
Computer Networks 55 (2011) 1941–1956
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
AntBot: Anti-pollution peer-to-peer botnets

Guanhua Yan a,⇑,1, Duc T. Ha b,2, Stephan Eidenbenz a

a Los Alamos National Laboratory, Los Alamos, NM 87545, United States
b Hewlett-Packard, Cupertino, CA 95014, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 September 2010
Received in revised form 7 February 2011
Accepted 8 February 2011
Available online 15 February 2011
Responsible Editor: L. Salgarelli

Keywords:
Botnet
aMule
Peer-to-peer
Pollution attack
Storm botnet
1389-1286/$ - see front matter Published by Elsevie
doi:10.1016/j.comnet.2011.02.006

⇑ Corresponding author. Tel.: +1 505 6670176; fa
E-mail address: ghyan@lanl.gov (G. Yan).

1 Los Alamos National Laboratory Publication No. L
2 This work was done when Duc T. Ha was wo

National Laboratory.
Botnets have emerged as one of the most severe cyber-threats in recent years. To evade
detection and improve resistance against countermeasures, botnets have evolved from
the first generation that relies on IRC chat channels to deliver commands to the current
generation that uses highly resilient P2P (peer-to-peer) protocols to spread their C&C
(Command and Control) information. On an encouraging note, the seminal work done by
Holz et al. [14] showed that P2P botnets, although relieved from the single point of failure
that IRC botnets suffer, can be easily disrupted using pollution-based mitigation schemes.

For white-hat cyber-security practitioners to be better prepared for potentially destruc-
tive P2P botnets, it is necessary for them to understand the strategy space from the attack-
er’s perspective. Against this backdrop, we analyze a new type of P2P botnets, which we
call AntBot, that aims to spread their C&C information to individual bots even though an
adversary persistently pollutes keys used by seized bots to search the C&C information.
The tree-like structure of AntBot, together with the randomness and redundancy in its
design, renders it possible that individual bots, when captured, reveal only limited infor-
mation. We mathematically analyze the performance of AntBot from the perspectives of
reachability, resilience to pollution, and scalability. To evaluate the effectiveness of AntBot
against pollution-based mitigation in a practical setting, we develop a distributed high-
fidelity P2P botnet simulator that uses the actual implementation code of aMule, a popular
Kademlia-based P2P client. The simulator offers us a tool to evaluate the attacker’s strategy
in the cyber space without causing ethical or legal issues, which may result from real-
world deployment. Using extensive simulation, we demonstrate that AntBot operates resil-
iently against pollution-based mitigation. We further suggest a few potential defense
schemes that could effectively disrupt AntBot operations and also present challenges that
researchers need to address when developing these techniques in practice.

Published by Elsevier B.V.
1. Introduction

Botnets, which are networks of compromised machines
sharing the same command and control (C&C) infrastruc-
ture, have emerged as one of the most severe threats to
Internet security in the past few years. To improve resil-
r B.V.

x: +1 505 6679137.

A-UR-09-06004.
rking at Los Alamos
ience to node failures, the new generation of botnets lever-
age the self-organizing structure of P2P networks. Under
the umbrella of decentralized P2P network architectures,
these botnets can scale up to a large number of nodes
but still do not suffer a single point of failure as traditional
IRC-based botnets do. Moreover, these P2P botnets can
hide their communications among normal P2P traffic: the
botmaster publishes C&C information into a normal P2P
network, and each bot, which is also part of the P2P net-
work, regularly retrieves these information. Under the dis-
guise of normal P2P traffic, botnet C&C communications
are hard to detect at the network layer, given the fact that

http://dx.doi.org/10.1016/j.comnet.2011.02.006
mailto:ghyan@lanl.gov
http://dx.doi.org/10.1016/j.comnet.2011.02.006
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1942 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
P2P traffic comprises a large portion of Internet traffic
nowadays.

Fortunately, P2P botnets do have their own Achilles’
heel. As their C&C communications are based on P2P proto-
cols, they are not immune to attacks inherent in popular
file-sharing P2P networks, where strong authentication is
commonly lacking. In their seminal work [14], Holz et al.
explored techniques to mitigate the Storm botnet. They
first used honeypots to capture Storm bot executables
spread through spamming emails, and then ran these exec-
utables in a controlled sandbox. After successfully hooking
the controlled bot instances onto the Storm botnet, they
obtained keys that were used by those bots to search the
current command issued by the botmaster. It was found
that only 32 keys were used every day for the purpose of
communications in the Storm botnet. By simply overwrit-
ing information associated with these 32 keys, the commu-
nication of the Storm botnet can be effectively disrupted.
This pollution-based technique has been widely used tech-
nique to damage the usability of copyrighted contents in
file sharing P2P networks [18].

For white-hat cyber-security practitioners to be better
prepared for potentially destructive P2P botnets, it is nec-
essary for them to understand the strategy space from the
attacker’s perspective. Against this backdrop, we analyze a
new type of P2P botnets, which we call AntBot, that aims to
spread their C&C information to individual bots even
though an adversary persistently pollutes keys used by
seized bots to search the C&C information. Our key contri-
butions are summarized as follows: (1) We design a dis-
tributed protocol for AntBot, which uses a tree-like
structure for AntBot to propagate botnet commands in
P2P networks. The key idea of AntBot is that there are far
more low-level bots that are closer to the bottom of the
tree than high-level bots so that if a bot is seized by the
adversary, it is highly likely that it is a low-level bot and
polluting the keys that this bot uses to search or publish
the command affects only a small number of bots at lower
levels. (2) We analytically study three important proper-
ties of AntBot: reachability, resilience against pollution,
and scalability. Through numerical analysis, we perform
sensitivity study of AntBot against its key input parame-
ters. (3) We implement AntBot using the actual develop-
ment code of a popular P2P client, aMule, which is based
on the KAD protocol [4], a variant of Kademlia [20]. To
evaluate performance of AntBot, we develop a distributed
P2P botnet simulator that replaces system calls related to
time and socket in the original aMule code with simulated
functions. We also implement a crawling-based index pol-
lution scheme in the simulator. (4) We perform extensive
simulation studies to investigate how resilient AntBot is
against pollution-based mitigation schemes. To achieve
realism in these experiments, we model the churn phe-
nomenon and time zone effects of both regular P2P users
and bot activities, using previous measurement results col-
lected from the KAD network and the Storm botnet. The
simulation results reveal that AntBot indeed greatly im-
proves the resilience of the P2P botnet against pollution-
based mitigation. (5) We suggest a few potential defense
schemes that could effectively disrupt AntBot operations
of AntBot and also present challenges that researchers
need to address when developing these techniques in
practice.

The remainder of this paper is organized as follows. Sec-
tion 2 presents previous work related to AntBot. We pro-
vide details on how to design the protocol for AntBot in
Section 3 and use an example to illustrate its operation.
In Section 4, we mathematically analyze the performance
of AntBot from three different perspectives: reachability,
resilience against pollution, and scalability, and also pro-
vide numerical results on the effects of different input
parameters. Section 5 elaborates on how we implement
AntBot on a distributed simulation platform. In Section 6,
we use extensive simulation experiments to demonstrate
that AntBot can work resiliently against pollution-based
mitigation. We further suggest a few potential counter-
measures and discuss their challenges in practice in Sec-
tion 7. Finally, we draw concluding remarks in Section 8.
2. Related work

As botnets emerge as one of the most severe threats to
Internet security, there have been a plethora of works ded-
icated to botnet research in the past few years. One line of
research focuses on analyzing behaviors of real-world bot
executables obtained through spamming emails, honey-
pots, etc. In [2], Barford and Yegneswaran compared four
IRC-based botnets, including Agobot, SDBot, SpyBot, and
GTBot, from several different perspectives. Behaviors of a
few HTTP-based bots, including Rustock, BlackEnergy,
and Clickbot.A, have been investigated in [6,22,8]. Porras
et al. performed static analysis of the Storm worm execut-
able [23], Holz et al. analyzed the propagation mechanism
of the Storm worm and its behaviors at both system and
network levels [14], and Kanich et al. unraveled a few
interesting myths about the Storm overnet [16]. Our work
was motivated by the observation made in [14] that using
a strong pollution scheme, it is possible to disrupt opera-
tions of real-world P2P botnets like Storm, but from our
work we conclude that a P2P botnet, if carefully designed,
could still operate resiliently against pollution-based
mitigation.

There are also several measurement studies on existing
botnets. Rajab et al. used a honeypot to track 192 IRC-
based botnets and made some interesting observations
on their spreading and growth patterns [1]. The Torpig bot-
net was hijacked and it was found that this botnet, esti-
mated at consisting of about 182,000 compromised
machines, posed severe threats including financial data
stealing, DoS attacks, and password leakage [30]. Dagon
et al. used a DNS redirection technique to capture botnet
traffic and by analyzing such traffic, they found that
botnet growth exhibited strong time zone effects [7].
Botnet-based spamming campaigns have been studied by
analyzing similarity of email texts [38] and embedded
URLs [36]. In this work, when we experimentally evaluate
resilience of AntBot against pollution-based mitigation, we
use results from these previous measurement studies to
build realistic models that characterize important aspects
of bot activities, such as time zone effects and diurnal
patterns.

3 The Storm botnet also used a secret key 0x3ED9F146 for authentication
by individual bots [14].

4 Throughout this paper, an adversary refers to a white-hat security
expert attempting to disrupt botnet operation.

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1943
Many bot and botnet detection techniques have been
developed recently. Gu et al. developed detection ap-
proaches that hinge on IDS (Intrusion Detection System)-
driven dialog correlation [11] and strong spatial–temporal
correlation and similarity of bot activities in the same bot-
net [12,10]. Liu et al. proposed an approach based on vir-
tual machines to detect bot-like activities on individual
hosts [19]. Transport-layer communication records have
been used to detect botnet behaviors in large Tier-1 ISP
networks [17]. Ramachandran et al. developed a botnet
detection scheme that relies on passive analysis of DNS-
based blackhole list (DNSBL) lookup traffic [25]. Signa-
ture-based botnet detection schemes have also been
proposed, including Rishi [9] and AutoRE [36]. TAMD is
developed by Yen and Reiter that detects stealthy malware,
including bots, in an enterprise network by mining com-
munication aggregates in which traffic flows share com-
mon characteristics [37]. Our work is orthogonal to these
botnet detection efforts and it remains as our future work
how to develop effective countermeasures against intelli-
gently designed botnets such as AntBot.

We are not alone in exploring hypothetical botnets that
are hard to detect or disrupt. Vogt et al. proposed Super-
Botnet, which divides a large botnet into networks of
smaller independent botnets to make it more resistant to
countermeasures [31]. AntBot, although designed specifi-
cally for P2P botnets, can be applied to both large and small
botnets to improve their resilience. Overbot, another
botnet protocol built on the Kademlia-based P2P networks,
aims to hide membership information of the botnet so that
a captured bot does not reveal any information about other
bots [27]. Chen et al. discussed design of delay-tolerant
botnets, which add random delays to command propaga-
tion to evade detection [5]. Wang et al. proposed a hybrid
P2P botnet with heterogeneous compromised machines
(e.g., based on whether they have static IP addresses and
whether they are behind firewalls) [32]. Hund et al. pro-
vided some guidelines on how to design next-generation
botnets that are hard to track and shut down [15]. Nappa
et al. proposed a new botnet model called parasitic overlay,
which leverages an existing overlay network such as Skype
[21]. All these efforts have different design goals from Ant-
Bot, which specifically aims to improve resilience of P2P
botnets against pollution-based mitigation.

Wang et al. performed a thorough study on P2P botnets
in [33], including analyzing effectiveness of index poison-
ing on mitigating botnet operation. They also proposed to
use public/private key pairs to defeat index poisoning de-
fense. In their approach, the botmaster uses his private
key to sign command messages, and when a bot receives
a publishing request of an index, it verifies the message
to ensure that it is authentic using the botmaster’s public
key before storing it locally. It is however noted that, as
admitted by the authors themselves, their approach works
only when the entire P2P network is a dedicated botnet,
that is, no normal nodes exist in the P2P network. In our
work, we consider a more general type of P2P botnets,
including not only bot-only P2P botnets but also those
leveraging existing P2P networks such as KAD to spread
their command and control information. If there are nor-
mal nodes, they may not follow the protocol that requires
them to verify the authenticity of received messages. In the
experiments shown in Section 6, we shall evaluate the ef-
fect of AntBot in defeating pollution-based mitigation un-
der the presence of both normal peers and bots.

3. Protocol design of AntBot

In this section, we first describe the P2P network model
from an abstract level, then present how the botmaster and
individual bots behave in our design. Finally, we further
provide the high-level intuition behind this design.

3.1. P2P network model

In this work, we consider the following type of P2P net-
works. First, each peer has a globally unique (or almost un-
ique) identifier. This is applicable to most existing P2P
networks because node IDs in them are often randomly
generated in a large ID space (e.g., Kademlia), hashed from
IP addresses to a large ID space (e.g., Chord), or simply IP
addresses of the peers in the network (e.g., Gnutella). Sec-
ond, the P2P network provides two primitive operations:
put() and get(). The put() operation publishes a data item
with a certain key in the network so that other peers can
obtain it, and the get() operation instead retrieves a data
item with a certain key from the network. In a typical
DHT (Distributed Hash Table)-based P2P network, a put()
operation stores a data item or its index at a different node
whose ID is close to that of the data item; by contrast, in an
unstructured P2P network, a put() operation can simply
make a local data item accessible to other peers. On the
other hand, a get() operation in a DHT-based P2P network
searches a data item with a certain ID either iteratively or
recursively so that the distance to the target node de-
creases monotonically. A get() operation in an unstructured
P2P network typically involves flooding to get a response,
hopefully, from a peer that owns the searched data items.
Third, there is no strong authentication scheme deployed
so that pollution attacks can take place. In such an open
network, every peer can publish data items freely.

3.2. Algorithm description

In our design, we assume that the botmaster and all the
bots share the same secret key K,3 and this key is unknown
to the adversary.4 To thwart efforts to obtain key K by static
code analysis, this key is changed regularly by updating the
bot executable. The bot executable can also apply sophisti-
cated obfuscation techniques such as polymorphism to com-
plicate static code analysis. How to protect this secret key
with anti-reverse engineering techniques is beyond the
scope of this work. Besides the secret key, a private/public
key pair ðKprv ;KpubÞ is also used by AntBot. The public key
Kpub is embedded in the bot executable code and thus
known to every individual bot. The private key, Kprv , how-
ever, is only known to the botmaster.

1944 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
Commands issued by the botmaster are stored as data
objects in the P2P network. The keys used to search these
data objects are called command keys. These command
keys are changed regularly every d time units. For instance,
command keys in the Storm botnet change every day. Sim-
ilar to the Storm botnet, all bots in AntBot use the Network
Time Protocol (NTP) to synchronize the time. We assume
that all bots have the knowledge of a global time t. This
global time, for example, can be the Greenwich Mean Time
(GMT). Moreover, the global time is discretized into equal
periods of length d time units, which are denoted as
{Di}ji=1,2,. . .. The starting time of period Di is denoted as
s(Di).

In contrast to the Storm botnet, however, bots in AntBot
do not use the same set of keys to search the current com-
mand within each period. Let set B = {bk}jk=1,2,. . .,n denote
the entire set of bots in a botnet with n bots, and Ik denote
the identifier of bot bk. For the current time period Di, each
bot bk computes its signature SðiÞk as SðiÞk ¼ f ðIkksðDiÞÞ, where
k is the concatenation operation and function f(�) is a hash-
ing function that maps the input string into a space of size
2l. That is to say, the output of function f(�) is an l-bit binary
number. For AntBot, it is not required to have a fixed l. In-
stead, as more bots are recruited into the botnet, the bot
executable can be updated to adopt a larger l. Under such
circumstance, hash function f should be able to produce di-
gests with a variable length. For instance, f can be the first l
bits from the output of the MD5 hash function.

Based on the signature of each bot, we further define its
rank as follows. First, we define a set of numbers
fhjgj06j6rmax

, where hj is called a landmark and

0 ¼ h0 < h1 < h2 < � � � < hrmax�1 < hrmax ¼ 2l: ð1Þ

If the signature of a bot falls within [hj,hj+1), its rank is j + 1.
Counterintuitively, we say that rank r1 is higher than rank
r2 if r1 < r2. All the landmarks are defined in the bot
executable.

(1) Behaviors of the botmaster. Let ci denote the
command issued by the botmaster within period Di. To is-
sue the command, the botmaster can remotely login to any
compromised machine in the botnet, possibly through
multiple step stones to evade detection. He then creates
a data object with contents as EK½ciksðDiÞkHKprv ½ciksðDiÞ��,
where EK½X� denotes encrypting X with key K using a sym-
metric encryption algorithm (e.g., DES), and HKprv ½X� de-
notes a digital signature signed with the private key of
the botmaster Kprv . A standard digital signature algorithm
such as DSA can be used here. We call the data object with
its digital signature a command object.

We further define function g as follows:

gðsðDiÞ; d; sÞ ¼ EK½sðDiÞkdks�; ð2Þ

where both d and s are integers, 0 6 d < 2l, and 0 6 s < smax.
The command object is published every x time units by
the botmaster using the put() operation with command
keys in set A, where

A ¼ fgðsðDiÞ;d; sÞj8d : h0 6 d < h1;8s : 0 6 s < smaxg:

We say that s is the slot number of the command key
g(s(Di),d,s). Obviously, h1 � smax command keys are initially
generated by the botmaster. The behavior of the botmaster
is illustrated in Algorithm 1 in Appendix A.

(2) Behaviors of individual bots. An individual
bot first computes its signature and then its rank r within
period Di. The bot randomly chooses q distinct numbers
from [hr�1,hr), which are denoted as x1,x2, . . . ,xq. For each
xj, where 1 6 j 6 q, the bot randomly chooses a slot number
yj from [0,smax � 1], and then creates the corresponding
command key g(s(Di),xj,yj). Note that the landmarks h1

through hrmax�1 are chosen in such a way that hr+1 � hr,
where 0 6 r 6 rmax � 1, must be no smaller than q. Hence,
each active bot can use q command keys to search the
command object.

The bot iteratively uses the get() operation to search the
command object with command keys in set B = {g(s(Di),
xj,yj)}—16j6q. When it finds the data object, it decrypts this
object with key K and then uses the public key Kpub to ver-
ify whether the digital signature matches the data. If so, it
means that the command object is indeed from the bot-
master. The bot further checks whether the decrypted time
matches the starting time of the current period. If they do
not match, the bot keeps waiting for the next searched re-
sult; otherwise, it obtains the current command ci and
stops searching. It is noted that checking digital signature
in AntBot provides a level of authentication: If the data
item is corrupted, say, due to pollution, it is highly likely
that the digital signature does not match the data and
the bot simply ignores the command decrypted from the
corrupted data item.

An active bot may not be able to find the command ob-
ject because it has not been published by bots of higher
ranks. The bot thus keeps searching the command object
with the same set of command keys within period Di. The
rationale behind such a design is that within period Di, at
most q command keys are used by each bot to search the
command, thereby limiting the impact of pollution if a
bot is seized.

After a bot of rank r successfully fetches the current
command, it executes this command and publishes it for
bots of rank r + 1. These two things can be done in parallel,
especially when executing the command takes a significant
amount of time to finish. Note that there are hr+1 � hr un-
ique signatures of rank r. To explain the publishing behav-
ior of a bot, we define c(r), the branching factor from rank r,
as follows:

cðrÞ ¼
hrþ1�hr
hr�hr�1

; if 0 < r < rmax;

0; if r ¼ rmax:

(
ð3Þ

Consider a bot of rank r whose signature is x. If r < rmax, it
publishes the command object with a command key for
each signature d of rank r + 1 that satisfies the following
condition:

hr þ cðrÞðx� hr�1Þ 6 d < hr þ cðrÞðx� hr�1 þ 1Þ: ð4Þ

For each signature d that satisfies the above condition, the
bot randomly chooses a slot number s from [0,smax � 1],
creates a command key g(s(Di),d,s), and then uses it to
publish the command object. As each bot uses the same
set of command keys to publish the command object within
period Di, this helps reduce the impact of pollution if this

Table 1
Steps of spreading a command (the steps are not necessarily sequential).

Entity Operation Key Signature s Results

1 Botmaster put() A 0000 0 Succeed
2 Botmaster put() B 0000 1 Succeed
3 Botmaster put() C 0001 0 Succeed
4 Botmaster put() D 0001 1 Succeed
5 Bot 1 get() D 0001 1 Succeed
6 Bot 1 put() E 0100 1 Succeed
7 Bot 1 put() F 0101 0 Succeed
8 Bot 2 get() L 0011 0 Fail
9 Bot 2 get() F 0101 0 Succeed

10 Bot 2 put() G 1100 0 Succeed
11 Bot 2 put() H 1101 1 Succeed

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1945
bot is seized by the adversary. We summarize the behav-
iors of individual bots in the form of pseudo code in Algo-
rithm 2 in Appendix A.

3.3. Further discussion

In practice, branching factors c(r) are set to be greater
than 1 except for the lowest level. Hence, commands are
delivered to bots through a tree-like structure, in which
commands are relayed by bots at the top to those at the
bottom. This is crucial to preventing pollution-based miti-
gation: because there are more bots with low ranks than
those with high ranks, the adversary is more likely to catch
a low-rank bot than a high-rank one, thus limiting the im-
pact if he pollutes the keys used by this bot to search or
publish the command object. Moreover, each bot uses mul-
tiple command keys to search the command object.
Although this enables the adversary to pollute more than
one command keys if it is caught, the probability that the
adversary can catch so many other bots that all command
keys used by this bot (if it is not caught) to search the com-
mand object are corrupted is also low. Similarly, having
multiple slots for each signature reduces the impact of pol-
lution if a bot is caught and all the command keys that it
uses to publish the command object are corrupted by the
adversary.

Example. We use a simple example, illustrated in Fig. 1
and Table 1, to explain the algorithm. In this example, we
have: l = 4, q = 2, h1 = 2, h2 = 6, and h3 = 14. The branching
factors from both ranks 1 and 2 are 2, and those from ranks
3 and 4 are 0.25 and 0, respectively. In Steps 1–4 shown in
Table 1, the botmaster publishes the command with four
command keys, A-D. Bot 1, randomly choosing a signature
from [0,h1 � 1] and a slot number between 0 and 1, creates
command key D and then uses it to get the command (Step
0

1

0

1

111

Botmas

0000

0010 0011

0110 0111 1000 1001

1110

A

B

s

s

command keyerutangis

Fig. 1. High-level illustration of comm
5). Bot 1 further publishes the command with command
keys E and F (Steps 6 and 7). Bot 2 generates two command
keys L and F and use them to search the command object.
Only with command key F can it get the command object
(Steps 8 and 9). Bot 2, thereafter, publishes the command
object with two other keys, G and H (Steps 10 and 11).

Implications. As discussed above, the distinguishing fea-
ture of AntBot is its adoption of a hierarchical structure to
distribute command and control information rather than
using a small set of command keys, which can be more eas-
ily exposed from bot executables. In the proposed scheme,
PKI is used by AntBot for verifying the authenticity of the
sender of a message, and the secret key K is needed for
encrypting the messages and generating command keys
by individual bots. As a revealed secret key renders it pos-
sible for the adversary to not only decrypt the messages
but only obtain the command keys used by individual bots
for searching command objects, one may wonder whether
such a secret key can be replaced by PKI in AntBot. The
challenge, however, is that it is a daunting task to distrib-
ute private/public key pairs for individual bots. Moreover,
0

1

C

D

s

0

1

0

1

0

1

s

1

ter

0001

0100
0101

1010 1011 1100 1101

s

s

E

F

G

H

1dna0morfnesohcrebmunmodnar:s

and distribution in the example.

1946 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
bots change their ranks dynamically over time, making it
difficult to fix a private/public key pair for each rank.
Hence, the hybrid scheme used by AntBot is a tradeoff be-
tween self-protection and operational overhead.

On the other hand, as top level bots relay the command
messages to bots of lower ranks, it is important to ensure
that h1 cannot be too small considering some top level bots
may not be online. Due to this concern, in our design, we
let each bot search the command through multiple com-
mand keys from multiple nodes of the higher rank. More-
over, the hierarchical structure also introduces extra
delays for individual bots to receive command and control
information. It is however noted that delays are usually not
a critical concern for most botnet operations, because the
command and control channel is often used to instruct
individual bots to launch attacks at a future time (e.g.,
DDoS attacks) or time insensitive attacks (e.g., sending
spamming emails). Even for botnets that demand low com-
mand dissemination delays, a higher query frequency,
which is controlled by parameter x in Algorithm 2, can
be used by each individual bot to search command and
control information from the botmaster.
4. Analysis

In this section, we mathematically analyze the perfor-
mance of AntBot from three perspectives: reachability,
resilience to pollution, and scalability. We also analyze
how sensitively AntBot performs under different parame-
ter settings. In our analysis, we consider a botnet with n
bots, among which the fraction of active bots within period
Di is ai. Hence, the number of active bots within period Di

is ain.
We also need to know the distribution of the active bots

over the 2l signatures, which is decided by the choice of
hash function f. A reasonable assumption might be that
an active bot is distributed to each signature with an equal

probability. Define vector W
!

as follows: W
!
¼ hw0;w1;

. . . ;w2l�1i, where wd(0 6 d 6 2l � 1) denotes the number
of active bots that are associated with signature d. Given
the fact that the number of distributions of i identical ob-

jects to j distinct recipients is iþ j� 1
i

� �
, the number of

combinations for W
!

is thus anþ 2l � 1
an

� �
. This number

grows at least as fast as HððanÞ2
l�1Þ when an� 2l � 1.5

With a typical botnet with thousands or tens of thousands
of active bots and a reasonable l (e.g., l = 10), the number of
combinations renders our analysis computationally pro-
hibitive. To simplify our analysis, we assume that each sig-
nature corresponds to the same number of active bots,6

which is an/ 2l. Hence, we have w0 ¼ w1 ¼ � � � ¼ w2l�1 ¼
an=2l.
5 For m
k

� �
, it grows as H(mk) when k is small; when k = bm/2c, its

growth rate is the fastest, which is Hð2m=
ffiffiffiffiffi
m
p
Þ.

6 Without loss of generality, we ignore the trivial cases in which an mod
2l – 0.
Let b denote the reachability of a data object, which is
the probability that it can be obtained by any peer in the
network. It is noted that actual P2P networks are dynamic
due to arrival and departure of peers and each bot attempts
multiple times to retrieve the command object. As model-
ing such dynamics is difficult, we ignore these details by
simply assuming that b is constant throughout each period
Di.

4.1. Reachability

An active bot may not retrieve successfully the com-
mand issued by the botmaster due to the following rea-
sons. First, even if the data item searched by the bot is
available in the P2P network, it may not be reached be-
cause of limited flooding in unstructured P2P networks
or no paths to it in structured P2P networks. Second, when
a bot of rank r randomly searches a command key gener-
ated with signature d and slot number s(0 6 s 6 smax � 1),
it is possible that no bots of rank r � 1 publish the com-
mand with this command key at all. Suppose that bots of
rank r � 1 with signature d0 are responsible for using this
command key to publish the command. Two cases are pos-
sible: active bots with signature d0 themselves fail to get
the command, or active bots with signature d0 get the com-
mand successfully but they do not publish the command
object with command keys generated from slot number s.
Considering all these possibilities, we can establish the fol-
lowing theorem (the proof is given in Appendix B):

Theorem 1. Suppose that there is a botnet with n bots and
the fraction of active ones is a. If the following conditions
hold: (1) an mod 2l = 0 and the number of active bots
associated with each signature is an/2l and (2) the reachabil-
ity of an existing data item is b, then the expected number of
active bots that successfully executes the botmaster’s com-
mand after running the protocol as described is:
ne ¼
an

2l

Xrmax

r¼1

ð1� drÞðhr � hr�1Þ; ð5Þ

where:

dr ¼
ð1� bÞq; if r ¼ 1;

1� b 1� dr�1 þ ð1�dr�1Þðsmax�1Þ
smax

� �an
2l

� �� �q

; if r > 1:

8><
>:

ð6Þ
4.2. Resilience against pollution

Suppose that an adversary has captured the bot execut-
able and created m bot instances, each of which runs in a
controlled environment. For clarity, we call these bots un-
der control of the adversary subversive bots, and as opposed
to them are loyal bots. The adversary monitors all the com-
mand keys that subversive bots use to either search or
publish some data objects in the P2P network, and then
publishes corrupted information with each of these com-
mand keys that have been observed. A loyal bot fails to
execute the command if all the command keys it uses to

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1947
search the command have been corrupted by the
adversary.

We assume that there are n loyal bots and the fraction of
active ones among them is a. Moreover, the signature of a
subversive bot is uniformly distributed over the 2l ones.
Let Cp and Cs denote the set of command keys that subver-
sive bots use to publish and search the command data object
in the P2P network, respectively. We also assume that all
command keys in Cp [Cs are corrupted by the adversary.

Now consider any command key kðrÞc that is searched by
loyal bots of rank r. The probability that it is searched by a
subversive bot is given as follows:

~psðrÞ ¼
hr � hr�1

2l
� 1�

hr � hr�1 � 1
q

� �
hr � hr�1

q

� �
0
BBB@

1
CCCA � 1

smax
¼ q

2l
� 1
smax

:

ð7Þ
As there are m subversive bots, we thus can derive the
probability that command key kðrÞc is searched by any of
the m subversive bots is:

PfkðrÞc 2 Csg ¼ 1� ð1� ~psðrÞÞm: ð8Þ

On the other hand, the probability that command key kc is
published by a subversive bot is given by:

~ppðrÞ ¼
0; if r ¼ 1;
1
2l � 1

smax
; if r > 1:

(
ð9Þ

Note that command keys of rank 1 are published only by
the botmaster and thus cannot be published by subversive
bots. Similarly, the probability that command key kc is cor-
rupted because at least one subversive bot uses it to pub-
lish the command data object is given as follows:

PfkðrÞc 2 Cpg ¼ 1� ð1� ~ppðrÞÞm: ð10Þ

Let f0r be maxf0;1� PfkðrÞc 2 Csg � PfkðrÞc 2 Cpgg, where
1 6 r 6 rmax, and we can establish the following theorem
(the proof is given in Appendix C):

Theorem 2. Suppose that there is a botnet with n loyal bots
and the fraction of active ones is a. Also suppose that there are m
subversive bots from which command keys that are used to
search and publish the command object are corrupted. If the
following conditions hold: (1) an mod 2l = 0 and the number of
active loyal bots associated with each signature is an/2l and (2)
the reachability of an existing data item is b, then the expected
number of active loyal bots that successfully executes the
botmaster’s command after running the protocol as described is:

n0e P n00e ¼
an

2l

Xrmax

r¼1

ð1� d00r Þðhr � hr�1Þ: ð11Þ

where d00r is computed as follows:

d00r ¼

ð1� bð1� ~psð1ÞÞmÞq;
if r ¼ 1;

1� bf0r�1 � 1� d00r�1 þ ð1� d00r�1Þ � smax�1
smax

� �an
2l

� �� �q

;

if r > 1:

8>>>>><
>>>>>:

ð12Þ
4.3. Scalability

As mentioned earlier, the rationale behind the tree-like
command distribution in the proposed scheme is to en-
hance operational resilience to pollution-based botnet mit-
igation. One however may argue that a much simpler
solution may achieve the same goal: the botmaster pub-
lishes the command object with a command key that is un-
iquely generated for each bot. With this scheme, pollution
incurs minimal damage to the botnet operation because
bots search for the command with different command
keys. Albeit being simple, this scheme obviously has scala-
bility issues, as the botmaster of a big botnet has to publish
the command object with a large number of command
keys. Moreover, this simple solution also renders traceback
easier. Suppose that the adversary monitors a set of peers
in the P2P network. Increasing the number of command
keys used to publish the command boosts the probability
that P2P traffic (e.g., routing traffic) goes through any of
those monitored peers, which thus makes it easier for the
adversary to infer which peer publishes a data item with
a specific command key.

The protocol proposed in Section 3 distributes the task
of publishing the command object to the army of bots
themselves. Based on the protocol description of AntBot,
we can easily establish the following theorem regarding
the workload of the botmaster and each bot:

Theorem 3. If the protocol is executed as described, the
botmaster publishes the command with h1 � smax command
keys, and each bot searches for the command with q
command keys and publishes the command with at most
maxrmax�1

r¼1 dhrþ1�hr
hr�hr�1

e command keys.
4.4. Sensitivity analysis

We now study the effects of different protocol parame-
ters on botnet behaviors. Let l denote the number of active
loyal bots that fall into each signature. The following sce-
nario will be treated as the baseline case: smax = 4, q = 10,
h1 = 64, b = 0.8, l = 10, and the branch factor is 4 for all
ranks except the lowest one. To understand the impact of
each of these parameters, we vary it among a set of values
while keeping the others fixed. Moreover, given a specific
combination of parameter settings, we derive both ne in
Eq. (5) when no subversive bots exist and n00e in Eq. (11)
when m, the number of subversive bots, is 2i � 40, where
i = 0,1, . . . ,8.

Effect of smax. We vary smax between 2 and 20 and the ne

and n00e as derived are illustrated in Fig. 2. Note that the
curve corresponding m = 0 actually gives ne, which is the
same in Figs. 3–7. We observe that generally speaking,
increasing smax helps increase the number of active loyal
bots that successfully obtain the command, especially
when there are a significant number of subversive bots.
This is unsurprising because a larger smax means that there
are more command keys used to publish the command,
thus reducing the adverse effect of polluting the command
keys observed from a fixed number of subversive bots. This
can also be observed from both Eqs. (7) and (9).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

G
ua

ra
nt

ee
d

fr
ac

tio
n

of
 a

ct
iv

e
bo

ts

 th
at

 e
xe

cu
te

 th
e

co
m

m
an

d

s max

 m=2560
 m=1280

 m=640
 m=320
 m=160

 m=80
 m=40

 m=0

Fig. 2. Effect of smax.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
d

fr
ac

tio
n

of
 a

ct
iv

e
bo

ts

 th
at

 e
xe

cu
te

 th
e

co
m

m
an

d

q

 m=2560
 m=1280

 m=640
 m=320
 m=160

 m=80
 m=40

 m=0

Fig. 3. Effect of q.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 4 16 64 256 1024

G
ua

ra
nt

ee
d

fr
ac

tio
n

of
 a

ct
iv

e
bo

ts

 th
at

 e
xe

cu
te

 th
e

co
m

m
an

d

Number of identity signatures of rank 1

 m=2560
 m=1280

 m=640
 m=320
 m=160

 m=80
 m=40

 m=0

Fig. 4. Effect of h1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
d

fr
ac

tio
n

of
 a

ct
iv

e
bo

ts

 th
at

 e
xe

cu
te

 th
e

co
m

m
an

d

Branch factor

 m=2560
 m=1280

 m=640
 m=320
 m=160

 m=80
 m=40

 m=0

Fig. 5. Effect of c.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.4 0.6 0.8 1

G
ua

ra
nt

ee
d

fr
ac

tio
n

of
 a

ct
iv

e
bo

ts

 th
at

 e
xe

cu
te

 th
e

co
m

m
an

d

β

 m=2560
 m=1280

 m=640
 m=320
 m=160

 m=80
 m=40

 m=0

Fig. 6. Effect of b.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40
G

ua
ra

nt
ee

d
fr

ac
tio

n
of

 a
ct

iv
e

bo
ts

 th

at
 e

xe
cu

te
 th

e
co

m
m

an
d

Number of bots per identity signature

 m=2560
 m=1280

 m=640
 m=320
 m=160

 m=80
 m=40

 m=0

Fig. 7. Effect of l.

1948 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
The negative impact of increasing smax is that when it is
larger than the number of active loyal bots per signature,
some command key slots become empty, thus reducing
the probability that the command can be accessed success-
fully, regardless of whether there are subversive bots or
not. Hence, we observe that when m 6 640 in Fig. 2,
increasing smax beyond 10 actually makes both ne and n00e
decrease.

Effect of q. We vary q among 1, 5, 10, 15, 20, 25 and 30,
and the ne and n00e as derived are illustrated in Fig. 3.
Increasing parameter q has two effects. On one hand, a lar-
ger q means that an active loyal bot can have more oppor-
tunities to obtain the command when it is not accessible
via some command keys due to reachability issues inher-
ent in P2P networks or content corruption by the adver-
sary. On the other hand, a larger value of q means that
when the adversary uses a fixed number of subversive
bots, he will be able to corrupt more command keys.
Hence, we observe mixed effects of increasing parameter q.

Effects of h1 and the branch factor c. Fig. 4 shows the ef-
fect of varying h1, the number of signatures of rank 1,
among 2i where i = 0,1, . . . ,10, and Fig. 5 gives the ne and
n00e when we change the branch factor c from 2 to 30. The
general trend is that increasing either h1 or the branch fac-
tor c helps increase the number of active loyal bots that ob-
tain the command successfully. This is because a larger
value of h1 or branch factor makes the total number of
ranks smaller, thus reducing the average number of times
needed to forward the command by bots of higher ranks.
When c is larger than 16, the fraction of active bots that

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1949
successfully execute the command remains stable, because
rmax is always 2.

From Theorem 3, we however know that the number of
command keys published by the botmaster increases line-
arly with h1, and the number of command keys published
by each bot is the branch factor (except those bots of the
lowest rank). Hence, a larger h1 leads to heavier workload
for the botmaster, and a larger branch factor means that
each bot has to publish the command with more command
keys.

Effect of b. We vary reachability parameter b from 0.2
and 1, and the results are shown in Fig. 6. Unsurprisingly,
the number of active loyal bots that successfully obtain
the command increases with b.

Effect of parameter l. Fig. 7 presents the effect of varying
parameter l among 1, 10, 20, 30, and 40. Generally speak-
ing, a larger value of l leads to a higher guaranteed fraction
of active loyal bots that successfully obtain the command.
Recall that an active loyal bot, after getting the command,
publishes it at a random command key slot for each of the
children signatures. When l is larger, the probability that a
command key slot at a rank other than 1 is published is
higher. The effect of increasing parameter l becomes less
prominent as l becomes significantly larger than smax,
which is always 4 in Fig. 7.

Discussion. It is noted that the analysis performed in this
section is based on some simplifying assumptions. For in-
stance, we assume that if a command key is polluted by
a subversive bot, none of the bots using this key to query
the command object are able to receive the command. In
reality, this may not be true because the command object
stored on some peers may not be polluted by subversive
bots. This is confirmed from the measurement results
[14], which show that even under a strong pollution
scheme, a small fraction of Storm bots could still retrieve
the command object successfully. Hence, in the following
sections, we shall study the performance of AntBot under
practical settings.
5. Implementation

We have developed a high-fidelity P2P botnet simulator
that used actual implementation code of a popular P2P
client, aMule.7 aMule implements the KAD protocol, which
is a variant of the original Kademlia protocol proposed by
Maymounkov and Mazieres [20]. It is noted that the first
version of the Storm botnet used the Overnet P2P routing
protocol, which is also based on Kademlia. In the following
discussion, we first present a brief introduction to Kademlia
and KAD; after that, we provide more details on how we
implement AntBot with the aMule code base in our distrib-
uted simulation testbed.

5.1. Kademlia and KAD

Kademlia is a DHT-based P2P routing protocol, in which
each data object or peer is identified by a 160-bit ID. The
distinguishing feature of Kademlia is its XOR metric that
7 The version we used in our study is aMule 2.1.3.
measures the distance between any two 160-bit identifies
x and y: d(x,y) = x � y. Data objects are usually stored at
those peers whose IDs are close to their owns. Routing in
Kademlia is conducted in an iterative manner: when a peer
searches for a (node or data object) ID, it queries its neigh-
bors for new peers whose IDs are closer to the target ID;
this process repeats until no closer peer IDs can be found.

Although KAD descends from Kademlia, there are some
slight distinctions between them. Besides using 128 bits
for its node and data object IDs and supporting more di-
verse messages, KAD uses a two-phase search process. In
the first phase, the searching KAD node iteratively queries
for peers closer to the target ID but at any time, at most
three peers are contacted simultaneously. In this phase,
messages of types KADEMLIA_REQUEST and KADEM-
LIA_RESPONSE are used. After a certain period of time,
the search node enters the second phase, in which it
chooses a few nodes that responded in the first phase
and contacts them for the target ID using messages of
types KADEMLIA_SEARCH_REQ and KADEMLIA_PUB-
LISH_REQ. We refer interested readers to the literature
[20] and [4] for more details about Kademlia and KAD.

5.2. AntBot implementation

We use the metadata publishing scheme in KAD to pub-
lish the command object. KAD uses a two-level publishing
scheme which divides files into two types: metadata and
location information. The first level provides references
(i.e., location information) to the real data file and the sec-
ond level uses keywords (i.e., metadata) to fetch location
information of real data files. Associated with metadata is
a list of tags, such as file names and sizes. Like the Storm
botnet, we encode the command object in the filename.

The standard KAD protocol allows only one simulta-
neous metadata publishing [4], which is controlled by the
KADEMLIATOTALSTOREKEY parameter. Although the bot
executable can remove this limitation, our implementation
is compliant with the KAD protocol so that it is harder to
detect bots by monitoring their behavior. This is done as
follows: when publishing metadata, KAD creates a search
object with type STOREKEYWORD. As its timeout value is
140 s, we let the botmaster publish the command object
with different command keys every 150 s before going to
the sleeping mode. The parameters are properly set so that
the number of command keys to publish the command ob-
ject by the botmaster (i.e., h1 � h0) does not exceed bx/
150c (we assume that a time unit is a second here).

This also applies to the bot behavior: a bot publishes
data object V using different command keys every 150 s.
As said in Section 3, a bot of rank r publishes with c(r) com-
mand keys where we recall c(r) denotes the branching fac-
tor from rank r (see Eq. (3)). If c(r) is much smaller than x/
150, the bot publishes for only a short period of time every
x time units. Note that a bot of a lower rank (i.e., a larger
rank number) is less likely to receive the command object
because it has to go through more levels of publishing and
searching. To improve command reachability to low-level
bots, we slightly modify the bot algorithm by letting each
bot also publish command objects using command keys
that it generated to search the command object. It is easy

1950 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
to see that this does not increase the vulnerability of these
command keys: if the bot is seized and thus a subversive
bot, the command keys it used to search the command
key are known to the adversary anyway. To ensure that a
bot has time to publish the command object using all these
command keys, the bot parameters are set to satisfy:
q + c(r) 6x /150.

5.3. Pollution

To study how AntBot responds to pollution-based miti-
gation, we need to implement some pollution mechanisms.
Originally, we developed a passive scheme: for each sub-
versive bot, the adversary regularly uses the standard
KAD protocol to publish junk information (i.e., a random
filename in the tag) for each command key that he ob-
serves. This approach, however, does not effectively pre-
vent many loyal bots from obtaining the command object
if they persistently search for it.

We thus adopt a more aggressive pollution scheme sim-
ilar to the one proposed by Holz et al. [14]. There are two
components involved in this approach: crawlers and pollut-
ers. A crawler regularly crawls the whole P2P network to
obtain a list of active peers. During a crawling cycle, after
every three seconds, the crawler sends a route request to
50 new different peers, asking each of them for paths to
16 carefully designed destinations. Once a peer responds
to the query by sending a list of peers, the crawler updates
its knowledge of current active peers. Polluters regularly
obtain a list of active peers from the crawlers. To prevent
overloading a polluter, we let each polluter pollute only a
portion of active peers. Every 30 s, each polluter selects
100 distinct active peers and publishes on them with junk
information using a set of the command keys that the
adversary captures using the following two schemes: (1)
Early pollution scheme: When a subversive bot becomes on-
line, the adversary obtains all the command keys it uses to
search the command object and sends the command keys
immediately to each polluter. (2) Late pollution scheme:
The adversary monitors the command keys that each sub-
versive bot uses to search the command object. For each
subversive bot, the adversary waits for it to get the com-
mand object and generate command keys to publish the
command object for lower level bots. Once the adversary
obtains all command keys that the subversive bot uses to
Country CN ES FR IT DE PL IL BR US TW KR AR PT GB
Dist. 0.24 0.18 0.12 0.10 0.06 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01
search and publish the command object, it sends them
immediately to each polluter.
Country US RU MX IN TR BR
Dist. 0.22 0.15 0.11 0.09 0.08 0.06
6. Experimental evaluation

Despite the realism obtained by using the actual imple-
mentation code of a popular P2P client, simulating a large
P2P botnet with such details demands intensive computa-
tion. Moreover, the aggressive pollution scheme signifi-
cantly increases the number of messages in the network
because each crawler exhaustively searches for active
peers in the network and each polluter needs to regularly
provide junk information for captured command keys. To
improve simulation scalability, we develop our simulator
on a distributed computing platform. The simulator is a
component of MIITS, a framework for simulating large-
scale communication networks developed at Los Alamos
National Laboratory [34]. MIITS is built on PRIME SSF, a
distributed simulation engine using conservative synchro-
nization techniques [24]. When porting the aMule code in
simulation, we intercept all time-related system calls (e.g.,
gettimeofday) and replace them with simulated time func-
tion calls. Similarly, we substitute socket API calls in the
original code for network functions specific to the simula-
tion. Moreover, as IP-level routing is not important in this
simulation study, we do not model routers on the paths be-
tween peers in the P2P network. Previously, we used this
simulator to perform a preliminary study of P2P-based
botnets; we refer interested readers to that work [13] for
more details.

Using large-scale simulation to evaluate the perfor-
mance of AntBot has a few advantages. Due to the destruc-
tive nature of AntBot, implementing it in the real world
may lead to ethical or legal issues. Moreover, as AntBot
aims to defeat pollution-based scheme with strong redun-
dancy and randomness, it is important to study its perfor-
mance at least a moderate scale, which is costly to do on a
real testbed.

6.1. Active durations of peers and bots

Time zone. Time zone effects have been observed from
behaviors of normal P2P users [29] and bot activities [7].
To characterize time zone effects in our simulation, we first
consider the geographic distribution of the peers in the
network. For normal P2P users, we use the following distri-
bution obtained from [29] (Countries are shown as their
two-letter country codes defined in ISO 3166–1):
The geographic distribution of bots is generated from the
statistics of bot IPs in the Storm botnet [3]:
PL VN KR MA FR RO UA
0.05 0.05 0.05 0.04 0.04 0.04 0.03

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1951
We assign a country to each normal peer or bot accord-
ing to the above two tables. If a peer belongs to a country
that has multiple time zones (e.g., US), we randomly
choose one time zone for it.

Active duration. Once the time zone of each peer has
been decided, we further determine its active duration.
When a peer is active, it stays in the P2P network and is
thus visible to other peers. For the normal peers, we let a
small fraction to be always online and active in the P2P
network; we call such peers persistent peers, as opposed
to transient peers that join and leave the P2P network reg-
ularly. To model behaviors of transient peers, we adopt a
model developed in [28] for its active duration. We define
the activity cycle of a regular normal peer to be 12:00 pm–
11:59 am. We assume that a regular normal peer is active
once in an activity cycle. Its starting time is generated
using a Gaussian distribution with mean at 7:00 pm and
standard deviation as 2 h. Once the starting time of a nor-
mal peer is decided, its active duration is generated using a
three-parameter Weibull distribution with the following
probability density function:

f ðx; k; k; hÞ ¼
k
k

x�h
k

� �k�1e�ðx�h=kÞk x P 0
0 x < 0

(
ð13Þ

According to measurement results in [28], we set the param-
eters as follows: location parameter h = 19.3929, scale
parameter k = 169.5385, and shape parameter k = 0.61511.
With these parameters, the mean active duration is
266.5358 seconds, the same as observed in [28].

Despite observed diurnal patterns of bot activities in the
literature [7,1], no statistical model is ready yet for charac-
terizing active durations of bots. In this study, we use a
simple diurnal model mirroring people’s normal work
hours. We define the activity cycle of a bot machine to
be 12:00 am–11:59 pm. Its starting time is drawn from a
Gaussian distribution with its peak at 8:00 am and stan-
dard deviation as one hour. Similarly, its ending time is
drawn from a Gaussian distribution with its peak at
6:00 pm and standard deviation also as one hour. Both
the starting and ending times of an active duration fall
within the current activity cycle.

6.2. Experimental setup

In our experiments, we study a P2P network with
10,000 peers among which 1000 are bots, either subversive
or loyal bots. Among the 9,000 normal peers, there are
1,000 persistent peers that always stay online. As the P2P
network takes time to populate the routing table of each
peer, we simulate the botnet for three days. The botmaster
controls five bot machines, from each of which he sends
out a command at the beginning of the third day.8 We let
x in the bot algorithm (see Section 3) be 3600 s.

In our experiments, we consider three different types of
bots. The first type of bots (baseline-passive) mirrors
behaviors of traditional P2P bots such as Storm bots. When
8 From other experiments, we observe that having more than one
machine to send out the command can significantly improve its reachabil-
ity when there is no pollution.
the botmaster uses a machine to release the command, he
uses 24 command keys to publish the command object. Each
bot randomly chooses three of these command keys to
search the command object. A bot does not publish the com-
mand object using the command keys it has used to search
the command object. The second type of bots (base-
line-active) differs from baseline-passive bots only for a
baseline active bot publishes the command object using
the three command keys that it has generated to search
the command object. As mentioned earlier, a baseline-active
bot does not expose more command keys to the adversary.
The third type of bots is AntBot as described in Section 5.2.
The landmarks defined for AntBot are: 0, 8, 48, and 128.
The number of slots for each signature (i.e., smax) is 3 and
each bot searches for the command object with 3 command
keys. Hence, the botmaster publishes the command object
using the same number of command keys as in the two
baseline cases.

We use both the early and late pollution schemes (see
Section 5.3) in our experiments. Note that these two pollu-
tion schemes are the same for both baseline cases because
a bot does not need to publish the command object for
lower level bots. In all our experiments, we assume that
the adversary uses two crawlers and five polluters. Also,
crawlers and polluters stay online all the time and every
half an hour, a crawler sends the peer information it has
collected in the past hour to each polluter. We vary the
number of subversive bots among 0, 10, 20, and 30. Sub-
versive bots, like crawlers and polluters, are always online,
and like normal bots, gets activated every 3600 s. Each sub-
versive bot sends the revealed command keys to all the
polluters when it gets active (early pollution) or gets the
command object successfully (late pollution).

For each scenario, we perform five simulation runs with
different random number seeds. Each simulation run uses
300 processors on a high-performance cluster and typically
a run (if pollution is involved) takes about 14 h to finish.
Crawling-based pollution introduces a significant amount
of extra computation time because if no pollution is in-
volved, a simulation run can finish within 4 h.

6.3. Experimental results

In Fig. 8, we present the number of bots that success-
fully receives the command under different simulation
Fig. 8. Number of bots that successfully received the command.

1952 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
scenarios. It is clear from the graph that for the baseline
bot, either baseline-passive or baseline-active, when we
increase the number of subversive bots in the network,
the number of bots that received the command decreases
significantly. For instance, when there are 20 subversive
bots, only 11% of the baseline-passive bots and 36% of
the baseline-active bots can obtain the command suc-
cessfully; when there are 30 subversive bots, only 14%
of the baseline-active bots and 3% of the baseline-passive
bots can get the command. This suggests that pollution-
based mitigation indeed adversely affects operation of
traditional P2P botnets. On the other hand, having bots
publish the command object with command keys that
they use to search the command helps deliver the com-
mand successfully to individual bots. We can conclude
this from the difference in the number of bots receiving
the command between baseline-passive and baseline-ac-
tive bots.

By contrast, AntBot performs much more resiliently
against pollution-based mitigation, regardless of the pollu-
tion scheme. Even when there exist 30 subversive bots in
the network, 66% of bots get the command successfully if
the adversary uses the early pollution scheme, and 80%
of bots receive the command if the late pollution scheme
is applied. In either case, much more bots can get the com-
mand than baseline bots. Moreover, although the early pol-
lution scheme pollutes a smaller number of command keys
than the late pollution scheme, it obtains the command
keys used by subversive bots to search the command
immediately after they become active and thus lets pollut-
ers to pollute these keys at an earlier time than the late
pollution scheme. Therefore, the early pollution scheme
seems to be more effective than the late pollution scheme
in reducing the number of bots that receive the command,
as observed from Fig. 8.

The resilience of AntBot comes at a price: under nor-
mal circumstances where there are no or few subversive
bots, a small fraction of bots cannot obtain the com-
mand due to its multi-level command relay mechanism.
For instance, even if there is no subversive bot, only
84% of bots can get the command successfully, as op-
posed to 100% of baseline-active bots and 89% of base-
line-passive bots. There are two ways to further
improve AntBot. In the first approach, the botmaster
may want to switch the botnet operation mode to
AntBot only when it is found that there exist some sub-
versive bots in the botnet. A bot, when discovering
some corrupted messages, reports the situation to the
botmaster. This information can be delivered through a
data item retrievable by a predefined command key.
Obviously, this solution poses another problem: the
adversary can pollute this special command key as well.
In the second approach, both the baseline-active and
AntBot command delivery mechanisms are imple-
mented. Normally, each bot uses the baseline-active
approach to obtain the command object. Once a bot ob-
serves that some command keys have been corrupted
by the adversary, it switches to the AntBot mechanism
for command propagation. Evaluating such a hybrid
mechanism remains as our future work.
7. Countermeasures

From the results shown in Section 6, we know that Ant-
Bot functions more effectively than traditional P2P botnets
when the adversary pollutes the command keys revealed
by subversive bots. In this section, we present three poten-
tial countermeasures that can disrupt AntBot operation
and also discuss possible challenges when developing
these countermeasures.

From the results shown in Section 6, we know that Ant-
Bot functions more effectively than traditional P2P botnets
when the adversary pollutes the command keys revealed
by subversive bots. In this section, we present four poten-
tial countermeasures that can disrupt AntBot operation
and also discuss possible challenges when developing
these countermeasures.

First, AntBot relies on a secret key shared by individual
bots to generate command keys for searching the com-
mand objects in the P2P network. With ever-improving
software reverse engineering techniques, it is possible that
the adversary can successfully discover this shared secret
key by statically analyzing bot executables. It is, however,
another cat-and-mouse game that while the adversary im-
proves his static code analysis skills, the botmaster applies
more sophisticated obfuscation techniques such as meta-
morphism and virtualization [35] to protect this secret
key. Another approach is that the botmaster updates the
secret key periodically (e.g., every month). Hence, a re-
vealed secret key causes damage only during the period
that it is effective.

One may naturally think that it is straightforward to
introduce a PKI infrastructure into a P2P botnet. We how-
ever note that PKI is actually a double-edged sword. On
one hand, it renders it unnecessary to have a secret key
whose exposure leads to severe damage to the botnet
operation. On the other hand, it is a daunting task to dis-
tribute public/private keys for individual bots effectively.
The recent analysis of the Waledac botnet shows that it
also uses a hierarchical topology like AntBot, although
not for defeating pollution-based mitigation, and adopts
a PKI infrastructure only for its high-level servers [26]. In
the proposed scheme, AntBot uses the private/public key
pair of the botmaster to ensure that individual bots only
execute commands published by the botmaster. If the
adversary obtains the secret key, he may be able to dis-
cover or pollute the C&C information from the botmaster,
but he still cannot hijack the botnet by manipulating indi-
vidual bots to execute his own commands.

Second, as observed from Fig. 8, when we increase the
number of subversive bots in the network, the fraction of
bots that successfully obtains the command still decreases
even for AntBot. Hence, a potential countermeasure
against AntBot is to increase the number of subversive bots
and thus the number of command keys to pollute. It is easy
to mitigate AntBot if each bot, when it runs in a virtual
environment, randomly generates its identifier. If this is
the case, the adversary can simply run the bot executable
in a controlled environment for many times so that a large
number of command keys can be revealed. As a response,
however, each bot executable can be designed to carry a

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1953
unique identifier so that the adversary has to capture many
bot executables in order to derive enough command keys
for dismantling AntBot. But this obviously increases the
complexity of bot distribution during the propagation
process.

Third, it is noted that the key idea of AntBot is a tree-
like hierarchical structure in which high-level bots deliver
C&C information to low-level ones. An adversary may be
able to use reverse engineering techniques to change the
signature of a bot such that it becomes a high-rank one
and thus reveals command keys used by high-level bots.
For instance, if the signature is stored as a variable s, the
adversary can directly overwrite s with a high-rank value.
Alternatively, as the signature of a bot is calculated from
a hash function f, the adversary can also change the input
parameters fed into f or even the algorithm f itself to pro-
duce desired signatures. As a response, an intelligent bot
can deploy advanced anti-reverse engineering techniques
(e.g., those methods that are used to protect digital rights
by record companies) based on the secret key K to prevent
such changes. As discussed earlier, if this key is discovered
by the adversary, AntBot may not function effectively any-
way against pollution-based mitigation. Moreover, we note
that the signature of a bot is updated in every dissemina-
tion period Di. Hence, a bot can check whether its signature
falls into the range ½h0;hrmax � 1� approximately according
to a uniform distribution to detect reverse engineering at-
tempts by the adversary.

Fourth, another potential approach to disrupt AntBot
combines pollution-based and sybil-based mitigation. The
adversary inserts a large number of fake peers (i.e., sybils)
to the P2P network and these fake peers are used to obtain
a disproportionately large influence in the P2P network
(e.g., they are more likely to be included in the contact list
when a peer responds to a KADEMLIA_REQUEST message
in KAD). Through these sybils, the adversary disrupts Ant-
Bot operation in two phases. In the first phase, the adver-
sary tries to obtain the identities of individual bots as
follows: (1) he first reveals the set of command keys used
to search the command object from a seized bot; (2) using
the sybil nodes, he monitors which nodes use the revealed
command keys to publish data objects in the P2P network;
(3) once he knows the identities (i.e., IPs) of suspicious
bots, he further monitors through sybil nodes what com-
mand keys they use to search the command object. This
process repeats until the adversary reveals the identities
of a large number of bots. In the second phase, the adver-
sary tries to mitigate the botnet operation using the pollu-
tion-based technique. More specifically, the adversary
monitors the command keys that exposed bots use to
search the command object and pollute these command
keys.

It is noted that for the sybil-based pollution mitigation
scheme to be effective, a large number of sybils need to
be inserted into the P2P network, making it more difficult
to deploy than the method described in Section 5.3, be-
cause either a physical or a virtual machine is required to
set up a sybil node [33]. For a dedicated adversary, how-
ever, it is still possible to inject a large number of sybils,
as demonstrated by Holz et al. who used 224 sybils in the
Overnet and Stormnet to measure their sizes [14]. Evaluat-
ing the effectiveness of sybil-based pollution mitigation re-
mains as our future work.
8. Conclusions

Some recent work has suggested that P2P botnets can
be easily disrupted using pollution-based mitigation tech-
niques. In this paper, we study a new type of P2P botnets
called AntBot that deploys anti-pollution schemes to im-
prove their resilience. We mathematically analyze its per-
formance from three perspectives: reachability, resilience
to pollution, and scalability. We also develop a high-fidel-
ity distributed P2P botnet simulator. Using extensive sim-
ulation, we show that AntBot functions well even though
the adversary persistently pollutes the command with
keys revealed by seized bots. We further suggest a few po-
tential countermeasures that can effectively disrupt AntBot
operations.

Admittedly, AntBot presents only one strategy that can
be adopted by P2P botnets for their self-protection. We do
not pretend that this method is a panacea for them to de-
feat all existing botnet defense techniques proposed so far.
The limited scope of this work is to evaluate the effective-
ness of this strategy both analytically and experimentally
under realistic settings. We hope that our work will help
white-hat cyber-security practitioners understand better
the challenges of defending against advanced P2P botnets
like AntBot and deploy effective countermeasures
accordingly.
Appendix A. Pseudo code describing behaviors of
botmaster and invidual bots

We give the pseudo code for the botmaster’s behavior in
Algorithm 1 and that for individual bots’ behaviors in Algo-
rithm 2. The notations are the same as in Section 3.

Algorithm 1. Botmaster’s behavior during period Di

1: Login to any bot-controlled machine
2: Create command ci for the current period Di

3: Create the command object as EK½ciksðDiÞ�
4: A ;
5: for d = h0 to h1 � 1 do
6: for s = 0 to smax � 1 do
7: Create a command key g(s(Di),d,s) as in

Eq. (2)
8: A A [g(s(Di),d,s)
9: end for
10: end for
11: for every x time units do
12: If it is not in period Di, exit
13: Publish the command object with

command keys in set A
14: Sleep until the next cycle
15: end for

Algorithm 2. Behavior of bot bk during period Di

1: Compute SðiÞk and decide its rank, which is denoted
as r

2: Randomly choose q distinct signatures from
[hr�1,hr), denoted as x1,x2, . . . ,xq

3: B ;
4: for j = 1 to q do
5: Randomly choose a slot number yj from

0,1, . . . ,smax � 1
6: B B [g(s(Di),xj,yj)
7: end for
8: for every x time units do
9: If it is not in period Di, exit
10: Search the command object with command

keys in B

11: SLEEP-MODE:
12: Sleep until the next cycle; during this period,

if a search result arrives, go to SEARCH-RESULT
13: end for
14:
15: {Do the following when the searched result

arrives at the bot}

16: SEARCH-RESULT:
17: V data object returned
18: Use key K to decrypt V and get command ci, time

ti, and the digital signature
19: Use the public key Kpub to verify whether the

digital signature matches ci and ti

20: if the digital signature matches ci and ti, and time
ti matches s(Di) then

21: Execute command ci

22: Goto COMMAND-FOUND
23: else
24: Goto SLEEP-MODE
25: end if
26:
27: {Once the bot obtains the command successfully,

it will publish the command further to lower level
bots}

28: COMMAND-FOUND:
29: C ;
30: for each d that satisfies the condition in Eq. (4)

do
31: Randomly choose an integer s from

0,1, . . . ,smax � 1
32: C C [g(s(Di),d,s)
33: end for
34: for every x time units do
35: If it is not in period Di, exit
36: Publish V with command keys in set C

1954 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
37: Sleep until the next cycle
38: end for
Appendix B. Proof of Theorem 1

Let nr denote the probability that the command object is
available with a command key that is generated from a sig-
nature of rank r and any random slot number between 0
and smax � 1. Note that this probability is the same for all
such command keys, regardless of the signature and the
slot number that are used to generate them, because all
signatures of rank r are symmetric and all slot numbers
corresponding to the same signature are also symmetric.
As the botmaster publishes the command with every sig-
nature of rank 1 and every s from 0 to smax � 1, we obvi-
ously have n1 = 1.

Let dr denote the probability that an active bot of rank r
cannot find any command. It can be simply computed as:

dr ¼ ð1� bnrÞq: ð14Þ

Consider any slot of a signature of rank r + 1. Potentially,
there are an/2l active bots of rank r that uses a correspond-
ing command key to publish the command. The probability
that each of these bots fails to do so is dr þ ð1� drÞ � smax�1

smax
.

Hence, nr+1, the probability that a slot of rank r + 1 is not
empty, is given by:

nrþ1 ¼ 1� dr þ ð1� drÞ �
smax � 1

smax

� �an
2l

: ð15Þ

With Eqs. (14) and (15), we can compute dr recursively as
follows:

dr ¼
ð1� bÞq; if r ¼ 1;

1� b 1� dr�1 þ ð1�dr�1Þðsmax�1Þ
smax

� �an
2l

� �� �q

; if r > 1:

8><
>:

ð16Þ

Note that there are in total hr � hr�1 signatures with rank r,
and there are an/2l active bots associated with each of
these signatures. As each active bot of rank r successfully
executes the command with probability dr, we can estab-
lish Theorem 1.

Appendix C. Proof of Theorem 2

Let n0r denote the probability that kðrÞc is available and not
corrupted, and d0r denote the probability that an active
loyal bot of rank r cannot execute the command success-
fully. Similar to dr in Section 4.1, we have:

d0r ¼ ð1� bn0rÞ
q
: ð17Þ

Note that ~ppð1Þ ¼ 0 and Pfkð1Þc 2 Cpg ¼ 0. We thus have:

n01 ¼ 1� Pfkð1Þc 2 Csg ¼ ð1� ~psð1ÞÞm: ð18Þ

Hence, we can calculate d01 as follows:

d01 ¼ ð1� bð1� ~psð1ÞÞmÞq: ð19Þ

Different from Eq. (15), the calculation of nr+1 needs to con-
sider the probability of a command key being polluted. We
have the following:

n0rþ1 ¼ 1� d0r þ ð1� d0rÞ �
smax � 1

smax

� �an
2l

 !
� ð1� PfkðrÞc

2 Cs [CpgÞ

P f0r � 1� d0r þ ð1� d0rÞ �
smax � 1

smax

� �an
2l

 !
: ð20Þ

G. Yan et al. / Computer Networks 55 (2011) 1941–1956 1955
Hence, for r P 1, d0r+1 satisfies the following condition
based on Eqs. (17) and (20):

d0rþ1 6 1� bf0r � 1� d0r þ ð1� d0rÞ �
smax � 1

smax

� �an
2l

 ! !q

:

ð21Þ
Consider d00r , which is defined as follows: d001 ¼ d01, and when
r > 1,

d00r ¼ 1� bf0r�1 � 1� d00r�1 þ ð1� d00r�1Þ �
smax � 1

smax

� �an
2l

 ! !q

:

ð22Þ
Note that for r P 1, if d00r P d0r , then

d00rþ1 P 1�bf0r � 1� d0r þð1� d0rÞ �
smax�1

smax

� �an
2l

 ! !q

P d0rþ1:

ð23Þ

By induction, we conclude that d00r P d0r for all r: 1 6
r 6 rmax. Therefore, we thus have:

n0e ¼
an

2l

Xrmax

r¼1

ð1� d0rÞðhr � hr�1ÞP n00e

¼ an

2l

Xrmax

r¼1

ð1� d00r Þðhr � hr�1Þ:

and Theorem 2 follows.

References

[1] M.A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, A multifaceted approach
to understanding the botnet phenomenon, in: Proceedings of the
Sixth ACM SIGCOMM Conference on Internet Measurement, ACM,
New York, NY, USA, 2006, pp. 41–52.

[2] P. Barford, V. Yegneswaran, Malware detection, Advances in
Information Security, vol. 27, Springer, US, 2007. chapter An Inside
Look at Botnets.

[3] <http://isisblogs.poly.edu/2008/05/19/storm-worm-ip-list-and-coun-
try-distribution-statistics>, May 2009.

[4] R. Brunner, A Performance Evaluation of the Kad-Protocol, Master’s
thesis, University of Mannheim, Germany, November 2006.

[5] Z. Chen, C. Chen, Q. Wang, Delay-tolerant botnets, in: Proceedings of
the 2009 Proceedings of 18th International Conference on Computer
Communications and Networks, IEEE Computer Society,
Washington, DC, USA, 2009, pp. 1–6.

[6] K. Chiang, L. Lloyd, A case study of the rustock rootkit and spam bot,
in: Proceedings of the first Conference on First Workshop on Hot
Topics in Understanding Botnets, USENIX Association, Berkeley, CA,
USA, 2007, p. 10.

[7] D. Dagon, C.C. Zou, W. Lee, Modeling botnet propagation using time
zones, in: Proceedings of the 13th Network and Distributed System
Security Symposium, The Internet Society, 2006.

[8] N. Daswani, M. Stoppelman, The anatomy of clickbot.a, in:
Proceedings of the First conference on First Workshop on Hot
Topics in Understanding Botnets, USENIX Association, Berkeley, CA,
USA, 2007, p. 11.

[9] J. Goebel, T. Holz, Rishi: identify bot contaminated hosts by irc
nickname evaluation, in: Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, USENIX
Association, Berkeley, CA, USA, 2007, p. 8.

[10] G. Gu, R. Perdisci, J. Zhang, W. Lee, Botminer: clustering analysis of
network traffic for protocol- and structure-independent botnet
detection, in: Proceedings of the 17th Conference on Security
Symposium, USENIX Association, Berkeley, CA, USA, 2008, pp. 139–
154.

[11] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. Lee, Bothunter:
detecting malware infection through ids-driven dialog correlation,
in: Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, USENIX Association, Berkeley, CA, USA, 2007,
pp. 1–16.
[12] G. Gu, J. Zhang, W. Lee, BotSniffer: detecting botnet command and
control channels in network traffic, in: Proceedings of the 15th
Annual Network and Distributed System Security Symposium, The
Internet Society, 2008.

[13] D.T. Ha, G. Yan, S. Eidenbenz, H.Q. Ngo, On the effectiveness of
structural detection and defense against p2p-based botnets, in:
Proceedings of the IEEE/IFIP International Conference on Dependable
Systems Networks, June 2009, pp. 297 –306.

[14] T. Holz, M. Steiner, F. Dahl, E. Biersack, F. Freiling, Measurements and
mitigation of peer-to-peer-based botnets: a case study on storm
worm, in: Proceedings of the First Usenix Workshop on Large-Scale
Exploits and Emergent Threats, USENIX Association, Berkeley, CA,
USA, 2008, pp. 1–9.

[15] v R. Hund, M. Hamann, T. Holz, Towards next-generation botnets, in:
Proceedings of the 2008 European Conference on Computer Network
Defense, IEEE Computer Society, Washington, DC, USA, 2008, pp. 33–40.

[16] C. Kanich, K. Levchenko, B. Enright, G.M. Voelker, S. Savage, The
heisenbot uncertainty problem: challenges in separating bots from
chaff, in: Proceedings of the First Usenix Workshop on Large-Scale
Exploits and Emergent Threats, USENIX Association, Berkeley, CA,
USA, 2008, pp. 1–9.

[17] A. Karasaridis, B. Rexroad, D. Hoeflin, Wide-scale botnet detection
and characterization, in: Proceedings of the First Conference on First
Workshop on Hot Topics in Understanding Botnets, USENIX
Association, Berkeley, CA, USA, 2007, p. 7.

[18] J. Liang, R. Kumar, Y. Xi, K.W. Ross, Pollution in p2p file sharing
systems, in: Proceedings of the 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, vol. 2, 2005, pp.
1174–1185, 13–17.

[19] L. Liu, S. Chen, G. Yan, Z. Zhang, Bottracer: execution-based bot-like
malware detection, in: Proceedings of the 11th International
Conference on Information Security, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 97–113.

[20] P. Maymounkov, D. Mazières, Kademlia: a peer-to-peer information
system based on the xor metric, in: Proceedings of the First
International Workshop on Peer-to-Peer Systems, Springer-Verlag,
London, UK, 2002, pp. 53–65.

[21] A. Nappa, A. Fattori, M. Balduzzi, M. Dell’Amico, L. Cavallaro, Take a
deep breath: a stealthy, resilient and cost-effective botnet using
skype, in: Detection of Intrusions and Malware, and Vulnerability
Assessment, Lecture Notes in Computer Science, vol. 6201, Springer,
Berlin, Heidelberg, 2010, pp. 81–100. chapter 5.

[22] J. Nazario, Blackenergy DDoS bot Analysis, Technical report, Arbor
Networks, October 2007.

[23] P. Porras, H. Saidi, V. Yegneswaran, A multi-perspective analysis of
the storm (peacomm) worm, Technical report, Computer Science
Laboratory, SRI International, October 2007.

[24] <http://lynx.cis.fiu.edu:8000/twiki/bin/view/Public/PRIMEProject>,
May 2009.

[25] A. Ramachandran, N. Feamster, D. Dagon, Revealing botnet
membership using dnsbl counter-intelligence, in: Proceedings of
the Second Conference on Steps to Reducing Unwanted Traffic on the
Internet, USENIX Association, Berkeley, CA, USA, 2006, p. 8.

[26] G. Sinclair, C. Nunnery, B.B.-H. Kang, The waledac protocol: the how
and why, in: Proceedings of Fourth International Conference on the
Malicious and Unwanted Software (MALWARE), 2009, pp. 69 –77,
13–14.

[27] G. Starnberger, C. Kruegel, E. Kirda, Overbot: a botnet protocol based
on kademlia, in: Proceedings of the Fourth International Conference
on Security and privacy in Communication Netowrks, ACM, New
York, NY, USA, 2008, pp. 1–9.

[28] M. Steiner, T. En-Najjary, E.W. Biersack, Analyzing peer behavior in
kad, Technical Report EURECOM+2358, Institut Eurecom, France,
October 2007.

[29] M. Steiner, T. En-Najjary, E.W. Biersack, A global view of kad, in:
Proceedings of the Seventh ACM SIGCOMM Conference on Internet
Measurement, ACM, New York, NY, USA, 2007, pp. 117–122.

[30] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R.
Kemmerer, C.r. Kruegel, G. Vigna, Your botnet is my botnet: analysis
of a botnet takeover, in: Proceedings of the 16th ACM Conference on
Computer and Communications Security, ACM, New York, NY, USA,
2009, pp. 635–647.

[31] R. Vogt, J. Aycock, M.J. Jacobson, Army of botnets, in: Proceedings of
the Network and Distributed System Security Symposium, The
Internet Society, San Diego, California, USA, 2007.

[32] P. Wang, S. Sparks, C.C. Zou, An advanced hybrid peer-to-peer
botnet, in: Proceedings of the First Conference on First Workshop on
Hot Topics in Understanding Botnets, USENIX Association, Berkeley,
CA, USA, 2007, p. 2.

http://isisblogs.poly.edu/2008/05/19/storm-worm-ip-list-and-country-distribution-statistics
http://isisblogs.poly.edu/2008/05/19/storm-worm-ip-list-and-country-distribution-statistics
http://lynx.cis.fiu.edu:8000/twiki/bin/view/Public/PRIMEProject

1956 G. Yan et al. / Computer Networks 55 (2011) 1941–1956
[33] P. Wang, L. Wu, B. Aslam, C.C. Zou, A systematic study on peer-to-
peer botnets, in: Proceedings of the 2009 Proceedings of 18th
International Conference on Computer Communications and
Networks, IEEE Computer Society, Washington, DC, USA, 2009, pp.
1–8.

[34] R. Waupotitsch, S. Eidenbenz, J.P. Smith, L. Kroc, Multi-scale
integrated information and telecommunications system (miits):
first results from a large-scale end-to-end network simulator, in:
Proceedings of the Winter Simulation Conference, 2006, pp. 2132–
2139.

[35] M. Webster, G. Malcolm, Detection of metamorphic and
virtualization-based malware using algebraic specification, Journal
in Computer Virology 5 (3) (2009).

[36] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, I. Osipkov, Spamming
botnets: signatures and characteristics, in: Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication, ACM, New
York, NY, USA, 2008, pp. 171–182.

[37] T.-F. Yen, M.K. Reiter, Traffic aggregation for malware detection, in:
Proceedings of the Fifth International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 207–227.

[38] L. Zhuang, J. Dunagan, D.R. Simon, H.J. Wang, J.D. Tygar,
Characterizing botnets from email spam records, in: Proceedings of
the First Usenix Workshop on Large-Scale Exploits and Emergent
Threats, USENIX Association, Berkeley, CA, USA, 2008, pp. 1–9.

Guanhua Yan obtained his Ph.D. degree in
Computer Science from Dartmouth College,
USA, in 2005. From 2003 to 2005, he was a
visiting graduate student at the Coordinated
Science Laboratory in the University of Illinois
at Urbana-Champaign. He is now working as a
Technical Staff Member in the Information
Sciences Group (CCS-3) at the Los Alamos
National Laboratory. His research interests are
cyber-security, networking, and large-scale
modeling and simulation techniques. He has
contributed about 30 articles in these fields.
Duc Ha received a B.E (Electronics and Tele-
communications) degree from Hanoi Univer-
sity of Technology, Hanoi, Vietnam in 2002.
He received a M.Sc and Ph.D degree in Com-
puter Science from State University of New
York at Buffalo, NY, USA in 2005 and 2009,
respectively. His research interests include
computer networks, network security and
malicious propagating codes. He is currently
with HP.
Stephan Eidenbenz received his Ph.D. degree
in Computer Science from the Swiss Federal
Institute of Technology (ETH) in Zurich in
2000. He is now a team leader in the Infor-
mation Sciences Group (CCS-3) at the Los
Alamos National Laboratory, where he leads
the Multi-scale Integrated Information and
Telecommunications System (MIITS) project
that models and simulates large-scale com-
munication networks. His research interests
are in wire-line and wireless networking,
sensor networks, selfish networking, infra-

structure modeling, discrete event simulation, computational geometry,
and algorithms. He has published about 70 articles in these fields.

	AntBot: Anti-pollution peer-to-peer botnets
	Introduction
	Related work
	Protocol design of AntBot
	P2P network model
	Algorithm description
	Further discussion

	Analysis
	Reachability
	Resilience against pollution
	Scalability
	Sensitivity analysis

	Implementation
	Kademlia and KAD
	AntBot implementation
	Pollution

	Experimental evaluation
	Active durations of peers and bots
	Experimental setup
	Experimental results

	Countermeasures
	Conclusions
	Pseudo code describing behaviors of botmaster and invidual bots
	Proof of Theorem 1
	Proof of Theorem 2
	References

