws or protocols, suggesting that their underly-

ing graphs do not appear in a uniformly random fash-

ion. For instance, communication traffic among computer

hosts exhibits strong self-similar property [16], and there is

thus long-range temporal dependence among communication

traffic. Also, social networks [8, 18] and web graphs [7])

tend to grow in a scale-free manner. Hence, when we use

a sequence of graphs to represent the dynamics of these

systems, we expect that there are inherent similarities among

these graphs, particularly those that are temporally close.

We propose to leverage such temporal similarity in dy-

namic graphs for the purpose of anomaly detection. Our

intuition is that, given the observed similarity level among

temporally close graphs, if there exists a graph with similar

measurements that deviate significantly from their expected

values relative to its temporal context, it is likely that

anomalous events – sometimes malicious activities – occur

in the system under study. Consider, for instance, a simple

computer system with two computer hosts, and a potential

adversary between them manipulating their communications.

If on a certain day, the communications between the two

hosts are drastically different from what have been observed

on the previous day, it is likely that an adversary unaware

of the inherent similarity is tampering with the communica-

tions. At the other extreme, if the communications between

the two hosts are much more similar than expected, it is

possible that the adversary is launching a replication attack.

There are, however, many measures that can be used to

evaluate the similarity between two graphs. The challenge

remains that given a certain network or distributed system,

we are unsure of which similarity measures should be used

to characterize its inherent similarity. In this work, we

develop a systematic framework that automatically chooses

those similarity measures useful for anomaly detection in

dynamic graphs. Such a selection process is guided by

knowledge of samples previously identified to be normal or

anomalous. In a computer network, for instance, we can use

data gleaned during those periods with known attacks or

failures as anomalies and others as normal samples. With

a set of selected similarity measures, we further build a

classifier that detects anomalous graphs in an online fashion.

Our main contributions are summarized as follows. (1) We

design and implement Sim-Watchdog, a systematic frame-

work that leverages temporal similarity inherent in dynamic

graphs representing real-world networks or distributed sys-

tems for anomaly detection. Applying the Neyman-Pearson

criterion [25, 32], Sim-Watchdog chooses a subset of simi-

larity measures that maximize the detection rate while ensur-

ing that the false positive rate is below a certain threshold.

Using the selected similarity measures, Sim-Watchdog is

able to identify anomalous graphs in an online fashion with

low computational overhead. (2) We formulate the problem

of selecting similarity measures under the Neyman-Pearson
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criterion as a discrete optimization problem, and theoreti-

cally establish its inapproximibility result. (3) We apply Sim-

Watchdog to email communication records among thousands

of employees in a large research institution, and demonstrate

its performances with similarity measures chosen from more

than 100 candidates.

The remainder of the paper is organized as follows.

Section II presents related work. In Section III, we formulate

the problem of identifying anomalous samples from dynamic

graphs. In Section IV, we introduce the Sim-Watchdog

framework for anomaly detection from dynamic graphs, and

discuss its implementation in Section V. We experimentally

evaluate the performance of Sim-Watchdog in Section VI.

Finally, we draw concluding remarks in Section VII.

II. RELATED WORK

There have been a large body of previous works on

detecting anomalous activities in networks and distributed

systems (e.g., [26, 12, 2, 15, 30, 31, 29]), and a few

surveys on this topic were given in [10, 24, 33]. Our work

differs from these previous efforts as we only consider the

problem of anomaly detection based on data collected from

these systems that can be represented as dynamic graphs.

As graphs are a generic model of representing relationships

among entities, our proposed framework can be applied to

anomaly detection in a diversity of other domains.

Our work differs from existing works on identifying

anomalous subgraphs or patterns in static graphs [21, 9, 5,

1, 19], as static graphs cannot fully characterize the dynamic

nature of network data. Anomaly detection for dynamic

graphs has been investigated in a few previous efforts. In [3],

Bilgin and Yener surveyed a few directions for anomaly

detection in dynamic graphs, including time series analysis

of graph data, anomaly detection using minimum description

length, window-based approaches, and methods based on

vertex/edge properties. Neil et al. applied scan statistics

on dynamic graphs to identify anomalous subgraphs [20].

In [23], Park et al. proposed an adaptive weighting scheme

to combine various graph features for anomaly detection

in time-series of graphs. In the work by Papadimitriou et
al. [22], they propose to use graph similarity to detect

anomalous web structures. In their work, however, they do

not address the issue of selecting effective similarity mea-

sures. After examining more than a hundred graph similarity

measures, our study reveals that only a small number of

them are needed to predict anomalous graph structures with

high accuracy. Hence, it is important to find such similarity

measures with high predictive power for practical use. To

the best of our knowledge, our work is the first of its kind

that provides a systematic framework for anomaly detection

in dynamic graphs based on temporal similarity.

There have also been some efforts dedicated to graph

classification. For instance, Ketkar et al. compared the per-

formances of several graph classification algorithms in [14].

In [17], Li et al. suggest that graph classification can be

performed on feature vectors constructed based on the global

topological and label attributes from graphs. In [11], Fay

et al. propose to discriminate graphs through their spectral

projections. The crucial differences between graph classifi-

cation and our work here are two fold. Firstly, in these graph

classification tasks, the graphs are static and therefore, there

are no temporal correlations among them. Secondly, the goal

of anomaly detection from dynamic graphs is to identify

those samples that originate from separate physical processes

from the normal one. The anomalous graph samples, how-

ever, may result from diverse causes such as operational

hiccups, human errors, and malicious attacks in the system

under study. It is questionable to apply graph classification

to anomaly detection simply by grouping anomalous graph

samples together into individual classes, as although these

samples are distinguishable from the normal ones, they may

scatter at different locations in the entire sample space.

III. PROBLEM FORMULATION

In this work, we consider anomaly detection on data col-

lected from networks or distributed systems that can be ab-

stracted as attributed directed graphs (ADGs), where nodes

represent entities and edges the relationships or information

flows among them. A node or edge is associated with various

attributes capturing its characteristics. Consider a sequence

of ADGs, {Gt(Vt, Et)}t=1,2,...,n, where Gt(Vt, Et) is the

observed ADG at time step t. Without loss of generality, we

use Gj
i , where 0 < i ≤ j, to denote the sequence of ADGs

seen from time steps i to j, i.e., Gj
i = {Gt(Vt, Et)}t=i,...,j .

Assuming that the graphs are collected over a stable set of

entities (e.g., email addresses, IP addresses, etc.) we have

that Vt = V for any t.
The binary label information regarding each ADG Gt

where t = 1, 2, ..., n is given by l(Gt) ∈ {0, 1}. If l(Gt) =
1, it means that Gt is normal; otherwise, Gt is deemed

anomalous. The label information of each ADG is obtained

from previously reported incidents or expected anomalies

(e.g., those collected during network maintenances or when

synthetic attacks are injected). We also have a number of

similarity measures S available. Each similarity measure

s ∈ S estimates the similarity between any two ADG

instances Gi and Gj as s(Gi, Gj) ∈ R. Note that when

calculating the similarity s(Gi, Gj), we can use any or any

subset of attribute values associated with the nodes and/or

the edges in Gi and Gj .

Our goal is to find a classifier C, which, given a newly

observed ADG sequence, Gn+1, Gn+2, ..., Gn+m, returns

whether each of them Gn+i, where 1 ≤ i ≤ m, should be

0 (normal) or 1 (anomalous) based on previously observed

ADGs in Gn+i−1
1 . To find classifier C, we need to address

two key questions: What similarity measures should be used
to evaluate the similarity between two ADGs, and how
should we train classifier C based on the chosen similar-
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ity measures? Next, we introduce Sim-Watchdog, a novel

similarity-based anomaly detection framework, to tackle

these issues.

IV. THE SIM-WATCHDOG FRAMEWORK

The architecture of Sim-Watchdog is illustrated in Fig-

ure 1. The Sim-Watchdog framework involves a few steps.

First, for each candidate similarity measure in S, we train an

individual classifier from the ADGs in the training dataset

Gn
1 . Given the classification results of each individual classi-

fier on the training data, we select similarity measures from

S with high discriminative power and form an ensemble

of classifiers. Using this ensemble of classifiers, we further

perform anomaly detection on the newly observed sequence

of ADGs in Gn+m
n+1 , and report whether each of them is

anomalous or not.

Before delving into the details of individual compo-

nents of Sim-Watchdog, we want to emphasize that for

any anomaly detection system to be practically useful, it

is crucial that the system should have low false positive

rates. For example, a widespread complaint against anomaly

detection-based intrusion detection systems is that they often

produce too many false alarms [4]. Sim-Watchdog relies on

the Neyman-Pearson criterion [25, 32] to select similarity

measures. In short, the Neyman-Pearson criterion aims to

maximize the detection rate while ensuring that the false

positive rate should be below a certain threshold. Hence,

the Neyman-Pearson criterion provides the flexibility in

controlling the false positive rate of the anomaly detection

system, which is beneficial to its practical deployment.

A. Training Individual Classifiers

In the Sim-Watchdog framework, we build an individual

classifier for each candidate similarity measure in S. Before

presenting how to train an individual classifier based on a

similarity measure s, we introduce a few notations. Define

Ao
i,j , where j ≥ i > 0 and o ≥ 0, as follows:

Ao
i,j = {(Ga, Gb), ∀a, b : i≤a,b≤j, b=a+o, l(Gb)·l(Ga)=1}.

(1)

That is to say, Ao
i,j contains all nondecreasingly ordered

pairs of normal ADGs in sequence Gj
i of order o, where

here order o means that the gap between the time steps of

each pair of ADGs is exactly o.

Given any set H of pairs of graphs, we define the

following:

μs(H) =
1

|H|
∑

∀(Ga,Gb)∈H
s(Ga, Gb)

σs(H) = (
1

|H| − 1

∑
∀(Ga,Gb)∈H

(s(Ga, Gb)− μs(H))2)1/2

Hence, μs(Ao
i,j) and σs(Ao

i,j) are the estimated mean and

standard deviation of the similarity values among all pairs

of ADGs in Ao
i,j according to similarity measure s, respec-

tively.

Let Co
s,θ be a parameterized classifier based on similarity

measure s at order o with parameter θ. Consider any

ADG Gt ∈ Gn
1 and any order o. If Gt−o is labeled as 0

(anomalous), then the individual classifier of order o always

classifies the new ADG Gt as 1 (normal). Otherwise, if the

following holds:

|s(Gt, Gt−o)− μs(Ao
1,t−1)| > θ × σs(Ao

1,t−1), (2)

then Co
s,θ(Gt) = 0; otherwise, Co

s,θ(Gt) = 1.

With all these notations, we now discuss how to train

parameter θ for the individual classifier at order o according

to similarity measure s. It is easy to see that with only

few samples, their mean and standard deviation do not

offer a good baseline for anomaly detection. For instance,

the second sample is always classified as 0 unless it is

the same as the first one. Hence, when we evaluate the

detection rate and the false positive rate of a classifier, we

ignore the classification results of the first α samples, where

0 ≤ α� n, and we assume that the first α samples should

contain at least two sample ADGs labeled as 1 (normal) for

each order o = 1, 2, ..., omax where omax is the maximum

order we consider.

Let ds,o(θ) and ws,o(θ) denote the detection rate and

the false positive rate of the individual classifier at order

o with parameter θ trained based on similarity measure s,

respectively. Assuming that o < α, we thus have:

ds,o(θ) =
∑n

t=α+1 δ(l(Gt)=0)·δ(l(Gt−o)=1)·δ(Co
s,θ(Gt)=0)∑n

t=α+1 δ(l(Gt)=0)·δ(l(Gt−o)=1)

ws,o(θ) =
∑n

t=α+1 δ(l(Gt)=1)·δ(l(Gt−o)=1)·δ(Co
s,θ(Gt)=0)∑n

t=α+1 δ(l(Gt)=1)·δ(l(Gt−o)=1)

(3)

Note that the delta function δ(x) returns 1 if x is true and

0 otherwise. Clearly, the choice of parameter θ affects both

the false positive rate and the detection rate of the individual

classifier trained on similarity measure s. Ideally, we would

like to maximize the detection rate while minimizing the

false positive rate. Optimizing both criteria, however, is

typically difficult, and we thus enforce the Neyman-Pearson

criterion here, which is to maximize the detection rate while

ensuring that the false positive rate is no greater than a

certain threshold ρ, where 0 ≤ ρ ≤ 1. Hence, we want

to find the solution to the following optimization problem:

argmaxθ ds,o(θ) (4)

subject to: ws,o(θ) ≤ ρ

To find the solution, we first establish the following

theorem.

Theorem 1: Both ds,o(θ) and ws,o(θ) (weakly) monoton-

ically decrease with θ.

Proof: First note that given the training sequence of ADGs

Gn
1 , the classification result of classifier Co

s,θ at any time
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Figure 1. Architecture of Sim-Watchdog

step t varies with only θ. According to Eq. (2), increasing

θ (weakly) monotonically decreases δ(Co
s,θ(Gt) = 0) at

any time step t. Hence, increasing θ (weakly) monotonically

decreases both ds,o(θ) and ws,o(θ) based on Eq. (3). �
Theorem 1 suggests that the solution to Eq. (4) occurs

when ws,o(θ) = ρ strictly holds, or the closest possible

solution if such a condition does not hold in any solution.

In practice, however, due to the discrete nature of training

samples, there is a range of θ that achieves the same optimal

detection performance. We use the following steps to find a

solution to Eq. (4).

Step 1: We first use binary search to find the optimal or

near optimal detection rate when the false positive rate is

below the given threshold ρ as follows. We keep a plausible

list L of θ values. Initialize θ, θmin, and θmax to be 1.0,

0.0, and +∞, respectively. While θmax − θmin is greater

than a predefined threshold ε, calculate ws,o(θ) and ds,o(θ)
according to Eq. (3) and proceed in the following cases:

• ws,o(θ) > ρ (the false positive rate is higher than ρ
under θ): according to Theorem 1, we should increase

θ to find the boundary. Hence, we assign θ to θmin.

Moreover, if θmax = +∞, we double the value of θ;

otherwise, we let θ be the middle point between θmin

and θmax.

• ws,o(θ) ≤ ρ (the false positive rate is no higher than ρ
under θ): according to Theorem 1, we should decrease

θ to find the boundary. Hence, we assign θ to θmax,

add tuple (θ, ws,o(θ), ds,o(θ)) to list L, and then let θ
be the middle point between θmin and θmax.

Step 2: We check all θ values on the plausible list L
that have the best detection rate under the false positive rate

constraint, and from them, find the one that has the lowest
false positive rate. That is to say, find the tuple (θ′, w′, d′) ∈
L that satisfies the following:

d′ = ds,o(θmax) ∧ ∀(θ, w, d′) ∈ L : w ≥ w′. (5)

Step 3: Using the performance at θ′ as the target, we

further search the range of θ values in the neighborhood of

θ′ that achieve the same performance as θ′. The algorithm

returns the middle point in this range as the final solution

to Eq. (4).

B. Similarity Measure Selection
Let θ∗s,o be the parameter of the individual classifier

trained on similarity measure s at order o. With a classifier of

order o behaving as in Eq. (2), we let the individual classifier

trained on similarity measure s work as follows:

Cs(Gt) =

omax∏
o=1

Co
s,θ∗s,o

(Gt). (6)

Hence, for any ADG Gt, the individual classifier trained

for similarity measure s uses all possible normal samples

observed within omax orders to calculate the similarity

values. If at any of these orders the corresponding classifier

classifies the new instance as anomalous, then the overall

classifier on this similarity measure classifies it as anoma-

lous. The intuition behind such a stringent rule is to choose

similarity measures that behave well at all orders.
Given the training ADG sequence Gn

1 , the classifier

trained on each similarity measure s ∈ S returns a sequence

of classification results, Ĉs = (Cs(Gt))t=1,2,...,n. Combin-

ing such classification results from all similarity measures

in S leads to a classification matrix M = (ĈS1
, ..., ĈS|S|)

T ,

where Si denotes the ith similarity measure in S. The ith row

in matrix M gives the classification results by the individual

classifier trained on the ith similarity measure in S.
Next we discuss how to select similarity measures based

on the classification matrixM. This process, again, is driven

by the Neyman-Pearson criterion. Consider any subset S′ ⊆
S of similarity measures. The ensemble of classifiers based

on similarity measures in S′, denoted by CS′ , works as

follows:

CS′(Gt) =
∏
s∈S′

Cs(Gt). (7)

Hence, if and only if individual classifiers trained for all

similarity measures in S′ agree that ADG Gt is normal, the

ensemble of classifiers CS′ treats it as normal. Then, d(S′)
and w(S′), the detection rate and the false positive rate of

classifier CS′ , are defined as follows, respectively:

d(S′) =

∑n
t=α+1 δ(l(Gt) = 0)× δ(CS′(Gt) = 0)∑n

t=α+1 δ(l(Gt) = 0)

w(S′) =

∑n
t=α+1 δ(l(Gt) = 1)× δ(CS′(Gt) = 0)∑n

t=α+1 δ(l(Gt) = 1)
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According to the Neyman-Pearson criterion, we want to

solve the following optimization problem, which we call the

Similarity Measure Selection (SMS) problem:

argmaxS′ d(S′) (8)

subject to: w(S′) ≤ γ

where 0 ≤ γ ≤ 1.

The inapproximability result of the SMS problem is

established as follows:

Theorem 2: For any γ with 0 ≤ γ ≤ 1 and any ε > 0,

SMS cannot be approximated in polynomial time within a

factor of 1− 1/e+ ε unless P = NP.

The proof of Theorem 2 is given in Appendix A. We

may also be interested in another way of selecting similarity

measures, which is the dual problem of SMS. Its inapprox-

imibility result is provided in Appendix B. Next, we present

a greedy algorithm that solves the SMS problem. Define η
as follows:

η = 
γ
n∑

t=α+1

δ(l(Gt) = 1)� (9)

That is to say, η is equivalent to the maximum number of

false positive samples allowed by the algorithm.

We also have the following definitions:

Definition 1: We say that two similarity measures s1 and

s2 are isomorphic relative to a set of samples T ⊆ N
n
1 ,

i.e., s1 ≡T s2 if and only if for every t ∈ T , we have the

following:

Cs1(Gt) = Cs2(Gt), (10)

and a subset of similarity measures S′ ⊆ S is an isomorphic

group relative to T if every two similarity measures in S′

are isomorphic relative to T .

Definition 2: The utility of a similarity measure s relative

to a set of samples T ⊆ N
n
1 , denoted as uT (s), is given by:

uT (s) =
|gT (s)|
|cT (s)| , where:

cT (s) = {t ∈ T : l(Gt) = 1 and Cs(Gt) = 0},
gT (s) = {t ∈ T : l(Gt) = 0 and Cs(Gt) = 0}, (11)

and the utility of an isomorphic group S′ relative to T is

defined to be the utility of any similarity measure in it.

Hence, the utility of a similarity measure relative to T
is the ratio of the number of anomalous samples in T
successfully detected by this similarity measure to that of

normal samples in T falsely classified by the similarity

measure.

Algorithm 1 presents a solution to the SMS problem. The

algorithm keeps track of the set of anomalous samples that

have already been detected (D) as well as the set of normal

samples that have been wrongly classified as anomalous (F ).

In each iteration (lines 3-22), the algorithm first finds the

isomorphic groups of available similarity measures relative

to the samples that are not in D or F . For each of these

isomorphic groups, the algorithm checks whether adding

it leads to a false positive rate higher than the predefined

threshold, γ; if not, the algorithm picks the one with the

highest utility and chooses the similarity measures in this

group with the highest relative discrepancies at order 1,

which will be explained shortly. Similar to Eq. (1), we define

Âo
i,j as follows:

Âo
i,j = {(Ga,Gb),∀a,b: i≤a,b≤j, b=a+o, l(Gb)·l(Ga)=0}.

The relative discrepancy of similarity measure s at order

o is defined as follows:

rs =
|μs(Ao

i,j)− μs(Âo
i,j)|

μs(Ao
i,j)

, (12)

where we recall that μs(H) gives the mean similarity

measure over pairs of graphs in setH. Intuitively, the relative

discrepancy of a similarity measure s at order o shows the

relative difference in the average similarity measured by s
at order o between the set of all pairs of normal graphs

and the set of pairs of graphs containing anomalous ones in

the training dataset. For the purpose of anomaly detection,

a higher relative discrepancy indicates better capability of

separating anomalous samples from normal ones. Hence,

when the isomorphic group with the highest utility contains

a large number of similarity measures, we choose only a

few of them with the highest relative discrepancies at order

1. We consider only order 1 because this is the order most

often used in practice.

The algorithm terminates when an iteration cannot find

any isomorphic group within the false positive rate threshold.

Clearly, Algorithm 1 bears a greedy nature, as in each

iteration it always picks the isomorphic group of similarity

measures with the highest utility. Consider the following

classification matrix (with the first α columns removed) with

nine samples and three similarity measures:

Label 1 1 1 0 0 0 0 0 0
Similarity Measure 1 0 1 1 0 0 0 1 1 1
Similarity Measure 2 1 0 1 1 1 0 0 1 1
Similarity Measure 3 1 0 0 0 0 1 1 0 0

Suppose that η = 2. The greedy algorithm first picks

similarity measure 1 (utility = 3), and then similarity mea-

sure 2 (utility = 1). Hence, the eventual detection rate is

4/6 ≈ 66.7%. It is noted that the optimal solution contains

only similarity measures 2 and 3, with a detection rate of

100%. This suggests that the greedy algorithm cannot lead

to a similar (1−1/e) approximation ratio as achieved by the

greedy solution to the maximum set covering problem [13].

C. Online Anomaly Detection

We have discussed how to choose similarity measures

based on the Neyman-Pearson criterion from the training

ADGs in Gn
1 . Let S∗ ⊆ S be the set of selected similarity

measures. For a selected similarity measure s ∈ S∗, the
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Algorithm 1 A greedy solution to the SMS problem

Require: Classification matrix M, parameter γ, a set S of simi-
larity measures, parameter k

1: Calculate η according to Eq. (9)
2: D ← ∅, F ← ∅, T ← N

n
α+1, S′ ← ∅

3: while true do
4: Find a set Z of isomorphic similarity measures in S \ S′

relative to T
5: umax ← 0, Zmax ← ∅
6: for each isomorphic group Z ∈ Z do
7: Calculate gT (Z), cT (Z), and uT (Z)
8: if |cT (Z) ∪ F | ≤ η and uT (Z) > umax then
9: Zmax ← Z

10: umax ← uT (Z)
11: end if
12: end for
13: if Zmax �= ∅ then
14: Z∗k ← the set of similarity measures in Zmax with the

top-k relative discrepancy
15: D ← D ∪ gT (Zmax)
16: F ← F ∪ cT (Zmax)
17: T ← T \ (cT (Zmax) ∪ gT (Zmax))
18: S′ ← S′ ∪ Z∗k
19: else
20: break
21: end if
22: end while
23: return S′

corresponding classifier works as follows on a test ADG at

time t (i.e., t > n):

Ĉs(Gt) = C ô
s,θ∗

s,ô
(Gt), (13)

where ô = min{o : l(Gt−o) = 1}. That is to say, ô is

the order of the last ADG that is labeled (or classified) as

normal. Hence, the behavior of classifier Ĉs(Gt) is different

from that of Cs(Gt) shown in Eq. (6). This is because

during the training phase, we want to choose those similarity

measures that perform well at all possible orders, but during

the test phase, we expect that the similarity measurements at

higher orders are less stable so we use only the classification

result based on the most recent sample deemed as normal.

The classifier built on S∗ behaves as follows:

CS∗(Gt) =
∏
s∈S∗

Ĉs(Gt) for any t > n. (14)

on any newly observed ADG. It is noted that calculation of

Cs(Gt) requires label information of previously observed

ADGs, and the true label information is only known for

ADGs in the training sequence. To circumvent this issue, we

define the label information of an ADG Gt when t > n as

the classification result of the anomaly detector in Eq. (14).

Consider time step t, where t > n, and any selected

similarity measure s ∈ S∗. Suppose that the last ADG

labeled as 1 (normal) for similarity measure s is t−o. Then,

for similarity measure s, the ensemble of classifiers uses the

detection result of the classifier of order o from similarity

measure s (see Eq. (2)). This requires the knowledge of

both μs(Ao
1,t−1) and σs(Ao

1,t−1), the mean and estimated

standard deviation of similarity measure s of order o. Next,

we discuss how to update the μs(Ao
1,t) and σs(Ao

1,t) in an

online fashion once the label of ADG Gt is decided by

the ensemble of classifiers as in Eq. (14). Suppose that the

maximum order that we keep for each selected similarity

measure is omax. Hence, we expect that a sequence of ADGs

of length more than omax should be observed very rarely,

and if this indeed occurs, we should examine the system

more closely to reveal the cause and accordingly, we may

need to retrain the ensemble of classifiers.

We let ξo keep the count of samples for each order

o = 1, ..., omax that gives |Ao
1,t|. After the training phase, ξo

is initialized to be |Ao
1,n|. For brevity, define the following:

μo
s,t = μs(Ao

1,t), σ
o
s,t = σs(Ao

1,t), and st,o = s(Gt, Gt−o).
Algorithm 2 presents the algorithm to update μo

s,t and σo
s,t

in an online fashion. Given a newly labeled sample at time

step t, the algorithm first checks whether it is labeled as 0

(anomalous). If so, it keeps the old values of μo
s,t and σo

s,t.

Otherwise, it checks every order o = 1, 2, ..., omax to see

whether the sample o time steps backward is also normal.

Provided that both the current sample and the sample o
time steps backward are normal, the algorithm updates the

estimated mean and standard deviation based on recurrence

relation [6].

Algorithm 2 Update μo
s,t and σo

s,t at time step t for s ∈ S∗

and o = 1, ..., omax

Require: μo
s,t−1 and σo

s,t−1 for each s ∈ S∗ and each o =
1, ..., omax, and ξo for each o = 1, ..., omax

1: if l(Gt) = 0 then
2: for o = 1, ..., omax do
3: μo

s,t ← μo
s,t−1

4: σo
s,t ← σo

s,t−1

5: end for
6: else
7: Calculate r(t), the index of last sample labeled as 1
8: for o = 1, ..., omax do
9: if l(Gt−o) = 0 then

10: μo
s,t ← μo

s,t−1

11: σo
s,t ← σo

s,t−1

12: else
13: ξo ← ξo + 1

14: μo
s,t ← μo

s,t−1 +
st,t−o−μo

s,t−1

ξo
15: if ξo > 1 then

16: σo
s,t ←

√
(ξo−2)(σo

s,t−1)
2+(st,t−o−μo

s,t)(st,t−o−μo
s,t−1)

ξo−1

17: else
18: σo

s,t ← 0
19: end if
20: end if
21: end for
22: end if

It is noted that Algorithm 2 incurs only light compu-

tational overhead. It requires storage of only those ADG

samples labeled as 1 (normal) within the past omax time
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steps as well as their indices, the current μo
s,t and σo

s,t for

each s ∈ S∗ and o = 1, 2, ..., omax, and the counter ξo for

each o = 1, 2, ..., omax.

V. IMPLEMENTATION

We implement Sim-Watchdog using both C++ and

Python. Currently, we have considered three types of

similarity measures: ranking-based, distribution-based, and

aggregation-based similarity measures.

A. Ranking-based Similarity Measures

Given two ADGs G1 and G2, a ranking-based similarity

measure first calculates the centrality measure of each node

from a graph-theoretic perspective. Such centrality measures

include: indegree centrality (the indegree of each node),

outdegree centrality (the outdegree of each node), inweight
centrality (the sum of weights on all incoming edges to

each node), outweight centrality (the sum of weights on all

outgoing edges from each node), betweenness centrality (the

number of pairs of nodes of which the shortest paths pass

each node), and pagerank (the algorithm used by Google to

rank webpages).

For each centrality measure, we rank the nodes in an

ADG in a decreasing order, assuming that a node with a

higher centrality measure is deemed to be more important.

If multiple nodes have exactly the same centrality measure,

we randomly order them. Let the ranking of nodes in ADG G
according to centrality measure x be Rx,G, where Rx,G[i]
gives the rank of the ith node in ADG G. Consider two

ADGs G1 and G2. Given the same set of vertices V shared

by G1 and G2, Sim-Watchdog implements the following

similarity measures:

Overlapping ratio: The overlapping ratio of the top k
nodes between G1 and G2 is given by:∑|V |

i=1 δ(Rx,G1
[i] ≤ k ∧Rx,G2

[i]) ≤ k)

k
(15)

Biased overlapping ratio [28]: Let the step size be h
and the weight per step reduces at a rate exponential in p
where 0 < p < 1. The top-k biased overlapping ratio of

nodes between G1 and G2 is given by:

k∑
i=1

pk
∑|V |

j=1 δ(Rx,G1
[j] ≤ kh ∧Rx,G2

[j]) ≤ kh)

kh
+1−

k∑
i=1

pk.

B. Distribution-based Similarity Measures

In an ADG, we also look at the distribution of the

following quantities: indegree distribution (the distribution

of the indegrees of the nodes), outdegree distribution (the

distribution of the outdegrees of the nodes), inweight distri-
bution (the distribution of the total weight on the incoming

edges), and outweight distribution (the distribution of the

total weight on the outgoing edges). Given any distribution

p(x) with x ∈ R
+ for ADG G, we quantize it into a vector

of discrete values Qx of bin size b, where:

QG[i] =

∫ (i+1)b

ib

p(x)dx,where i ∈ N. (16)

The distance measures between two distributions QG1
and

QG2
from ADG G1 and G2, respectively, include following:

Euclidean distance: It is simply the Euclidean distance

between vectors QG1
and QG2

:√√√√+∞∑
i=0

(QG1 [i]−QG2 [i])
2. (17)

JS (Jensen-Shannon) distance: Define vector Q′ as

follows: Q′[i] = (QG1
[i] + QG2

[i])/2 for any i ∈ N. The

JS distance between vectors QG1
and QG2

is given by:

1

2

∑
i∈N:Q′[i]>0

(QG1 [i]log
QG1

[i]

Q′[i] +QG2 [i]log
QG2

[i]

Q′[i]
)
. (18)

Hellinger distance: The Hellinger distance between vec-

tors QG1
and QG2

is:√
1

2

∑
i∈N

(√QG1
[i]−

√
QG2

[i]
)2
. (19)

C. Aggregation-based Similarity Measures
In an ADG an attribute can be associated with a node

or an edge. Hence, for the same attribute type x, we can

construct a vector Vx,G from ADG G. Aggregation-based

similarity measures calculate the distance between such

attribute vectors from two ADGs. If Vx,G1
and Vx,G2

contain

numerical values, their distance can be evaluated as follows:
lp norm: The lp-norm distance between Vx,G1

and Vx,G2

is: (∑
i

(Vx,G1 [i]− Vx,G2 [i])
p
) 1

p (20)

Gaussian kernel. Using the Gaussian kernel, the distance

between Vx,G1
and Vx,G2

is given by:

1√
2πσ

e−
∑

i(Vx,G1
[i]−Vx,G2

[i])2

2σ2 . (21)

Numerical attribute types include edge weight, node
weight, clustering coefficient of each node, and the reci-
procity of each node (the number of bidirectional relation-

ships between this node and other nodes), etc.
On the other hand, if Vx,G1

and Vx,G2
contain set values,

their distance can be evaluated as follows:
Normalized weighted intersection: We define the nor-

malized weighted intersection of Vx,G1 and Vx,G2 as fol-

lows: |Vx,G1
∩ Vx,G2

|
max{|Vx,G1

|, |Vx,G2
|} . (22)

Jaccard similarity: The Jaccard similarity of Vx,G1 and

Vx,G2
is given by:

|Vx,G1
∩ Vx,G2

|
|Vx,G1 ∪ Vx,G2 |

. (23)
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Dice similarity: The Dice similarity of Vx,G1
and Vx,G2

is given by:
2|Vx,G1

∩ Vx,G2
|

|Vx,G1 |+ |Vx,G2 |
. (24)

Examples of set attribute types include the set of neigh-

bors that a node can reach within k hops (reachable nodes).

VI. EVALUATION OF SIM-WATCHDOG

As we are not aware of any public dynamic graph dataset

with labeled anomalous samples, we introduce how to gen-

erate the evaluation dataset from an email dataset collected

from a large research institution. We further use this email

dataset to evaluate the performance of Sim-Watchdog.

A. Description of Email Dataset

Our email dataset contains email communication records

in a large research institution with around ten thousand

employees within one year. In total, it comprises 62,946,439

emails, including not only internal emails between the

employees but also inbound and outbound emails that the

employees communicated with the outside people.

Figure 2(1) show the number of internal emails, outbound

external emails, and inbound external emails on each given

day in the dataset. There is a strong periodic pattern in

each of these curves. Typically, the workdays from Monday

to Thursday witness a high volume of emails, and we

see that both the numbers of internal and external emails

drop on Friday due to the alternative work schedules which

allow employees to choose working only on every other

Fridays. In early June there was prominent disruption in

the aforementioned periodic patterns in email traffic, as the

number of internal emails dropped to a significantly low

level even on weekdays. This period actually coincided with

the ten days of mandatory evacuation due to a wild fire that

occurred nearby. There was also a huge spike in the number

of internal emails in mid August. This spike resulted from

a glitch of the internal system which repeatedly sent email

notifications to many employees on that day.

For this study, we generate temporal graphs from the

email dataset on a weekly basis. We consider only those

internal emails sent among confirmed employees of the

institution. As the spike in mid August seen in Figure 2(1)

was caused by emails sent automatically from an internal

system email account, these emails are not reflected in the

temporal graphs generated as described, but such anomalies

are easy to identify. In each graph, a vertex represents a

confirmed employee’s email address, and an edge is created

from vertices A to B if A has sent at least one email

to B in the corresponding week. For the entire year, we

have a sequence of 52 graphs, each generated from email

communications in a full week, and Figure 2(2) summarizes

the basic properties of these graphs.

From Figure 2(2), there are noticeable dips for the num-

bers of emails in some weeks. Close examination reveals

that these weeks contain either national holidays, or days of

main disruptions (e.g., fire evacuation and snow days), as

shown as follows: week 2 (Martin Luther King, Jr. Day),

week 7 (President’s Day), week 21 (Memorial Day), week

25 (Fire evacuation), week 26 (Independence Day), week 35

(Labor Day), week 40 (Columbus Day), week 44 (Veterans
Day), week 46 (Thanksgiving Day), week 48 (snow days),

and week 51 (Christmas). We thus treat the graphs generated

from these weeks as anomalous, and the others normal.

Hence, the fraction of anomalous samples is approximately

21% (≈11 / 52).

B. Experimental Setup

In all our experiments, we set parameter α (see Sec-

tion IV-A) to be 6, meaning that the first six samples are

not used for similarity measure selection. We use the first

24 samples for training and the remaining ones for testing

purpose. We also let parameter omax be 2, and γ (see

Eq. (8)) be 0.05. We choose parameter ρ (see Eq. (4)) in

the range of [0.01, 0.02, ..., 0.15].
Ranking-Based Similarity Measures: The rankings are

generated from six centrality measures, including inde-

gree centrality, outdegree centrality, inweight centrality,

outweight centrality, betweenness, and pagerank. For each

centrality measure, we consider both the overlapping ratio

and biased overlapping ratio methods to compare rankings.

When the overlapping ratio approach is used, we consider

the top k nodes, where k is chosen between 100 and 500.

When the biased overlapping ratio approach is used, the step

size is set to be 10, parameter p be 0.5, and k between 10

and 50. In total, we have 24 rank-based similarity measures.

Distribution-Based Similarity Measures: We consider

the distribution of indegree, outdegree, inweight, and out-

weight in each ADG. When calculating the distribution, we

choose the bin size from 1, 10, and 100. The distance be-

tween two distributions is evaluated in three ways: Euclidean

distance (EU), JS distance (JS), and Hellinger distance (HL).

We have 36 distribution-based similarity measures in total.

Aggregation-Based Similarity Measures: We consider

four aggregate attributes: edge weight (number of messages

on each edge), node weight (number of messages sent from

each user), clustering coefficient, and reciprocity. For each

one of them, we use the Gaussian kernel (where parameter σ
varies among 200, 400, 800, and 1600) and lp (where p is 1

or 2) to evaluate the distance between two attribute vectors.

We also consider the set of reachable nodes as the attribute,

and use normalized weighted intersection, Jaccard similarity,

and Dice similarity to evaluate the distance between two sets.

In total, we have 48 aggregation-based similarity measures.

C. Experimental Results

Evaluation of Sim-Watchdog: Figure 3 shows the per-

formance of Sim-Watchdog when it is fed all three types of

similarity measures, which amount to 108 individual ones
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Figure 4. Rank-based similarity measures (for biased overlapping, the step size h is 10)
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ρ range k = 1 k = 3
[0.01, 0.07] Inweight, JS, bin=100 Inweight, JS, bin=100

Inweight, JS, bin=10
Inweight, EU, bin=100

[0.08, 0.14] Inweight, JS, bin=100 Inweight, JS, bin=100
Inweight, JS, bin=10

Outdegree, JS, bin=10
[0.15, 0.15] Indegree, HL, bin=10 Indegree, HL, bin=10

Table I
SELECTED SIMILARITY MEASURES

in total. Recall that Sim-Watchdog selects the similarity

measures with the top k relative discrepancy within the same

isomorphic groups. We notice that the performance of Sim-

Watchdog varies under three ranges of ρ values. The selected

similarity measures are presented in Table I. All the chosen

similarity measures are of type distribution-based.

It is noted from Figure 3 that parameter ρ affects the

performance of Sim-Watchdog. Recall that ρ controls the

false positive rate of the classifiers trained for individual
similarity measures, and the threshold on the false positive

rate of the ensemble of classifiers, γ, is fixed at 0.05 in

our experiments. If ρ is very small, individual classifiers are

trained to have low false positive rates. Hence, to satisfy the

false positive rate constraint γ, the ensemble of classifiers

thus have more choices from these individual ones. On

the other hand, if ρ is very large, individual classifiers are

trained to allow high false positive rates, which provides

the ensemble of classifiers fewer choices that meet the false

positive rate constraint γ. This explains that for k = 3,

fewer similarity measures are selected when ρ = 0.15 than

the other ranges of ρ values. It is also observed that for

the middle range (i.e., 0.08 ≤ ρ ≤ 0.14), Sim-Watchdog

is able to detect all anomalies without leading to any false

alarms, suggesting that when parameters are properly set,

Sim-Watchdog can perform with high accuracy.

Similarity measures between consecutive graphs: After

observing the performance of Sim-Watchdog depicted in

Figure 3, we now show how the similarity between con-

secutive graphs evaluated by different types of similarity

measures evolves over time to gain deeper insights into the

similarity measures selected by Sim-Watchdog. The rank-

based similarity measures among consecutive graphs ex-

tracted from the email dataset are depicted in Figure 4. One

interesting observation is that the indegree and the inweight

centrality measures are higher than the other types of similar-

ity measures, regardless of the scheme used to compare the

rankings. Moreover, for the top k overlapping ratio scheme,

when we increase k, the similarity curve becomes smoother.

In contrast, for the top k biased overlapping ratio sheme,

increasing k from 10 to 50 leads to little change, because

the overlapping ratio among a large number of top-ranked

nodes is weighted with only a small value (exponential

in the number of steps included). The distribution-based

similarity measures between consecutive graphs extracted

from the email dataset are shown in Figure 5. We observe

that the spikes in the curves coincide with the dips seen in

Figure 2(2). This suggests that distribution-based similarity

measures could perform well in anomaly detection for the

email dataset. Figure 6 shows the aggregation-based similar-

ity measures of two consecutive graphs extracted from the

email dataset. Clearly, these measures do not contain strong

signals that we can rely on to predict the anomalies shown

in Figure 2(2). All these observations confirm the choices

on similarity measures made by Sim-Watchdog.

Phase Transition: One may wonder why there is a

noticeable phase transition in Table I for different ρ ranges.

Recall that there are 24 samples in the training part, among

which the first six are ignored and the remaining ones have

two labeled as 0 (anomalous). From Eq. (3), we know that

calculation of the false positive rate at a given order o
depends on the cases where both the current sample and

the past one of order o are labeled as 1 (normal). We have

14 such cases, among which, if only one were to be falsely

classified as 0, the false positive rate would be around 7.14%,

and if two of them falsely classified as 0, the false positive

rate would be around 14.28%. This explains why the phase

transition occurs when ρ increases from 0.07 to 0.08, or

from 0.14 to 0.15.

VII. CONCLUSIONS

The ubiquity of graphs in modeling relationships or in-

formation flows among entities in networks and distributed

systems motivates us to explore methods for anomaly de-

tection in dynamic graphs. In this work, we propose a sys-

tematic framework called Sim-Watchdog, which leverages

temporal similarity inherent in graph-modeled network data

for anomaly detection. We apply Sim-Watchdog to dynamic

graphs extracted from email communication records in a

large research institution and demonstrate its effectiveness

for supervised anomaly detection.

This work focuses on anomaly detection on dynamic

graphs abstracted from data collected from networks or

distributed systems. Albeit graphs are commonly used to

characterize the structures or information flows in these

systems, they are not a panacea for detecting all possible

anomalous activities. For instance, it may be difficult to rely

on only graph-based anomaly detection schemes to detect

protocol misuse at individual nodes. Hence, the proposed

method in this work, while offering a new perspective into

anomaly detection in networks or distributed systems, is

not intended to replace, but rather to complement existing

approaches in this domain.

The similarity measures currently implemented in Sim-

Watchdog are by no means exhaustive. Actually, it is an

active research field to explore graph kernels [17]. Despite

the variety of ways of comparing graphs, it is unclear which

one, or subset, of them performs best, and the answer surely

depends on the specific system that produces the dynamic
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graphs. Hence, these recent advances are orthogonal to

the rationale behind Sim-Watchdog, which is to offer a

generic framework for selecting similarity measures most

qualified for anomaly detection. These new graph similarity

measures can be easily incorporated into the Sim-Watchdog

framework, which remains as our future work.

In this study, we use dynamic graphs extracted from an

email dataset for performance evaluation. The design of Sim-

Watchdog renders it applicable to any dynamic graph dataset

containing labeled training samples. If Sim-Watchdog cannot

find any candidate similarity measures that meet the false

positive rate requirements in the Neyman-Pearson criterion,

we should further examine the labeled samples to look for

other similarity measures with better discriminative power.
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APPENDIX A: PROOF OF THEOREM 2

Proof: First note that the classification results of the first α
ADGs are ignored in computation of d(S′) and w(S′). Hence,
the original SMS problem is equivalent to the one in which we
remove the first α columns of classification matrix M and let α
be 0. Hence, we assume that α is 0 in our proof.

Consider an instance IMSC of the Maximum Set Covering
Problem (MSC): given a universe U = {U1,U2, ...,U|U|}, a family
F of subsets of U , any integer k, and any integer x, select k subsets
such that their union contains as many elements as possible in U .
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Given IMSC , we construct the corresponding instance ISMS of
the SMS problem as follows. The training ADG sequence contains
|U| + z ADGs in it, where z will be explained shortly. For the
first |U| ADGs, their labels are always 0 (anomalous), and for the
remaining ones their labels are 1 (normal). There are |F| similarity
measures in S. For the individual classifier trained on the ith
similarity measure, it classifies the jth ADG, where 1 ≤ j ≤ |U|,
as 0 (anomalous) if element Uj belongs to the ith subset in family
F , and 1 (normal) otherwise. For any γ with 0 ≤ γ ≤ 1, we have:

Case 1: k ≥ γ|F|. We have z = 	k/γ
. Note that �x� and 	x

return the floor and ceil functions of real number x, respectively.
The individual classifier trained on the ith similarity measure,
where 1 ≤ i ≤ |F|, classifies the ith ADG among the last z
ADGs as 0 (anomalous) and all the others as 1 (normal).

Case 2: k < γ|F|. We have z = � |F|−k
1−γ
�. The individual

classifier trained on the ith similarity measure, where 1 ≤ i ≤ |F|,
classifies the ith ADG among the last z ADGs as 0 (anomalous),
the last z − |F| ADGs also as 0, and all the others as 1 (normal).

For the SMS problem, we want to find a subset of similarity
measures such that their detection rate is as high as possible under
the constraint that the false positive rate is at most γ.

Let OPTMSC and OPTSMS be the optimal solutions of IMSC

and ISMS , respectively. It is known that MSC cannot be approxi-
mated in polynomial time within a factor of factor of 1− 1/e+ ε
for any ε > 0 unless P = NP [13]. To prove that SMS cannot be
approximated in polynomial time within a factor of 1 − 1/e + ε
for any ε unless P = NP, we show the following:

[1] OPTMSC ≥ x⇒ OPTSMS ≥ x/|U|: Consider the set
S′ of similarity measures that correspond to the chosen subsets in
OPTMSC , and we have |S′| = k. We now show that using the
similarity measures in S′ leads to a false positive rate of at most γ.
For Case 1 (k ≥ γ|F|), the false positive rate is |S′|/z; therefore,
we have: |S′|/z ≤ k/z ≤ γ. For Case 2 (k < γ|F|), the false
positive rate is (|S′|+ z − |F|)/z; therefore, we have:

(|S′|+z−|F|)/z ≤ 1+(k−|F|)/z ≤ 1+(k−|F|) 1− γ

|F| − k
= γ.

Next, we show that using the similarity measures in S′ leads to a
detection rate no less than x/|U|. As OPTMSC ≥ x, the solution
covers at least x elements in U . Given how we construct ISMS ,
using the similarity measures in S′ can correctly detect x out of
|U| ADGs labeled as 0. Hence, we must have: OPTSMS ≥ x/|U|.

[2] OPTMSC < (1 − 1/e + ε)x ⇒ OPTSMS < (1 −
1/e + ε)x/|U|: We prove OPTSMS ≥ (1 − 1/e + ε)x/|U| ⇒
OPTMSC ≥ (1−1/e+ε)x instead. Consider the set F ′ of subsets
in family F that correspond to the similarity measures selected in
OPTSMS . As OPTSMS ≥ (1 − 1/e + ε)x/|U|, at least (1 −
1/e + ε)x ADGs labeled as 0 have been detected successfully as
anomalous by OPTSMS . Hence, the union of subsets in F ′ have
at least (1− 1/e+ ε)x elements.

Let y be the number of similarity measures chosen in OPTSMS .
For Case 1 (k ≥ γ|F|), the false positive rate is y/z, which is no
greater than γ; therefore, we have: y ≤ γz. As y is an integer,
y ≤ �γz� = �γ	k/γ
�. If γ = 1, y ≤ k immediately follows;
otherwise (γ < 0), y ≤ �γ(k/γ + 1)� = k. For Case 2 (k <
γ|F|), the false positive rate is (y + z − |F|)/z, which is no
greater than γ; therefore, we have: y ≤ |F| − (1 − γ)z. As y is

an integer, y ≤ �|F| − (1 − γ)z� = �|F| − (1 − γ)� |F|−k
1−γ
��.

Hence, if γ = 0, y ≤ k immediately follows; otherwise (γ > 0),

y ≤ �|F| − (1 − γ)( |F|−k
1−γ

− 1)� = �k + (1 − γ))� = k. As
for both cases no more than k similarity measures are chosen and
selecting the subsets corresponding to these similarity measures in
OPTSMS leads to at least (1−1/e+ ε)x elements covered in F ′,
OPTMSC must contain at least (1− 1/e+ ε)x elements. �

APPENDIX B: THE DUAL SMS (SMS−1) PROBLEM

Using the same notations as Eq. (8), the Dual Similarity
Measure Selection (SMS−1) problem is defined as follows:

argminS′ w(S′) (25)

subject to: d(S′) ≥ γ′

where 0 ≤ γ′ ≤ 1.
In the following theorem, we establish the inapproximability

result of the SMS−1 problem:
Theorem 3: For any γ′ with 0 ≤ γ′ ≤ 1 and a constant b,

SMS−1 cannot be approximated in polynomial time within a factor
of b log n, where n is the number of training samples, unless NP ⊆
ZTIME(nloglogn)1.

Proof: First note that the cardinality set cover (CSC) problem
cannot be approximated in polynomial time within a factor of
b log ñ, where ñ is the size of the universal set of the set cover
instance, unless NP ⊆ ZTIME(ñlog log ñ) [27]. Next, we prove
that there is a gap preserving reduction from CSC to SMS−1.

Consider an instance ICSC of the CSC problem: given a universe
U = {U1,U2, ...,U|U|}, a family F of subsets of U , and an integer
k, find whether there is a set covering of size at most k. A cover
or set covering is defined to be a subfamily C ⊆ F of sets
whose union is U . Given ICSC , we construct the corresponding
instance ISMS−1 of the SMS−1 problem as follows. There are
|F| similarity measures in S. The training ADG sequence contains
|F|+ �|U|/γ′� ADGs in it. (1) For the first |F| ADGs, their true
labels are all 1 (normal), and the ith similarity measure where
1 ≤ i ≤ |F| classifies only the ith ADG among these first |F|
ADGs as 0 (anomalous) and all the other ADGs as 1 (normal). (2)
For the next U ADGs, their true labels are all 0 (anomalous), and
the individual classifier trained for the ith similarity measure, where
1 ≤ i ≤ |F|, classifies the jth ADG among these U ADGs as 0
(anomalous) if the ith subset contains element Uj , and 1 (normal)
otherwise. (3) For the last �|U|/γ′� − |U| ADGs, their true labels
are all 0 but all similarity measures classify them as 1 (normal).

[1]OPTCSC ≤ x⇒ OPTSMS−1 ≤ x/|F|:
Given an optimal solution to CSC, we choose the similarity mea-

sures corresponding to the chosen subsets in F . As OPTCSC ≤ x,
at most x similarity measures are chosen. Note that in ISMS−1 ,
only the first |F| ADGs have true labels as 1 (normal). Hence,
the false positive rate is at most x/|F|. On the other hand, for
the middle |U| ADGs (whose true labels are 0), using the selected
similarity measures must be able to detect all them due to set
covering. As there are in total �U/γ′� ADGs with true labels as 0,
the fraction of these ADGs that are detected as 0 by the selected
similarity measures is U/�U/γ′� ≥ γ′. Hence, using the selected
similarity measures leads to d(S′) ≥ γ′. Hence, we must have:
OPTSMS−1 ≤ x/|F|.

[2]OPTCSC > bx log log |U| ⇒ OPTSMS−1 >
bx log log |U|/|F|:

We prove that OPTSMS−1 ≤ bx log log |U|/|F| ⇒
OPTCSC ≤ bx log log |U| instead. Consider S′, the set of selected
similarity measures in the optimal solution to SMS−1. As d(S′) ≥
γ′ and the number of ADGs with true labels as 0 is �|U|/γ′�, using
similarity measures in S′ can detect at least 	γ′×�|U|/γ′�
 = |U|
ADGs labeled as 0 (anomalous). Given how we construct ISMS−1 ,
the subsets corresponding to the selected similarity measures must
be a set cover. As OPTSMS−1 ≤ bx log log |U|/|F| and there
are |F| ADGs labeled as 1, the number of selected similarity
measures is no greater than bx log log |U|. Hence, we must have:
OPTCSC ≤ bx log log |U|. �

1Note that ZTIME(T (n)) contains every language for which there
exists an expected time O(T (n)) zero-error probabilistic Turing Machine.

165


