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Abstract

Object detection in aerial imagery has been well stud-
ied in computer vision for years. However, given the com-
plexity of large variations of the appearance of the object
and the background in a typical aerial image, a robust and
efficient detection is still considered as an open and chal-
lenging problem. In this paper, we present the Enhanced
Semi-Supervised Learning (ESL) framework and apply this
framework to revising an object detection methodology we
have developed in a previous effort. Theoretic analysis
and experimental evaluation using the UCI machine learn-
ing repository clearly indicate the superiority of the ESL
framework. The performance evaluations of the revised ob-
ject detection methodology against the original one clearly
demonstrate the superiority of this approach.

1 Introduction

Object detection in aerial imagery has been well studied
for years in computer vision [5, 9, 20]. Concerning with
the object detection methods reported in the literature, ob-
jects may be either detected as a boundary delineation or
as a bounding box extraction. The former [9, 11, 12, 15]
is usually achieved by perceptual grouping while the latter
[8, 10, 17] is typically accomplished by classification.

The classification based object detection problem is typ-
ically solved in two stages:candidate generationandcan-
didate classification[19]. The majority of the classifica-
tion models used in the detection proposed in the literature
are based on the supervised learning, including boosting
models [13], cascade models [10, 17], neural networks [7],
Bayesian networks [20], generative models [15], and statis-
tical models [14]. Typically, manually ground truthing is
tedious and error-prone. Consequently, the semi-supervised
learning (SSL) algorithms [1, 3, 6] may be used to relieve
this since they only need a small set of labelled training

samples. Typically, an SSL is achieved by iteratively ap-
plying supervised learning.

In the previous effort [19], we have developed an SSL
theory in which we have presented a novel labelling strategy
for unlabelled training samples to maximize the learning ac-
curacy for the supervised classifier at each iteration. We
have applied this theory to aerial imagery object detection
problem and have developed a context based object detec-
tion methodology, called CONTEXT. However, this theory,
together with other existing SSL algorithms, cannot guar-
antee that the accuracy increases when the number of iter-
ations increases. In this paper, we present theEnhanced
Semi-Supervised Learning(ESL) framework in which we
prove in theory that an SSL algorithm under this frame-
work is probabilistically guaranteed to have the accuracy
increased when the number of iterations increases. An SSL
algorithm under this framework is called an ESL algorithm
and the SSL algorithm per se is called the original SSL al-
gorithm. We have applied this framework to revising the
CONTEXT to show the substantially improved learning ef-
ficiency in aerial imagery object detection.

The rest of the paper is organized as follows. In Section
2, we present the ESL framework. In Section 3, we report
the experimental evaluations of two ESL algorithms using
the UCI Machine Learning Repository [2]. In Section 4,
we present the revised CONTEXT and report the evaluation
performance. Finally, the conclusion is given in Section 5.

2 ESL Framework

In this section, we first identify a fundamental problem
with the existing SSL algorithms in the literature. We then
develop the ESL framework for the 2-class SSL algorithms.
Finally, we extend the framework to the general K-class
SSL algorithms. The whole framework is based on the fol-
lowing assumption: each sample is identically and indepen-
dently generated from an unknown distribution (i.i.d.).



2.1 Problem with Existing SSL Algorithms

The input to an SSL algorithm includes a labelled train-
ing sample setL and an unlabelled training sample setU .
A typical SSL method is achieved by iteratively labelling
the unlabelled training samples, which are called thetenta-
tive labels, and subsequently training a supervised classifier
usingL, U , and the tentative labels.

The supervised classifier used in an SSL procedure is
called thebase classifier. Due to the existence of unlabelled
training samples, there are two interpretations for an unla-
belled training sample to be correctly classified in each iter-
ation. The first is that the unlabelled sample has a classified
label equal to its ground truth label. The second is that the
unlabelled sample has a classified label equal to its current
tentative label. The two interpretations are called, respec-
tively, the ground truth correctand theperceived correct
interpretations. The accuracies determined using the two
interpretations are called, respectively, theground truth ac-
curacyand theperceived accuracy.

As stated earlier, existing SSL algorithms cannot guaran-
tee that the ground truth accuracy of the base classifier at an
iteration increases when the number of iterations increases.
To show this observation, we run two representative SSL al-
gorithms on four databases from the UCI Machine Learning
Repository. The four databases are denoted as, respectively,
PD, WD, LR, and DR. The four databases are explained in
detail later. The first SSL algorithm is denoted as SEM [19],
which uses the EM algorithm [4] to estimate class probabil-
ities, the probabilities for each unlabelled sample to belong
to each class.L, U , the tentative labels, and the class proba-
bilities are used to learn the base classifier at each iteration.
The second SSL algorithm is denoted as SSVM [1], which
uses the SVM [16] as the base classifier and does not in-
clude probability in the learning. In the experiments, we
randomly select 5% percent training samples as the labelled
training samples and consider the remaining training sam-
ples as the unlabelled training samples. Three stop criteria
are selected: #1—the perceived accuracy stops increasing;
#2—the average value of the class probability difference be-
tween the current and the previous iteration for all the unla-
belled training samples is less than 1%; #3—the percentage
of the unlabelled training samples which change their labels
from all the unlabelled training samples is less than 1%.
For each algorithm and each database, 20 times of learning
with different randomly selected training samples are used
to generate 20 classifiers. Table 1 reports the number of
classifiers which maintain the increased ground truth accu-
racy during the learning. Table 2 reports the average value
of the unnecessary iterations taken during the learning. It
is clear from Tables 1 and 2 that for all the algorithms on
all the databases, the increase of the ground truth accuracy
cannot be guaranteed. Besides, the learning can be stopped

Table 1. Accuracy increase test results
Stop Criterion Algorithm PD WD LR DR

# 1
SEM 4 4 3 1

SSVM 4 5 3 2

# 2
SEM 6 5 4 2

SSVM N/A N/A N/A N/A

# 3
SEM 7 7 4 2

SSVM 6 7 4 3
Each value represents the number of the classifiers (out of
20) which maintain the increased ground truth accuracies

using the specified classifier and stop criterion.

Table 2. Learning efficiency results
Stop Criterion Algorithm PD WD LR DR

# 1
SEM 1.4 1.9 5 3.9

SSVM 1.8 2.4 5.9 4.8

# 2
SEM 1.3 1.5 3.7 3.1

SSVM N/A N/A N/A N/A

# 3
SEM 1.2 1.4 3.9 3.4

SSVM 1.3 2.0 4.8 4.2
Each value represents the average number of iterations
which do not lead to the ground truth accuracy increase

using the specified algorithm and stop criterion.

earlier without affecting the final ground truth accuracy.

2.2 2-class ESL Framework

For a 2-class classification problem, assume thatL in-
cludes a positive training sample setP and a negative train-
ing sample setN . Let the number of the samples in a setX
be |X|. Assume thatU is divided intoUP andUN , which
are, respectively, the ground truth positive training sample
set inU and the ground truth negative training sample set
in U . We first assume that|UN | and |UP | are known and
will discuss the case when the assumption is relaxed later.
Denoteηi

pg andηi
ng as the ground truth accuracies at iter-

ation i for positive training samples and negative training
samples, respectively. Similarly, denoteηi

pp andηi
np as the

perceived accuracies at iterationi for positive training sam-
ples and negative training samples, respectively. Following
the i.i.d. property of the training samples, it is not difficult
to derive:

ηi
pg =

|P | × ηi
pp + |UP | × (ηi−1

pg ηi
pp + (1− ηi−1

pg )(1− ηi
np))

|P |+ |UP |
(1)

ηi
ng =

|N | × ηi
np + |UN | × (ηi−1

ng ηi
np + (1− ηi−1

ng )(1− ηi
pp))

|N |+ |UN |
(2)

For different applications, there may be different emphases
on the accuracy of positive samples or the accuracy of neg-
ative samples. In order to make the learning adaptive to
different applications, we define the overall ground truth ac-



curacy of the classifier at iterationi, which is denoted asηi
g,

as a linear combination of the two ground truth accuracies:

ηi
g = α× ηi

pg + (1− α)× ηi
ng (3)

Where α is an application dependent parameter which
specifies the relative emphasis on the accuracy of positive
samples. Substituting (1) and (2) into (3), we finally have:

ηi
g = α×

|P | × ηi
pp

|P |+ |UP |
+ (1− α)×

|N | × ηi
np

|N |+ |UN |

+ α×
|UP | × (1− ηi

np + ηi−1
pg (ηi

pp + ηi
np − 1))

|P |+ |UP |

+ (1− α)×
|UN | × (1− ηi

pp + ηi−1
ng (ηi

pp + ηi
np − 1))

|N |+ |UN |
(4)

In (4), the known parameters are|P |, |N |, |UP |, |UN |,
andα; the unknown parameters, which can be reliably esti-
mated using the method presented later, areηi−1

pg andηi−1
ng ;

the remaining parameters areηi
pp andηi

np. After the base
classifier at iterationi is learned, we can consider these two
parameters as known parameters. Then we can estimateηi

g

using (4) and compare it withηi−1
g . If ηi

g is higher, we move
to the next iteration. Otherwise, the learning stops.

Now the problem becomes how to estimateη0
pg andη0

ng.
We first randomly generate some sample sets fromU

⋃
L

and determineη0
pg andη0

ng for each sample set. Based on
the Sampling Theory and the Central Limit Theorem [18],
when the number of sample sets, which is called thesample
size, is sufficiently large (> 30), the distribution of the aver-
ageη0

pg of all the groups is approximately normal with the
mean equal toη0

pg estimated usingU
⋃

L and the standard
deviation equal to the standard deviation estimated using
U

⋃
L divided by the square root of the sample size. Simi-

lar results can be derived forη0
ng. Consequently, Algorithm

1 is presented to estimateη0
pg andη0

ng and Algorithm 2 is
the 2-class ESL framework.

Algorithm 1 Initial Parameter Estimation
1.Train the base classifier usingL.
2.Randomly selectM samples fromU

⋃
L and ground

truth them. These samples are called theseed samples.
3.Classify the seed samples using the base classifier learned
in Step 1.
4.Divide the seed samples into 30 groups evenly. Determine
the mean and the standard deviation of the positive accu-
racies and the negative accuracies from all the groups, and
denote them as, respectively, (mpg,σpg) and (mng,σng).
5.For confidence level1 − β (β ∈ [0, 1]), let η0

pg be
mpg + zβ/2 ×

σpg√
30

and letη0
ng be mng + zβ/2 ×

σng√
30

.
zx satisfiesG0,1(−∞ < y < zx) = x, whereG0,1 is the
cumulative distribution function of the standard Gaussian.

Algorithm 2 2-class ESL Framework
1. Train an initial classifier usingL.
2. Use Algorithm 1 to estimateη0

pg andη0
ng. Seti = 1.

3. ClassifyU using the trained classifier at Iterationi − 1
and assign tentative labels to unlabelled samples.
4. Re-train the classifier usingL, U , and the tentative labels
of U . Determineηi

pp andηi
np.

5. Determineηi
pg andηi

ng using Equations (1) and (2).ηi
g

is determined using Equation (3).
6. If ηi

g > ηi−1
g theni = i + 1 and goto step 3;

else output the classifier at Iterationi− 1 and stop.

We will address the issue of how to determine an ap-
propriate value forM later. The following theory is the
theoretic foundation of Algorithm 2:

Theorem 1. Given an arbitraryβ, assuming that Algorithm
2 stops at iteration G, the probability of the event that the
ground truth accuracies increase over iterations is at least
(1− β/2)2,i.e.,P ( ˆηG−1

g > ... > η̂1
g > η̂0

g) > (1− β/2)2.

Proof. First, we use the mathematical induction to prove
that if η0

pg > ˆη0
pg andη0

ng > ˆη0
ng, then we haveηi

pg > ˆηi
pg,

ηi
ng > ˆηi

ng, andηi
g > η̂i

g for anyi < G.

Initial step:η0
pg > ˆη0

pg andη0
ng > ˆη0

ng are correct from the

assumption. Consequently,η0
g > η̂0

g is correct from (3).

Induction step: Assume thatηi−1
pg > ˆηi−1

pg , ηi−1
ng > ˆηi−1

ng ,

andηi−1
g > ˆηi−1

g . From (1), we have:

∂ηi
pg

∂ηi−1
pg

=
|UP |

|P |+ |UP |
× (ηi

pp + ηi
np − 1) (5)

For a learned classifier, it must tentatively correctly classify
at least half of the training samples, i.e.,ηi

pp + ηi
np > 1.

Therefore,
∂ηi

pg

∂ηi−1
pg

> 0. Sinceηi−1
pg > ˆηi−1

pg , we have:

|P | × ηi
pp + |UP | × (ηi−1

pg ηi
pp + (1− ηi−1

pg )(1− ηi
np))

|P |+ |UP |
>

|P | × ηi
pp + |UP | × ( ˆηi−1

pg ηi
pp + (1− ˆηi−1

pg )(1− ηi
np))

|P |+ |UP |
(6)

which leads toηi
pg > ˆηi

pg. Similarly, we can deriveηi
ng >

ˆηi
ng from (2). By (3),ηi

g > η̂i
g is also correct.

Now we prove that for anyi < G, if ηi−1
pg > ˆηi−1

pg and

ηi−1
ng > ˆηi−1

ng , thenη̂i
g > ˆηi−1

g . Since the learning procedure



does not stop at iterationi, we haveηi
g > ηi−1

g , i.e.,

α×
|P | × ηi

pp + |UP | × (ηi−1
pg ηi

pp + (1− ηi−1
pg )(1− ηi

np))

|P |+ |UP |
+

(1−α)×
|N | × ηi

np + |UN | × (ηi−1
ng ηi

np + (1− ηi−1
ng )(1− ηi

pp))

|N |+ |UN |
> αηi−1

pg + (1− α)ηi−1
ng (7)

Move the left hand side of (7) to the right hand side and
denote the resulting right hand side asφ(ηi−1

ng , ηi−1
pg ). Then

we have:

∂φ

∂ηi−1
pg

= α× (1− |UP |
|P |+ |UP |

× (ηi
np + ηi

pp − 1)) (8)

Sinceα > 0, 0 < |UP |
|P |+|UP | < 1, and ηi

np + ηi
pp <

1 + 1 = 2, we have ∂φ

∂ηi−1
pg

> 0. Similarly, we also have

∂φ

∂ηi−1
ng

> 0. Sinceηi−1
pg > ˆηi−1

pg andηi−1
ng > ˆηi−1

ng , we have

φ( ˆηi−1
ng , ˆηi−1

pg ) < φ(ηi−1
ng , ηi−1

pg ) < 0. Reorder the inequality

φ( ˆηi−1
ng , ˆηi−1

pg ) < 0 and we have:

η̂i
g > ˆηi−1

g (9)

Combining the two results, it is clear that ifη0
pg > ˆη0

pg

andη0
ng > ˆη0

ng, thenη̂i
g > ˆηi−1

g is correct for anyi < G.
Consequently, we have:

P ( ˆηG−1
g > ˆηG−2

g > ... > η̂1
g > η̂0

g)

> P (η0
pg > ˆη0

pg)× P (η0
ng > ˆη0

ng) = (1− β/2)2 (10)

In Algorithm 2, if we setη0
pg asmpg − zβ/2 ×

σpg√
30

and

setη0
ng asmng − zβ/2 ×

σng√
30

, we haveηi
g < η̂i

g for any
i < G. Consequently, we have the following corollary:

Corollary 1. Given an arbitrary1− β, denote theηi
g gen-

erated by selectingη0
pg = mpg + zβ/2 ×

σpg√
30

and η0
ng =

mng + zβ/2 ×
σng√

30
as ήi

g and theηi
g generated by selecting

η0
pg = mpg − zβ/2×

σpg√
30

andη0
ng = mng − zβ/2×

σng√
30

as

ὴi
g. Then we have:P (∀i, ήi

g > η̂i
g > ὴi

g) > (1− β)2.

It is clear that the above theory is based on the assump-
tion that|UP | and|UN | are known. In case there is no such
prior knowledge, we could also use the parameter estima-
tion method to estimate them. Not only the seed samples,
but also the labelled training samples and testing samples
can be used to estimate them. Experimental results indicate
that those samples are sufficient to reliably estimate|UN |
and|UP |.

2.3 K-class ESL Framework

For the K-class classification, letUig be the ground truth
classi sample set inU ; let ηk

ijg(ηk
ijp) be the probability of

a ground truth (tentative) classi sample to be classified as
a ground truth (tentative) classj sample at iterationk. As-
sume the overall accuracy is a linear combination of the ac-
curacies for each class, i.e,ηk

g =
∑

j αj × ηk
jjg,where

ηk
iig =

|P | × ηk
iip +

∑
j Uig × η

(k−1)
ijg × ηk

jip

|P |+ |Uig|
(11)

Similar to Algorithm 1 and Algorithm 2, an initial pa-
rameter estimation algorithm forη0

ijg for any i and j and
the K-class ESL framework can be derived. Denote the in-
dependentη0

ijg as thefree parametersand the number of
the free parameters asF . Note that for the K-class prob-
lem F ≤ K × (K − 1). Due to the correlations between
differentη0

ijg, the actualF is far less than the upper bound
of F , i.e.,K × (K − 1). For example, in the 2-class prob-
lem, the positive accuracy and the negative accuracy can
be combined into one parameter—overall accuracy if these
two have little difference. The following method is used to
determineF value when no prior knowledge is available:
1. LetF be a small value. Divide all theη0

ijg into F groups,
where all theη0

ijg in one group are considered the same.
2. Estimate theF free parameters.
3. Use the estimatedη0

ijg to estimateη1
ijg. If those ofη1

ijg

which are in one group are not the same actually, increase
F by 1, modify the group correspondingly, and go to Step
2; otherwise, stop the procedure and output the currentF
value as the finalF .

Experimental results show that when each group con-
tains4F samples, i.e.,M equals to4F × 30 = 120 × F ,
the estimatedηk

g is accurate, i.e., the difference between the
upper bound and the lower bound ofηk

g is small. Similar to
the proof of Theorem 1, we have the following theorem as
the theoretic foundation for the K-class ESL framework:

Theorem 2. Given an arbitrary1 − β, assuming that the
K-class ESL procedure stops at iteration G, the probability
of the event that the ground truth accuracies increase over

iterations is at least(1 − β/2)F ,i.e.,P ( ˆηG−1
g > ˆηG−2

g >

... > η̂1
g > η̂0

g) > (1− β/2)F .

3 Evaluation Using the Public Data

We use the UCI machine learning repository [2] to evalu-
ate the ESL algorithms against the original SSL algorithms
to demonstrate the strength and the superiority of the ESL
framework. We select the Pima Indians Diabetes Database,
the Wisconsin Diagnostic Database, the Letter Recognition
Database, and the Optical Recognition of Handwritten Dig-
its Database, which are denoted as PD, WD, LR, and DR,



Table 3. Training Accuracy Comparisons
Database SEM ESEM FEM SSVM ESSVM FSVM

PD (76.3%,75.2%) (79.5%,78.2%) (81.4%,79.7%) (76.3%,76.1%) (76.7%,77.1%) (76.7%,79.9%)
WD (93.9%,92.3%) (93.7%,94.2%) (95.3%,93.1%) (92.3%,92.3%) (95.1%,93.7%) (95.7%,92.7%)
LR (83.2%,81.1%) (85.7%,84.3%) (86.3%,86.1%) (83.0%,81.2%) (83.2%,83.2%) (85.7%,85.7%)
DR (93.7%,93.4%) (97.1%,96.8%) (99.2%,93.1%) (94.9%,93.4%) (97.3%,97.1%) (99.1%,95.3%)
AVE (86.8%,85.6%) (89.0%,88.4%) (90.6%,88.0%) (86.6%,85.8%) (88.1%,87.8%) (89.3%,88.4%)

Each value pair represents the average learning accuracy and test accuracy using the specified algorithm and database.

respectively, as the test data sets. All the databases contain
only numeric attribute values and no missing attribute.

For those databases which only have training samples,
we randomly select60% training samples as the training
samples for the corresponding classifiers and use the re-
maining samples as test samples. Besides,βl percent train-
ing samples are randomly selected as the labelled training
samples for the SSL classifiers. All the remaining train-
ing samples are considered as unlabelled training samples.
Without an explicit notice,βl is set to5%. All the results
are the average values of 20 times of learning based on dif-
ferent randomly selected labelled training samples. We se-
lect the SSVM [1] and SEM [19] as the original SSL algo-
rithms; after applying the ESL framework to them, we call
the corresponding ESL algorithms as ESSVM and ESEM,
respectively, for the reference propose; to further compare
the performance between the SSL classifiers and the corre-
sponding supervised learning algorithms, we also use all the
training samples to train the corresponding supervised clas-
sifier using SVM and EM, respectively, and refer to them as
FSVM and FEM, respectively.

First, we compare the final accuracies of the six classi-
fiers over the four databases. Table 3 reports the results.
Each entry in the table contains two values. The first is the
accuracy for training samples and the second is the accuracy
for test samples. It is clear that in most cases, the ESL algo-
rithms have higher accuracies than those of the correspond-
ingly original SSL algorithms. In addition, the accuracies of
the SSL algorithms are typically lower than those of the cor-
respondingly supervised learning algorithms. For the learn-
ing on LR and DR, which are multi-class classifications,
there are 77.5% times of learning which have strictly in-
creased accuracies for ESEM and ESSVM, compared with
only 11.3% times of learning which have strictly increased
accuracy for SEM and SSVM. Those values for PD and WD
are 96.3% and 21.3%. The fact that the ESL framework
for multi-class classification contributes less to maintaining
the increased accuracy than the ESL framework for 2-class
classification is consistent with the theory we have devel-
oped in Section 2.

Second, we compare the number of iterations taken by
the SSL algorithms. Table 4 documents this experiment. It
is clear that in most cases, the ESL algorithms need much

Table 4. Learning efficiency comparison
Database SEM ESEM SSVM ESSVM

PD 3.1 1.7 3.2 1.4
WD 3.5 1.6 4.1 1.7
LR 7.9 2.9 8.5 2.6
DR 6.4 2.5 7.2 2.4
AVE 5.2 2.2 5.8 2.0

Each value represents the number of iterations taken during
the learning using the specified algorithm and database.

fewer iterations than the corresponding original SSL algo-
rithms. The reason for this is that the framework we have
developed imposes a strong constraint on the perceived ac-
curacy. If the perceived accuracy does not meet the condi-
tion at a specific iteration, even if there is a perceived accu-
racy increase w.r.t. the perceived accuracy at the previous
iteration, the learning stops. On the other hand, this is not
the case for the correspondingly original SSL. As we have
shown already, an increase of the perceived accuracy does
not sufficiently lead to an increase of the ground truth ac-
curacy. Consequently, this also explains the result of the
previous experiment: why the accuracy of an ESL algo-
rithm is typically higher than that of the correspondingly
original SSL algorithm. The differences between the num-
ber of iterations taken by an ESL algorithm and that by the
correspondingly original SSL algorithm for PD and WD
databases are small while those for LR and DR databases
are large. The reason may be that the number of samples in
LR and DR databases are relatively large and it costs more
iterations for the original SSL algorithms to converge.

4 Object Detection Based on the ESL Frame-
work

In this section, we apply the ESL framework to revis-
ing the CONTEXT methodology we have developed earlier
for aerial imagery object detection [19]. The basic idea of
CONTEXT is to use SSL algorithms to achieve an effec-
tive and efficient detection through thoroughly exploiting
the context information. The CONTEXT contains mainly
the following steps:



1. An aerial image is first segmented and the background is
then identified.
2. The disconnected background regions are generated.
3. An SSL classifier is used to classify the background re-
gions which may surround an object.
4. Another SSL classifier is used to verify whether there
exist the objects which are surrounded by the background
regions that have passed the first SSL classifier.

The revised CONTEXT is called RCON, which is ex-
actly the same as CONTEXT except that the two SSL clas-
sifiers in CONTEXT are replaced with two corresponding
ESL classifiers here. For the first ESL classifier, since it
is more important for the background regions which actu-
ally surround an object to be correctly classified, i.e., to
have a high accuracy for positive samples, we select a high
α value. For the second ESL classifier, we use the same
penalty for missing an object and for incorrectly detecting a
non-existing object. Consequently, we letα be 0.5.

In order to facilitate a fair comparison, we evaluate
RCON by focusing on aircraft detection, as was reported
in [19]. The evaluation data set, the parameter selection,
and the ground truthing procedure of RCON are exactly the
same as those in [19]. The detection effectiveness is mea-
sured in terms of thedetection rate, which is the percent-
age of the number of correctly detected objects from the
ground truth number of objects in the data set, and thefalse
alarm rate, which is the percentage of the number of incor-
rectly detected objects from the number of detected objects
in the data set. Table 5 reports the comparison. Clearly,
RCON improves CONTEXT slightly in detection efficiency
and substantially in learning efficiency.

Table 5. Performance comparison
Metric RCON CONTEXT

Detection rate 95.8% 94.7%
False alarm rate 6.5% 7.3%

Detection time (s) 0.27 0.27
Training time (h) 23 74

5 Conclusions

In this paper, we present the Enhanced Semi-Supervised
Learning (ESL) framework and apply this framework to
revising an object detection methodology we have devel-
oped in a previous effort. Theoretic analysis and experi-
mental evaluation using the UCI machine learning reposi-
tory clearly indicate the superiority of the ESL framework.
The performance evaluations of the revised object detection
methodology using the ESL algorithms against the original
one clearly demonstrate the promise and the superiority of
this approach.
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