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Abstract—Online social networks (OSNs) are increasingly
threatened by social bots which are software-controlled OSN
accounts that mimic human users with malicious intentions. A
social botnet refers to a group of social bots under the control
of a single botmaster, which collaborate to conduct malicious
behavior, while at the same time mimicking the interactions
among normal OSN users to reduce their individual risk of
being detected. We demonstrate the effectiveness and advantages
of exploiting a social botnet for spam distribution and digital-
influence manipulation through real experiments on Twitter and
also trace-driven simulations. Our results can help understand
the potentially detrimental effects of social botnets and help OSNs
improve their bot(net) detection systems.

I. INTRODUCTION

Online social networks (OSNs) are increasingly threatened

by social bots which are software-controlled OSN accounts

that mimic human users with malicious intentions. For exam-

ple, according to a May 2012 article in Bloomberg Business-

week,1 as many as 40% of the accounts on Facebook, Twitter,

and other popular OSNs are spammer accounts (or social bots),

and about 8% of the messages sent via social pages are spams,

approximately twice the volume of six months ago. There

have been reports on various attacks based on social bots,

such as befriending victims and then grabbing their personal

information [1], [2], conducting the spam campaign which

leads to phishing, malware, and scams [3]–[5], and conducting

political astroturf [6], [7] which refer to campaigns disguised

as spontaneous, popular “grassroots” behavior that are actually

carried out by a single person or organization.

A social botnet refers to a group of social bots under the

control of a single botmaster, which collaborate to conduct

malicious behavior, while at the same time mimicking the in-

teractions among normal OSN users to reduce their individual

risk of being detected. For example, social bots on Twitter

can follow others and retweet/answer others’ tweets. Since a

skewed following/followers (FF) ratio is a typical feature for

social bots on Twitter [8], maintaining a balanced FF ratio

in the social botnet makes it much easier for individual bots

to escape detection. Creating a social botnet is also fairly

easy due to the open APIs published by OSN providers. For

example, we successfully created a social botnet of 1,000 bots

1http://www.businessweek.com/articles/2012-05-24/likejacking-spammers-
hit-social-media

on Twitter with $57 to purchase 1,000 Twitter accounts instead

of manually creating them.

Despite various studies [9]–[11] confirming the existence of

social botnets, the greater danger from social botnets remain

to be unveiled. In this paper, we report two new social botnet

attacks on Twitter, one of the most popular OSNs with over

500 million users as of 2012 and over 340 million new tweets

daily. Our results here can help understand the potentially

detrimental effects of social botnets and hopefully help Twitter

and other OSNs improve their bot(net) detection systems. Our

major contributions are outlined as follows.

• We demonstrate the effectiveness and advantages of ex-

ploiting a social botnet for spam distribution on Twitter.

This attack is motivated by the fact that Twitter will

only suspend the accounts that originate spam tweets

while not punishing those retweeting spam tweets [12].

If the social botnet is organized as a retweet tree in

which only the root originates spam tweets and all the

others merely retweet spams, all the social bots except

the root bot can escape suspension. Given a set of social

bots, we formulate the formation of the retweeting tree

as a multi-objective optimization problem to minimize

the time taken for a spam tweet to reach a maximum

number of victim Twitter users at the lowest cost of the

botmaster. Since the optimization is NP-hard, we also

give a heuristic solution and confirm its efficacy with real

experiments on Twitter and trace-driven simulations.

• We show that a social botnet can easily manipulate

the digital influence [13], [14] of Twitter users, which

has been increasingly used in ad targeting [15], [16],

customer-service improvement [17], recruitment [18], and

many other occasions. This attack stems from the fact that

almost all digital-influence tools such as Klout, Kred, and

Retweet Rank, measure a user’s digital influence exclu-

sively based on his interactions with others on Twitter.

If social bots collaborate to manipulate the interactions

of target Twitter users, they could effectively manipulate

their digital influence. The efficacy of our attack is

confirmed by real experiments on Twitter.

• We point out possible countermeasures which are likely

to inspire new important research.

The rest of the paper is organized as follows. §II introduces
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the construction of a social botnet on Twitter. §III and §IV

show the efficacy and merits of using the social botnet for

spam distribution and digital-influence manipulation, respec-

tively. §V discusses the related work. §V concludes this paper

and points out possible countermeasures as our future work.

II. BUILDING A SOCIAL BOTNET ON TWITTER

We first outline the Twitter basics to help illustrate our work,

and the readers familiar with Twitter can skip this paragraph

without any loss of continuity. Unlike Facebook, the social

relationships on Twitter are unidirectional by users following

others. If user A follows user B, A is B’s follower, and B is

A’s friend. In most cases, a user does not need prior consent

from another user whom he or she wants to follow. Twitter

also allows users to control who can follow them, but this

feature is relatively less used. In addition, users can choose to

unfollow others and block their selected followers. A Twitter

user can send text-based posts of up to 140 characters, known

as tweets, which can be read by all its followers. Tweets can

be public (the default setting) and are visible to anyone with

or without a Twitter account, and they can also be protected

and are only visible to previously approved Twitter followers.

A retweet is a re-posting of someone else’s tweet. A user

can retweet the tweets of anyone he or she follows or does

not follow, and his retweets can be seen by all his followers.

Moreover, a user can reply to a post (tweet or retweet) and

ensure that specific users can see his posts by mentioning them

via inserting “@username” for every specific user into his

posts. Finally, each user has a timeline which shows all the

latest tweets, retweets, and replies of his followers.

We construct a social botnet on Twitter consisting of a

botmaster and a number of social bots which are legitimate

Twitter accounts. Twitter accounts can be manually created or

purchased at affordable prices. For example, we bought 1,000

Twitter accounts as social bots with $57 from some Internet

sellers for experimental purposes. The botmaster is in the form

of a Java application, which we developed from scratch based

on the OAuth protocol [19] and open Twitter APIs. It could

perform all the Twitter operations on behalf of all social bots

to make the bots look like legitimate users. We will show

how the botmaster intelligently control the bots for effective

spam distribution and digital-influence manipulation in later

sections.

III. SOCIAL BOTNET FOR SPAM DISTRIBUTION

In this section, we show the advantages and effectiveness of

exploiting the social botnet for spam distribution. We start with

a motivating example based on real experiments on Twitter in

§III-A. Then we formulate spam distribution via the social

botnet as a multi-objective optimization problem and present

a heuristic solution whose efficacy is evaluated through trace-

driven simulations in §III-C.

A. Why the Social Botnet for Spam Distribution?

As the popularity of Twitter rapidly grows, spammers have

started to distribute spam tweets which can be broadly defined

as unwanted tweets that contains malicious URLs in most

cases or occasionally malicious texts [4], [5], [20]. According

to a study in 2010 [4], roughly 8% of the URLs in tweets are

malicious ones that direct users to scams/malware/phishing

sites, and about 0.13% of the spam URLs will be clicked.

Given the massive scale of Twitter (over 500 million active

users as of 2012 and over 340 million new tweets daily),

understanding how spam tweets are distributed is important

for designing effective spam-detection mechanisms.

The simplest method for spam distribution is to let social

bots distribute spam tweets independently from each other,

which we refer to as the independent method. In particular,

the botmaster can instruct every bot to directly post spam

tweets which can be seen by all its followers. According to

the Twitter rules,2 the accounts considered as spam originators

will be permanently suspended. Since there are sophisticated

techniques such as [21], [22] detecting malicious URLs, this

independent approach may subject almost all social bots to

permanent suspension in a short time window.

A more advanced method, which we propose and refer

to as the botnet method, is to exploit the fact that Twitter

currently only suspends the originators of spam tweets without

punishing their retweeters. In the simplest case, the botmaster

forms a single retweeting tree , where every bot is associated

with a unique vertex and is followed by its children bots. Then

only the root bot originates spam tweets, and all the others

simply retweet the spam tweets from their respective parent.

Given the same set of social bots, both methods can distribute

spam tweets to the same set of non-bot Twitter users, but

only the root bot will be suspended under the botnet method.

Obviously, the botnet method is economically beneficial for

the botmaster because it involves non-trivial human effort or

money to create a bot account.

We use one experiment on Twitter to validate our conjec-

ture for the independent method. Our experiment uses three

different social botnets with each containing 100 bots. The

experiment proceeds in hours. At the beginning of every hour,

all the bots in the same botnet almost simultaneously post a

spam tweet comprising two parts. The first part is different

from every bot and randomly selected from the list of tweets

returned after querying “music,” while the second part is an

identical malicious URL randomly selected from the Shalla’s

blacklists (http://www.shallalist.de/) and shortened using the

bitly service (http://bitly.com) for use on Twitter. We find that

all the bots in the three botnets are suspected in two, five, and

six hours. Based on this experiment, we can safely conjecture

that the independent method will cause most bots in a larger

botnet to be suspended in a short period, thus putting the

botmaster at serious economic disadvantage.

We use a separate experiment to shed light on the merits

of the botnet method. In this experiment, we first use 111

bots to build a full 10-ary tree of depth two. The experiment

proceed in hourly rounds. At the beginning of every hour

of the first round, the root bot posts a spam tweet, while

2http://support.twitter.com/articles/18311\#
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all its descendants merely retweet the spam tweet after a

small random delay. It takes about six hours for the root

bot to be suspended, while all the other bots remain alive.

Then we replace the suspended bot by a random bot alive,

reorganize the bot tree, and starts the next round. We totally

run the experiments for five rounds, in each of which only the

root bot is suspended after six hours on average. In addition,

we test three other different botnets of 2, 40, and 100 bots,

respectively, and only the root bot is suspended every time.

It is worth noting that our experiments above focuses on

comparing the two methods with regard to the number of

suspended bots. How long it takes for Twitter to suspend a

bot is not a concern in our experiments, as it depends on

when Twitter detects a particular spam tweet and varies due

to different malicious URLs embedded in spam tweets.

B. Optimal Social Botnet for Spam Distribution

§III-A motivates the benefits of using the social botnet for

spam distribution on Twitter. Given a set of social bots, what is

the optimal way for spam distribution? We give an affirmative

answer to this important question in this section.

1) Problem Setting and Performance Metrics: We con-

sider a botnet V of n bots, where each bot i ∈ [1, n] can be

followed by other bots and also other Twitter users outside

the botnet (called non-bot followers hereafter). Let Fi denote

the non-bot followers of bot i. Note that Fi ∩ Fj may be

non-empty (∀i 6= j), meaning that any two bots may have

overlapping non-bot followers. We further let F =
⋃n

i=1 Fi.

How to attract non-bot followers for the bots is related to

social engineering [23] and orthogonal to the focus of this

paper. Note that it is very easy in practice for a bot to attract

many non-bot followers, as shown in [1], [2], [10], [11].

The botmaster distributes spam tweets along one or multiple

retweeting trees, and the vertices of every retweeting tree

corresponds to a disjoint subset of the n bots. In addition,

every bot in a retweeting tree is followed by its children. As

discussed, the root of every retweeting tree will originate spam

tweets, which will appear in the Twitter timeline of its children

bots and then be retweeted. The distribution of a particular

spam tweet finishes until all the bots on all the retweeting

trees either tweet or retweet it once and only once.

Given a set V with n bots and F , we propose three metrics

to evaluate the efficacy of botnet-based spam distribution.

• Coverage: Let C denote the non-bot receivers of a given

spam tweet and be called the coverage set. The coverage

of spam distribution is then defined as
|C|
|F| ∈ [0, 1].

• Delay: We define the delay of spam distribution, denoted

by τ , as the average time for each user in C to see a

given spam tweet since it is generated by the root bot.

A user may follow multiple bots and thus see the same

spam tweet multiple times, in which case only the first

time is counted.

• Cost: We use |S| and |S̃| to define the cost of spam

distribution, where S denote the indices of suspended

bots after distributing a given spam, and S̃ denotes the

set of non-bot followers will be lost due to the suspension

of S , i.e., S̃ = C \ (
⋃

i∈V\S Fi).

The above metrics motivates three design objectives. First,

we obviously want to maximize the coverage to be one, which

happens when all the n bots participate in spam distribution

by belonging to one retweeting tree. Second, many malicious

URLs in spam tweets are hosted on compromised servers and

will be invalidated once detected, and Twitter will remove

spam tweets as soon as they are identified. It is thus also

important to minimize the delay. Finally, since it incurs non-

trivial human effort or money to create bots and attract

followers for them, it is critical to minimize the cost as well.

2) Design Constraints: A major design challenge is how

to circumvent Twitter’s suspension rules3 that are evolving

in accordance with changing user (mis)behavior. We classify

the suspension rules into strict and loose ones. Violators of

strict rules will be immediately suspended. The strict rule most

relevant to our work is that the users originate spam tweets

containing malicious URLs will be suspended. In contrast, a

violator of loose rules will initially become suspicious and

later be suspended if his violations of related loose rules

exceed some unknown threshold Twitter defines and uses

internally. Examples of loose rules include repeatedly posting

others’ tweets as your own or the same tweet, massively

following/unfollowing people in a short time period, etc. In

addition, the research community have discovered many useful

loose rules for spam-tweet detection such as those in [21],

[24]–[29] which are likely to be or have been adopted by

Twitter into their evolving suspension-rule list. As discussed,

we use the botnet method for spam distribution in order

to largely circumvent this strict rule. In the following, we

introduce five design constraints related to some loose rules

we consider most relevant. By following these constraints, the

social bots can cause much less suspicion to Twitter and thus

are much less likely to be suspended.

1. The maximum height of a retweeting tree is K = 10
according to [24]. Hence we claim that any spam tweet will

not be retweeted more than 10 times.

2. A bot only retweets the spam tweets posted by its parent

bot on the retweeting tree it follows, as retweeting the tweets

from non-followed users is known to be effective in detecting

spam tweets [27].

3. Any spam tweet from an arbitrary bot will be retweeted

by at most 100r percent of its followers. As r approaches

one, the bot will become increasingly suspicious according to

community-based spam detection algorithms [20], [30]. Recall

that the followers of any bot i ∈ [1, n] comprise other bots

and also non-bot users (i.e., Fi). Note that non-bot followers

rarely retweet spam tweets in practice, but we require all bot

followers to retweet spam tweets. Then bot i can have no more

than ⌈ r|Fi|
1−r

⌉ bot followers.

4. The retweeting lag at any hop j ∈ [1,K] is a random

variable ti which follows a hop-wise statistical distribution

according to [24], as it is quite abnormal for a user to

3http://support.twitter.com/articles/18311#
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M = 3

(a)

(b)

(c)

c = 5

Fig. 1. Exemplary retweeting trees with 12 bots, where M = 3 and the
botmaster’s suspension budget is c = 5.

immediately retweet a post once seeing it. Here the retweeting

lag is defined as the time elapsed when a bot sees a spam tweet

until it retweets it.

5. The social bots within the first M hops will be suspended

once Twitter finds that they are involved in (re)tweeting a

spam tweet. This constraint is motivated by recent findings

[10] that spammer accounts on Twitter tend to be connected

and clustered by mutual followings. It is thus reasonable to

assume that Twitter either have been utilized or will soon

utilize these research findings to suspend the accounts involved

in distributing a spam tweet within the first M > 0 hops. After

introducing this constraint, we relax the third one by allowing

arbitrary topology in the first M hops because all of its bots

will be suspended.

3) Problem Formulation: Give the above design objec-

tives and constraints, we now attempt to formulate botnet-

based spam distribution as an optimization problem. The major

challenge lies in the infeasibility of simultaneously achieving

the maximum coverage, the minimum delay, and the minimum

cost. Fig. 1 shows an example with 12 bots and M = 3, and

we assume that every bot has the same number of non-bot

followers. In one extreme shown in Fig. 1(a), we can minimize

the delay τ by letting every bot be a root bot, but the cost is

obviously the maximum possible because all the bots will be

suspended. In the other extreme shown in Fig. 1(b), we can

form a single retweeting tree with exactly three bots within the

first three hops, in which case we can achieve the minimum

possible cost, but the achievable delay will always be larger

than that in the first case no matter how the retweeting tree

beyond three hops is formed. In addition, we assume for the

second case that the retweeting tree can include all the 12

bots, leading to the same coverage of one as in the first case.

If there are too many bots, however, some of them may not

be able to be incorporated into the retweeting tree due to the

first and third design constraints, and the resulting coverage

will be smaller than that of the first case.

To deal with the above challenge, assume that the botmaster

has a suspension budget c ∈ [M,n] bots, referring to the

maximum number of suspended bots it can tolerate. Note that

the more bots in the first M hops, the more non-bot followers

in F closer to the root bot which can receive a given spam

tweet in shorter time, and thus the smaller the delay. Under the

budget constraint, the minimum delay can hence be achieved

only when there are exactly c bots within the first M hops, as

shown in Fig. 1(c) with c = 5.

What is the optimal way to form a retweeting tree as in

Fig. 1(c) given the cost, coverage, and delay requirements?

Recall that the cost is defined by |S| and |S̃|. Since |S| = c
under the budget constraint, we just need to minimize |S̃|. To

mathematically express the cost and coverage requirements,

we let {Vk}
K
k=1 denote K disjoint subsets of the bot indices

{1, . . . , n}, where K = 10 is the maximum height of the

retweeting tree (see Constraint 1), Vk denote the bot indices

at level k of the retweeting tree, and
⋃K

k=1 Vi ⊆ {1, . . . , n}. If

the optimal retweeting tree eventually found is of depth K∗ <
K, the sets {Vk}

K
k=K∗+1 will all be empty. Recall that Fi

denotes the set of non-bot followers of bot i ∈ [1, n] and that

F =
⋃n

i=1 Fi. Then we have S̃ = C \ (
⋃

i∈Vk,k∈[M+1,K∗] Fi)
and the coverage set C =

⋃
i∈Vk,k∈[1,K] Fi ⊆ F and need

to maximize |C|. Since S̃ ⊆ C, we can combine the cost

and coverage requirements into a single metric
|S̃|
|C| and then

attempt to minimize it.

It is a little more complicated to derive the delay. As

discussed, a non-bot user may follow multiple bots at different

levels, in which case it is considered a follower on the lowest

level among those. Let Φk denotes the set of non-bot followers

at k ∈ [1,K]. It follows that Φ1 = Fi (i ∈ V1) and

Φk =
⋃

i∈Vk
Fi −

⋃k−1
l=1 Φl for k ∈ [1,K]. According to

Constraint 4, it takes
∑k

j=1 tj for a spam tweet to reach level-

k non-bot followers, where tj denotes the retweeting lag of

hop j ∈ [1,K], and t1 = 0. Since there are totally |Φk| non-

bot followers at level k and |C| non-bot followers across all

levels, we can compute the delay as

τ =
1

|C|

K∑

k=1

k∑

j=1

tj |Φk| .

Finally, we reduce the three-objective optimization problem

to the following single-objective minimization problem.

min f({Vk}
K
k=1) = αβ

|S̃|

|C|
+ (1− α)τ

s.t.

K⋃

k=1

Vi ⊆ {1, . . . , n}

Vi ∩ Vj = φ, ∀i 6= j ∈ [1,K]

|
M⋃

k=1

Vi| ≤ c

∑

i∈Vk

⌈
r|Fi|

1− r
⌉ ≥ |Vk+1|, ∀k ∈ [M − 1,K − 1]

(1)

We have two remarks. First, α ∈ [0, 1] is a adjustable weight

that reflects the relative importance of coverage and delay, and

β is a fixed scaling factor to unify two different objective units.

Second, the last constraint is due to the aforementioned third

design constraint.

The above optimization problem can be viewed as a vari-
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ation of classical set partition problem (SPP), which is NP-

hard. In what follows, we introduce a heuristic approximation

solution by constructing a collection of disjointed subsets

{Vk}
K
k=0 from the botnet set.

4) Heuristic Solution: Our intuition is to use all the budget

c and fill the first M hops of the retweeting trees with the bots

having the lowest suspension cost in terms of the number of

lost non-bot followers. We then recursively place the bots with

the highest number of non-bot followers from level M +1 to

the last level, in order to reduce the average latency as well

as cost.

To begin with, our approximation is built on the solutions to

the traditional maximum coverage problem (or MAXCOVER)

and the minimum coverage problem (MINCOVER), which is to

select k sets from a collection of subsets of a ground set so that

the their union is maximized [31] or minimized, respectively.

MAXCOVER and MINCOVER problems are both NP-hard and

have greedy approximation algorithms by iteratively selecting

the maximum or minimum subset after extracting the selected

elements, respectively.

Our solution consists of the following two steps. First, given

the budget c for S and that all the followers in S̃ will be

lost because of the suspension, we minimize the objective

|S̃| by using MINCOVER to choose c bots as S̃ with the

minimum total number of non-bot followers. In doing so,

we can determine the union of the bot set for the first M
level. The bot subset in each level will be determined later.

Here we just assume that S̃ has been divided into the M
groups, each corresponding to the bots in one of the first M
levels. Second, we construct {Vk}

K
k=M+1 to greedily increase

the coverage C and at the same time lower the average

delay T . Specifically, assuming that we have known VM , to

determine VM+1, we first set the cardinality of VM+1 be

equal to
∑

i∈Vk
⌈ r|Fi|

1−r
⌉ according to the last constraint in (1)

and then use MAXCOVER to choose a subset of |VM+1| bots

from the remaining bot set with the maximum number of non-

bot followers. We repeat this greedy selection for every level

k = M + 2, . . . ,K.

The remaining problem is how to partition the S̃ into M
subsets, each corresponding to one of the first M levels. A

heuristic observation here is that we need to maximize |VM |, as

the more non-bot followers of the social bots in the M th level,

the more social bots in level M+1 and subsequent levels, and

also the lower average delay according to the last constraint in

(1). Given the budget |S̃| = c, we obtain |VM |max = c−M+1
when the retweeting forest has a single tree whose first M−1
levels form a straight line, as shown in Fig. 1(b). The bots

in the M th level is then determined by using MAXCOVER to

choose the c−M +1 bots from S̃ with the maximum number

of non-bot followers.

To determine the level for each of the remaining M−1 bots,

we sort the remaining M−1 bots in S̃ in the descending order

according to the number of their non-bot followers and assign

them to the corresponding level, e.g., the bot with the highest

number of non-bot followers will be assigned to the first level.

Note that it is possible that after we maximizing the number

of bots at the M th level, the remaining bots are less than the

allowed on the M th level, so the (M + 1)-th is not full. To

further reduce the average delay in such cases, we move the

’unused’ bots in the M th level to the first level.

After determining {Vi}
K
i=1 from the social-bot set

{1, . . . , n}, we can then build the final retweeting forest (tree).

Specifically, the number of retweeting trees is equal to the

cardinality of V1, which is one if the (M + 1)-th level is full

or greater than one otherwise. We then randomly choose one

social bot from V1 to be the root of the retweeting tree with

more than one level, which is followed by the bots from the

second to M th level determined by V2 to VM , respectively.

Finally, we build the level from k = M +1 to K by selecting

certain number of social bots from Vk according the last

constraint in Eq. (1).

C. Trace-driven Evaluation

We conduct trace-driven simulations to compare the per-

formance of spam distribution using the independent and

botnet methods, as well as evaluating the tradeoffs among the

multiple goals in the botnet method.

The evaluation for independent bots is straightforward. In

particular, given the bot set V with |V| = n, we place all the

bots in the first level which will be suspended completely. We

then have C = S̃ = n, and τ = 0. The single objective in

Problem (1) is thus f = α.

To evaluate the botnet method, we set up the simulations

according to existing measurement data and heuristics. We set

K = 10, and t1 = 0, ti = 0.5i hour for i = 2, . . . K according

to [24]. To build {Fi}
n
i=1, we generate |Fi| according to the

Gaussian distribution with µ = 32 as the average number of

followers in the dataset of [24]. We also set the variance to

σ2 = 5, generate a legitimate follower set F with |F| =
6000,4 and randomly choose |Fi| followers from the set F
for each bot i. In addition, according to [10], the average path

length of the spammer community is 2.60, so we set M = 3
to suspend the bots in the first three hops of F . Finally, we

set β to one and the retweeting ratio r = 0.2. Due to space

constraints, we focus on on the impact of α, c, and n and do

not report the impact of |F|, σ2, r, M, or β in this paper.

Fig. 2 compares the independent and botnet methods using

the objective function f with different weights α. As stated

before, f is simply equal to α for the independent case because

τ = 0 and S̃ = C. For the botnet method, the objective f is

the weighted sum of
|S̃|
|C| and the delay τ . When α is small, τ

has higher impact on f than
|S̃|
|C| , while when α is large,

|S̃|
|C|

will dominate f . Specifically, we can see from Fig. 2(a) that

when α = 0.4, the independent method outperforms the botnet

method with smaller f . However, as shown in Fig. 2(b), when

α increases to 0.65, the botnet method can achieve lower f
than the independent method does. This trend is more obvious

in Fig. 2(c) where α = 0.8 for the same reason.

4For the Gaussian distribution with µ = 32 and σ2
= 5, the probability

for generating a negative |Fi| is negligible.
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Fig. 2. Performance comparison of independent and botnet method in spam distribution at different αs in terms of the single objective f .
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Fig. 3. Performance comparison of independent and botnet method in spam distribution in terms of separate objective.

In addition, Fig. 2 demonstrates the tradeoff between the

objective f and the budget |S| = c with different weights α
for the botnet method. In particular, we can see from Figs. 2(a)

to 2(c) that there is no global optimal point where f and budget

c are simultaneously minimized. Instead, for given pair of α
and n (i.e., the number of social bots), we can find a Pareto

optimal curve on which f and c cannot be further reduced at

the same time.

Moreover, we can see from Fig. 2 that when the budget c
is close to the number of bots, the independent method and

the botnet method can achieve the similar objective f . This

is expected because most bots are allowed to be suspended

given the large budget, and the solution output by our heuristic

is similar to that of independent method. For example, when

n = c, we can place all bots in the first level to minimize the

average delay.

Figs. 2(a) to 2(c) compare the two methods in terms of

coverage, the number of lost legitimate followers, and the

average delay. We can see that both methods have the same

coverage |C|, which is equal to |F|, as well as the maximum

value of C. In addition, we can see from Fig. 3(c) that the

delay of the independent method is zero, while that of botnet

method could be on the order of hours. Finally, Fig. 3(b)

shows that the botnet method has significant advantage than

the independent method in terms of |S̃|, the number of lost

legitimate followers, as |S̃| is always equal to |F| for the

independent scheme.

Fig. 3 shows various relations between separate objectives

|C|, |S̃|
|C| , τ and |S| for the botnet method. In particular, Fig. 3(a)

depicts that the botnet method maintains a constant coverage

|C| for the given budget c at different n. Actually, we further

verified that this value is the maximum coverage under a

specific n. This is expected since K = 10 is large enough

to include all of n bots in the retweeting tree. In addition, it

is also obvious that the cost |S̃| linearly increases with the

budget |S| as shown in Fig. 3(b) and that the delay decreases

as the increasing of budget in Fig. 3(c).
Finally, the botnet size n also has some impact on separate

objectives in the botnet case. Intuitively, the larger n, the larger

coverage as shown in Fig. 3(a). In addition, Fig. 3(b) shows

that
|S̃|
|C| decreases as n increases. The reason is that the larger

n, the more bots with less non-bot followers will be assigned

to the first M levels, resulting in smaller |S̃| and thus larger
|S̃|
|C| . In addition, Fig. 3(c) shows that the larger n, the higher

the average delay τ , which is also expected.
In summary, from the view point of the botmaster, these

evaluations show that the botnet scheme is more flexible than

independent method when considering multiple objectives of

the spam distribution at the same time.

IV. SOCIAL BOTNET FOR DIGITAL-INFLUENCE

MANIPULATION

In this section, we start with a brief introduction to digital

influence and then experimentally show the efficacy of using

the social botnet to manipulate digital influence.

A. Rise of Digital Influence

Digital influence is one of the hottest trends in social

media and is defined as “the ability to cause effect, change
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behavior, and drive measurable outcomes online” in [32].

The huge commercial potential of digital influence is in line

with the increasingly recognized importance of word-of-mouth

marketing on social networks. There are also growing business

cases in which various companies successfully promoted their

services/products by reaching out to most influential social-

network users in their respective context [32].

The future of digital influence also relies on effective tools

to measure it. As reported in [32], there are over 20 popular

digital-influence software vendors such as Klout, Kred, and

Retweet Rank. Every vendor has its proprietary method to

compute an influence score for a given user based on his

activities within his affiliated social network such as Twitter,

Facebook, Google+, and LinkedIn, and higher scores represent

greater influence. Moreover, the typical business model of

digital-influence vendors is based around connecting business-

es with individuals of high influence. Companies have paid

to get in contact with individuals with high influence scores

in hopes that free merchandise and other perks will influence

them to spread positive publicity for them. For example, Klout

announced a growth of 2000 new partners over a one year

period in May 2012.

B. Botnet-based Digital-influence Manipulation

Given the great potential of digital influence, whether it can

be maliciously manipulated is an important research issue.

For example, assume that malicious users could collude to

significantly increase their influence scores. A company using

the digital-influence service may consider them most influen-

tial and choose them as the targets of important marketing

campaigns by mistake, thus having potentially huge financial

loss, while malicious users can potentially benefit, e.g., by

getting free sample products. In addition, malicious users may

attract more legitimate followers who tend to follow most

influential users and thus become more influential.

As the first work of its kind, we now explore the feasibility

of using the botnet to manipulate digital influence. Our stud-

ies involve three most popular digital-influence vendors for

Twitter users: Klout, Kred, and Retweet Rank. For clarity, we

summarize their key features as follows.

• Klout: The Klout score of a Twitter user is on the scale

of 1 to 100 and updated daily based on how frequently

he or she is retweeted and mentioned in the last 90 days.5

The average Klout score is close to 20, and the score of

the 80th percentile is over 40.

• Kred: The Kred score of a Twitter user is on the scale

of 1 to 1,000 and updated in real time according to how

frequently he or she is retweeted, replied, mentioned, and

followed on Twitter in the last 1,000 days.6

• Retweet Rank: It ranks the users based on how many

times they each have been retweeted recently and how

many followers/friends they each have.7 Retweet ranks

5http://corp.klout.com/blog/category/understanding-the-klout-score/
6http://kred.com/rules
7http://www.retweetrank.com/view/about

are updated on an hourly basis, and a retweet rank of x
means that the corresponding user is the xth most influ-

ential on Twitter. A retweet rank can also be translated

into a percentile score ranging from 1 to 100, indicating

how the user score relative to other Twitter users.

Given a social botnet of n bots, we want to investigate

whether it is feasible to generate an arbitrary influence score

di for every bot i ∈ [1, n] under each of the above three

tools. Since every bot is usually indistinguishable from a

legitimate user, our investigation can also shed light on the

feasibility of using the botnet to manipulate the influence

score of an arbitrary Twitter user. Since every digital-influence

vendor (including the above three) usually keeps confidential

its detailed algorithm for computing influence scores, our

studies are purely based on real Twitter experiments. Due to

tight space constraints, we present and discuss two different

experiments in what follows.
1) Impact of Different Actions on Twitter: Since almost

all digital-influence tools measure the influence of a Twit-

ter user as his ability to drive others to actions, our first

experiment aims to evaluate the impact of different actions

on Twitter, including following, retweeting, and mentioning.

Note that we do not evaluate the impact of replying which is

expected to have the same effect as mentioning, as replies are

also considered mentions on Twitter.
The first experiment involves n = 1, 000 bots, all of which

have not been scored by Klout, Kred, or Retweet Rank. Note

that Klout assigns an influence score of 10 to new users,

while Kred and Retweet Rank both assign a zero score to

new users. We randomly choose three disjoint groups of bots,

each containing 10 bots and for a unique action. For every bot

in the following group, we add 10 followers every day during

the first 10 days and then 100 followers every day during the

next 10 days which are randomly selected from the botnet.

Likewise, every bot in the retweeting (or mentioning) group is

retweeted (or mentioned) by random bots in the botnet 10, 100

and 1000 times every day during the first, second, and the last

10 days, respectively. Since we averaged the actions on all the

bots, the daily actions for each bot is too trivial to be suspected

by Twitter. Given the different score-updating schedules of the

three vendors, we choose to report the influence score of every

bot observed at every midnight. In addition, since the three

vendors have different score scales, every influence score is

normalized with respect to the corresponding maximum score

to facilitate the comparison. In particular, we show x/100
and y/1000 instead for a Klout score x and a Kred score y,

respectively, and adopts the percentile score for Tweet Rank.
Figs. 4(a)∼4(c) show the impact of following, retweeting,

and mentioning actions on Klout, Kred, and Retweet Rank

influence scores, where every data point is the average across

the same bot group. We can see from Fig. 4(a) that the Klout

influence score is not affected by the number of followers,

while both Kred and Retweet Rank influence scores increase

as the number of followers increases. This indicates that the

members of a botnet can easily boost their Kred and Retweet

Rank influence scores by purposefully following each other.
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Fig. 4. Manipulating digital influence by following, retweeting, and mentioning.

In addition, we can see from Fig. 4(b) that all three types

of influence scores increase as to the number of retweets

resulted from the user. On the one hand, this makes much

sense, since the higher the frequency of a user being retweeted,

the higher influence of that user has in its local neighborhood.

On the other hand, this also leaves the influence score system

vulnerable to botnets, in which collaborating bots can fake

arbitrarily high retweeting frequency for any user. Similar

trends can be seen in Fig. 4(c) for the impact of mentioning.

Note that each curve in Figs. 4(b) and 4(c) shows the difficulty

of escalating the influence score to an extremely high position,

which results from the score setting of the vendors [33]–[35].

2) Speed of Digital-influence Manipulation: Since our

first experiment have shown that retweeting is the most ef-

fective way in manipulating Klout, Kred, and Retweet Rank

scores, we now focus on how fast retweeting can affect

the influence scores using the same botnet in the second

experiment. For this purpose, we randomly select another

three groups of bots from the botnet, each containing 10 bots

different from the ones in the first experiment. Every bot in

the first, second, and third groups is retweeted 10, 100, and

1,000 times every day by random bots until the scores reach

the 80th percentile, which corresponds to 40, 600, and 80 in

Klout, Kred, and Retweet Rank, respectively.

Fig. 5 further shows the impact of retweeting frequency on

the change of influence scores, where every data point repre-

sents the average across the same bot group. In particular, we

can see that the number of days needed to increase the group

average influence score from initial value to 80% percentile

is approximately inversely proportional to the retweeting fre-

quency. In addition, we can see that for all three vendors, it

is possible to reach the 80% percentile with only single day

by retweeting 1000 times per day.

V. RELATED WORK

Due to space constraints, we only discuss the prior work

most germane to our work in this paper.

Boshmaf et al. showed that a social botnet is very effective

in connecting to many random or targeted Facebook users (i.e.,

large-scale infiltration) [2]. In contrast, our work has a different

purpose and investigates the efficacy of using the social botnet

for spam distribution and digital-influence manipulation.
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Fig. 5. Under different speed of retweeting, the number of days need to
manipulate digital influence scores from nothing into 80-th percentile.

There is a rich literature on spam detection in OSNs. The

first line of work such as [8], [21], [25]–[30], [36], [37]

considers independent spam bots and comes up with different

methods to characterize and detect them. Some of these results

such as [27] have been incorporated into our design constraints

in §III-B2. The second line of work such as [3]–[5], [10], [11],

[20] focuses on characterizing and detecting organized spam

campaigns launched by an army of spam bots. We actually

discover a new method for effective spam campaign in this

paper, and whether the results in [3]–[5], [10], [11], [20]

can be directly or adapted to detect our method is certainly

challenging and worthy of further investigation.

Finally, there are effective solutions such as [38], [39]

to detecting Sybil accounts in distributed systems under the

control of a single attacker. These solutions commonly assume

that the link between two accounts corresponds to a real social

relationship difficult to establish and impossible to forge. This

assumption, however, does not hold in Twitter which allows

followings without prior consent. Therefore, these solutions is

ineffective in detecting the social botnet in our case.

VI. CONCLUSION AND FUTURE WORK (POSSIBLE

COUNTERMEASURES)

In this paper, we firmly validated the efficacy and merits

of botnet-based spam distribution and digital-influence manip-

ulation on Twitter through thorough experiments and trace-

driven simulations. As the future work, we will first extend

our studies to other OSNs such as Facebook and Google+.
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We will also investigate other attacks that can be enabled or

facilitated by the social botnet so as to raise the alertness of

OSN users and also help OSNs improve their misbehavior-

detection systems. In addition, we plan to investigate three

lines of countermeasures against our attacks.

The first line is motivated by the observation that the amount

of interactions from a legitimate OSN user to a social bot is

usually far less than that in the reverse direction. We thus seek

to combine this observation with existing Sybil defenses [38],

[39] to effectively identify large-scale social botnets.

Another possible defense is to identify malicious applica-

tions registered by the botmaster at OSNs. In particular, a

large-scale social botnet often involves delegating the access

privileges of individual bots to the applications the botmas-

ter develops based on the OSN’s open APIs and registers

with the OSN, as described in §II. The botmaster can then

simultaneously control the bots via the applications. Since the

OSN like Twitter normally rate-limits the number of open API

calls made by a single application (e.g., 350 calls per hour in

Twitter), the botmaster will have to register and simultaneously

operate many applications for a large-scale social botnet. In

contrast, a legitimate user may mostly use the conventional

web interface and occasionally rely on third-party applications

to access the OSN. Moreover, a malicious application has little

chance to attract legitimate users who are unlikely to delegate

their access privileges to unknown third-party applications.

These observations can help design effective and efficient

algorithms for OSNs to identify malicious botnet applications.

Finally, our experiments for digital-influence manipulation

reveal that digital-influence vendors barely consider the exist-

ing influence of OSN users in deriving new influence scores.

Intuitively, the interactions with influential users should be

counted more than those with non-influential users. Based on

this observation, we plan to investigate new digital-influence

quantization methods immune to botnet-based manipulation.
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