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Abstract

This paper addresses Content Based Image Retrieval
(CBIR), focusing on developing a hidden semantic con-
cept discovery methodology to address effective semantics-
intensive image retrieval. In our approach, each image in
the database is segmented to regions associated with ho-
mogenous color, texture, and shape features. By exploiting
regional statistical information in each image and employ-
ing a vector quantization method, a uniform and sparse
region-based representation is achieved. With this repre-
sentation a probabilistic model based on statistical-hidden-
class assumptions of the image database is obtained, to
which Expectation-Maximization (EM) technique is ap-
plied to analyze semantic concepts hidden in the database.
An elaborated retrieval algorithm is designed to support
the probabilistic model. The semantic similarity is mea-
sured through integrating the posterior probabilities of the
transformed query image, as well as a constructed negative
example, to the discovered semantic concepts. The pro-
posed approach has a solid statistical foundation and the
experimental evaluations on a database of 10,000 general-
purposed images demonstrate its promise of the effective-
ness.

1. Introduction
Large collection of images are becoming available to the
public, from photo collections to Web pages or even video
databases. To index or retrieve them is a challenge which
is the focus of many research projects (for instance IBM’s
QBIC [5]). With near one decade research, it is found that
content based image retrieval (CBIR) is a practical and sat-
isfactory solution to the challenge. At the same time, it is
also well known that the performance of CBIR is mainly
limited by the gap between low-level features and high-
level semantic concepts [13]. In order to reduce this gap,
region based features (describing object level features), in-
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stead of raw features of whole image, to represent the visual
content of an image is widely used [1, 15, 16, 6, 3].

One important issue significantly affecting success of a
region-based CBIR methodology is how to compare two
images, i. e., the definition of the image similarity measure-
ment. A straightforward solution adopted by most early
systems [1, 8] is to use individual region-to-region simi-
larity as the basis of the comparison. Using such systems,
the users are forced to select a limited number of regions
from the query image in order to start a query session. As
discussed in [15], due to the uncontrolled nature of visual
contents in an image, automatically and precisely extract-
ing image objects is still beyond the reach of the state-of-
the-art in computer vision. Therefore, the above systems
tend to partition one object into several regions with none of
them being representative for the object. Consequently, it is
often difficult for users to determine which regions should
be used for retrieval.

To address this issue, several image-to-image similar-
ity measurements that combine information from all of the
regions have been proposed [15, 3]. Such systems only re-
quire the users to impose a query image, and therefore re-
lieve the users from puzzling decisions. For example, the
SIMPLIcity system [15] uses an integrated region match-
ing as its image similarity measure. By allowing many-to-
many relationship of the regions, the approach is robust to
inaccurate segmentation.

Ideally what we strive to measure is thesemantic simi-
larity, which physically is very difficult to define, even to
describe. All above methodologies did not explicitly con-
nect the extracted features with the pursued semantics rep-
resented by the visual content. Though the defined region-
to-region and/or image-to-image similarities attempt to ap-
proximate the semantic similarity, the approximation is
heuristic and not reliable. Consequently their retrieval ac-
curacies are limited. In this paper, we propose a proba-
bilistic approach to addressing the hidden semantic con-
cept discovery. A new region-based sparse but uniform im-
age representation is developed, which facilitates the index-
ing scheme based on a region-image-concept probabilistic
model with reasonable assumptions. This model has a solid



statistical foundation and thus is appropriate for the objec-
tive of semantics-intensive image retrieval. To describe the
semantic concepts hidden in the region and image distri-
butions of a database, the Expectation-Maximization (EM)
technique is used. With a derived iterative procedure, the
posterior probabilities of each region in an image to hidden
semantic concepts are quantitatively obtained, which act as
the basis for thesemantic similaritymeasure for image re-
trieval. The retrieval effectiveness is improved because the
similarity measure is based on the discovered semantic con-
cepts, which are more reliable than the existing region fea-
tures proposed in the literature.

The rest of the paper is organized as follows: Section 2
describes the region feature extraction and image represen-
tation based on the image segmentation and visual dictio-
nary generated with the feature grouping. In Section 3 the
probabilistic region-image-concept model and the hidden
semantic concepts discovery through EM technique are de-
scribed. Section 4 presents the posterior probability based
image similarity measure scheme and the supportive rele-
vance feedback based retrieval algorithm as well as discus-
sions on the proposed approach. The experiment results
that evaluate the proposed approach against one state-of-
the-art CBIR system in several aspects are reported in Sec-
tion 5. Finally the paper is concluded in Section 6.

2. Region Based Image Representa-
tion

The query image and images in a database are first seg-
mented into homogeneous regions. Then representative
properties are extracted for every region by incorporat-
ing multiple semantics-related features, specifically, color,
texture, and shape properties. The image segmentation
and corresponding feature extraction method are similar to
those employed in [15], which are shown to be effective.
Finally the normalized feature vectors corresponding to
color, texture, and shape properties, respectively, are stored
to represent each region of all the images in the database.

Since region featuresf ∈ Rn, it is necessary to perform
regularization on the region property set so they can be in-
dexed efficiently. Noting that many regions from different
images are similar in terms of the features, vector quanti-
zation (VQ) techniques are used to group similar regions
together. Consequently, we create a visual dictionary for
region properties to represent the visual content of regions.
There are three advantages of the visual dictionary. First, it
improves retrieval robustness by tolerating minor variations
among visual properties. Without the visual dictionary, be-
cause that very few feature values are shared by regions, we
have to consider feature vectors of all regions. This manner
makes it not effective to compare similarity among regions.
However, based on the visual dictionary created, low-level

features of regions are quantized such that images can be
represented in a way resistant to perception uncertainties
[3]. Second, the region-comparison efficiency is improved
significantly by preventing from calculating distances be-
tween region features. Third, the utilization of visual dic-
tionary reduces the storage space without sacrificing the ac-
curacy.

We create the visual dictionary for region properties by
applying Self-Organization Map (SOM)[7] learning. SOM
is ideal for our problem as it projects high-dimensional
feature vectors to a 2-dimensional plane through mapping
similar features together while separating different features
apart at the same time.

A procedure is designed to create “code words” in the
dictionary. Each “code word” represents a set of visually
similar regions. The procedure follows 4 steps:

1. Performing Batch SOM learning [7] algorithm on the
region feature set to obtain the visualized model (node
status) displayed on the 2-dimensional plane map.

2. Regarding each node as a “pixel” in the 2-dimensional
plane such that the map becomes a binary image with
the value of each pixeli defined as following:

p(i) =
{

0 if count(i) ≥ t
255 else

wherecount(i) is the number of features mapped to
the nodei and the constantt is a preset threshold. The
pixel value 0 denotes objects while pixel value 255
denotes background.

3. Performing the morphological erosion operation [2]
on the resulting image to make sparse connected ob-
jects in the image disjointed.

4. With connected component labeling [2] we assign
each separated object a unique ID, a “code word”.
For each “code word”, the mean of all the features
associated to it is determined and stored. All “code
words” constitute the visual dictionary for regional vi-
sual properties.

Each labeled component represents a region feature set
in which the intra-distance is low. The extent of similarity
in each “code word” is controlled by the parameters in the
SOM algorithm and the thresholdt. With the above proce-
dure, the number of “code words” is adaptively determined
and the similarity-based feature grouping is achieved. The
experiments show that the visual dictionary created do cap-
ture the clustering characteristics existing in the feature set
well. We note that the thresholdt is highly correlated to the
number of “code words” generated; it is determined empir-
ically by balancing the efficiency and accuracy. We discuss



Figure 1: Generation of the visual dictionary.

the choosing of the number of “code words” in the visual
dictionary in Section 5. Fig. 1 shows the generation of
the visual dictionary. Each round-rectangle in the third col-
umn of the figure is one “code word” in the dictionary. In
the rest of this paper, we use the terminologies region and
“code word” interchangeable; they both denote an entry in
the visual dictionary equally.

Based on the visual dictionary, each image can be repre-
sented in a uniform vector model. In this representation, an
image is a vector with each dimension corresponding to a
“code word”. More formally, the uniform representation~Iu

of an imageI is a vector~Iu = {w1, w2, . . . , wM}whereM
is the number of “code words” in the visual dictionary. For
a “code word”Ci, 1 ≤ i ≤ M , if there exists a regionRj

of I that corresponds to it, thenwi = WRj for ~Iu, where
WRj is the number of occurrence ofRj in the imageI; oth-
erwise,wi = 0. This uniform representation is sparse, for
an image usually contains few regions comparing with the
number of “code words” in the visual dictionary. Based on
this representation of every image, the database is modeled
as aM ×N “code word”-image matrix which records the
occurrence of every “code word” in each image, whereN
is the number of images in the database.

3. Probabilistic Hidden Semantic
Model

To achieve the automatic semantic concept discovery, a
region-based probabilistic model is constructed for the im-
age database with the representation by the “code word”-
image matrix. The probabilistic model is analyzed by the
EM technique to discover the latent semantic concepts,

which act as a basis for effective image retrieval through
comparing concept similarities among images.

With a uniform “code word” vector representation for
each image in the database, we propose a probabilistic
model. In this model, we assume the (region, image)
are known i.i.d. samples from an unknown distribution.
We assume these samples are associated with an unob-
servedsemantic conceptvariablez ∈ Z = {z1, . . . , zK}.
Each observation of one region (“code word”)r ∈ R =
{r1, . . . , rM} in an imageg ∈ G = {g1, . . . , gN} belongs
to one concept classzk. To simplify the model, we have two
more assumptions. First, observation pairs(ri, gj) are gen-
erated independently. Second, the pairs of random variable
(ri, gj) are conditionally independent given the respective
hidden conceptzk, i. e.,P (ri, gj |zk) = P (ri|zk)P (gj |zk).
The region and image distribution are considered as a ran-
domized data generation process described as follows:

• choose a concept with probabilityP (zk);

• select a regionri ∈ R with probabilityP (ri|zk); and

• select an imagegj ∈ G with probabilityP (gj |zk).

As a result one obtains an observed pair(ri, gj), while the
concept variablezk is discarded.

Based on the theory of the generative model [9], the pro-
cess is equivalent to the following way:

• select an imagegj with probabilityP (gj);

• pick a conceptzk with probabilityP (zk|gj); and

• generate a regionri with probabilityP (ri|zk).

Translating this process into a joint probability model
results in the expression

P (ri, gj) = P (gj)P (ri|gj)

= P (gj)
K∑

k=1

P (ri|zk)P (zk|gj) (1)

Inverting the conditional probabilityP (zk|gj) in (1) with
the application of the Bayes’ rule results in

P (ri, gj) =
K∑

k=1

P (zk)P (ri|zk)P (gj |zk) (2)

Following the likelihood principle, one determines
P (zk), P (ri|zk), andP (gj |zk) by maximization of the log-
likelihood function

L = log P (R, G) =
M∑

i=1

N∑

j=1

n(ri, gj) log P (ri, gj) (3)



wheren(ri, gj) denotes the number of regionsri occurred
in imagegj . From (3) and (1) we derive that the model
is a statistical mixture model [9], which can be resolved
by applying the EM technique [4]. The EM alternates in
two steps: (i) an expectation (E) step where the poste-
rior probabilities are computed for the hidden variablezk,
based on the current estimates of the parameters, (ii) an
maximization (M) step, where parameters are updated to
maximize the expectation of the complete-data likelihood
log P (R, G, Z) given the posterior probabilities computed
in the previous E-step.

Applying Bayes’ rule with (1), we determine the poste-
rior probability forzk under(ri, gj):

P (zk|ri, gj) =
P (zk)P (gj |zk)P (ri|zk)∑K

k′=1 P (zk′ )P (gj |zk′ )P (ri|zk′ )
(4)

The expectation of the complete-data likelihood
log P (R, G, Z) for the estimatedP (Z|R,G) derived
from (4) is

K∑

(i,j)=1

M∑
i=1

N∑
j=1

n(ri, gj) log [P (zi,j)P (gj |zi,j)P (ri|zi,j)]P (Z|R, G)

(5)
where

P (Z|R, G) =
M∏

m=1

N∏
n=1

P (zm,n|rm, gn)

In (5) the notationzi,j is the concept variable that associates
with the region-image pair(ri, gj). In other words,(ri, gj)
belongs to conceptzt wheret = (i, j).

Maximizing (5) with Lagrange multipliers toP (zl),
P (ru|zl), andP (gv|zl), respectively, under the following
normalization constraints

K∑

k=1

P (zk) = 1,

K∑

k=1

P (zk|ri, gj) = 1,

M∑

i=1

P (ri|zl) = 1 (6)

for anyri, gj andzl, the parameters are determined as

P (zk) =

∑M
i=1

∑N
j=1 n(ri, gj)P (zk|ri, gj)∑M
i=1

∑N
j=1 n(ri, gj)

(7)

P (ru|zl) =

∑N
j=1 n(ru, gj)P (zl|ru, gj)∑M

i=1

∑N
j=1 n(ri, gj)P (zl|ri, gj)

(8)

P (gv|zl) =
∑M

i=1 n(ri, gv)P (zl|ri, gv)∑M
i=1

∑N
j=1 n(ri, gj)P (zl|ri, gj)

(9)

Alternating (4) with (7)–(9) defines a convergent procedure
that approaches a local maximum of the expectation in (5).

The number of concepts,K, must be determined in ad-
vance to proceed the EM model fitting. Ideally, we intend to

choose the value ofK that best agrees to the number of se-
mantic classes in the database. One readily available nota-
tion of the fitting goodness is the log-likelihood. Given this
indicator, we can apply the Minimum Description Length
(MDL) principle [10] to select among values ofK. This
can be operationalized as follows [10]: chooseK to maxi-
mize

log(P (R, G))− mK

2
log(MN) (10)

where the first term is expressed in (3) andmK is the num-
ber of free parameters needed for a model withK mixture
components. In our probabilistic model, we have

mK = (K−1)+K(M−1)+K(N−1) = K(M+N−1)−1

As a consequence of this principle, when models with dif-
ferent values ofK fit the data equally well, the simpler
model is selected. For our experiment database,K is deter-
mined through maximizing (10).

4. Posterior Probability based Image
Retrieval

Based on the probabilistic model, we derive the posterior
probability of each image in the database to every discov-
ered concept by applying Bayes’ rule as

P (zk|gj) =
P (gj |zk)P (zk)

P (gj)
(11)

which is determined with the estimations of (7)–
(9). The posterior probability vectorP (Z|gj) =
[P (z1|gj), P (z2|gj), . . . , P (zK |gj)]T is used to quantita-
tively describe the semantic concepts associated with the
imagegj . This vector is considered as a representation of
gj (which originally is represented in the M-dimensional
“code word” space) in the K-dimensionalconcept space
determined by the estimatedP (zk|ri, gj) in (4).

For each query image, after obtaining the corresponding
“code words” we attain its representation in the discovered
concept space by plugging it in the EM iteration derived
in Section 3. The only difference is that theP (ri|zk) and
P (zk) are fixed to be the values we have obtained with the
whole database modeling (which are obtained in the index-
ing phase, i. e., determining the concept space representa-
tion of every image in the database).

With the proposed probabilistic model, it is able to con-
currently obtainP (zk|ri) andP (zk|gj) such that both re-
gions and images have an interpretation in the concept
space simultaneously, while image clustering based ap-
proaches, e. g. [6], do not have this flexibility. Every re-
gion and/or image can be represented as a weighted sum
of the discovered concept axes. In this aspect, the model



acts like a factoring analysis [9] but the model offers impor-
tant advantages, e. g., each weight has a clear probabilistic
meaning and the factoring are two folded.

In designing a region-based image retrieval methodol-
ogy, we note two characteristics of the region representa-
tions existing:

1. The number of segmented regions in one image is nor-
mally small.

2. Not all regions in one image are semantically relevant,
some are unrelated or even non-relevant; which re-
gions are (ir)relevant depends on user’s querying sub-
jectivity.

Incorporating the “code words” corresponding to unre-
lated or non-relevant regions hurts the retrieval accuracy
because the occurrence of these regions in an image “fools”
the probabilistic model such that erroneous concept repre-
sentations would be generated. To address the two charac-
teristics in image retrieval, we employ relevance feedback
for the similarity measurement in the concept space. Rel-
evance feedback has been demonstrated great potential to
capture users’ querying subjectivity both in text retrieval
and image retrieval [14, 12]. A retrieval algorithm is de-
signed to integrate with the probabilistic model to deliver a
better performance.

In the algorithm, we move the query point in the “code
word” space toward good example points (relevant images
labeled by the user) and away from bad example points (ir-
relevant images labeled by the user) such that the region
representation has more support to the probabilistic model.
At the same time, the query point is expanded with “code
words” of labeled relevant ones. On the other hand, we
construct a negative example “code word” vector by apply-
ing the similar moving strategy such that it lies near bad
example points and away from good example points. The
vector moving strategy uses form of the Rocchio’s formula
[11]. The Rocchio’s formula for relevance feedback and
feature expansion has proven to be one of the best iterative
optimization technique in the field of information retrieval.
With the modified query vectorpos and a constructed neg-
ative exampleneg, their representations in the discovered
concept space are obtained and their similarities to each
image in the database are measured through cosine metric
of the corresponding vectors in the concept space, respec-
tively. Then the images are ranked based on the similarity
to pos as well as the dissimilarity toneg. The algorithm is
shown in Algorithm 1.

The parametersα, β, andγ in the algorithm are assigned
a value of 1.0 in our current implementation of the system
for the sake of simplicity. However, other values may be
given to emphasize the different weights between the good
sample points and bad sample points.

5. Experiment Results
We have implemented the approach in a prototype sys-
tem on a platform of Pentium IV 2.0 GHZ CPU and
256M memory. The following reported evaluations are per-
formed on a general-purpose color image database contain-
ing 10,000 images from the COREL collection with 96 se-
mantic categories. These categories include “landscape”,
“fashion”, “historical building”, “city life”, etc. Each se-
mantic category consists of 85–120 images. To evaluate the
image retrieval performance, 1,500 images are randomly
selected from all the categories as the query set. The rel-
evancy of the retrieved images are subjectively examined
by users. Unless otherwise noted, the default results of the
experiments are average of the top 30 returned images for
each query using the 1,500 queries.

input : q, “code word” vector of the query image
output : Images retrieved for the query imageq

begin
rs = {rel1, rel2, . . . , rela}, wherereli is “code word”
vector of each image labeled as relevant;

is = {ire1, ire2, . . . , ireb}, whereirej is “code word”
vector of each image labeled as irrelevant;

pos = αq + β( 1
a

∑a
i=1 reli)− γ( 1

b

∑b
j=1 irej);

neg = α
∑b

j=1 irej +β( 1
b

∑b
j=1 irej)−γ( 1

a

∑a
i=1 reli);

for k = 1 to K do
determineP (zk|pos) andP (zk|neg) with EM and (11);

end
n = 1;
while n <= N do

sim1(gn) =
P (Z|pos)•P (Z|gn)

‖P (Z|pos)‖‖P (Z|gn)‖ ;

sim2(gn) =
P (Z|neg)•P (Z|gn)

‖P (Z|neg)‖‖P (Z|gn)‖ ;

if (sim1(gn) > sim2(gn)) then
sim(gn) = sim1(gn)− sim2(gn);

else
sim(gn) = 0;

end
rank the images in the database based onsim(gn);

end
end

Algorithm 1: Retrieval Algorithm.

In the experiment, the parameters of the image segmen-
tation algorithm [15] used is adjusted with considering the
balance of the depiction detail and the computation inten-
sity such that there are an average 8.3207 regions in each
image. To determine the size of the visual dictionary, differ-
ent numbers of “code words” have been selected and eval-
uated. The average precision (without query expansion and
moving strategy) within the top 20 (30, 50) images, denoted
as P(20) (P(30), P(50)), are shown in Fig. 2. It is indicated
that the general trend is that the larger the visual dictionary
size, the higher the retrieval accuracy. However, a larger



Figure 2: Average precision (without query expansion and
movement) for different sizes of the visual dictionary.

visual dictionary size means larger number of image fea-
ture vectors, which implies higher computation complexity
in the hidden semantic concept discovery. Also, a larger
visual dictionary leads to a larger storage space. Therefore,
we use 800 as the number of the “code words”, which cor-
responds to the first turning point in Fig. 2. Since there are
total 83,307 regions in the database, in average each “code
word” represents 104.13 regions.

Applying the method of estimating the number of hid-
den concepts described, the number of the concepts is de-
termined to be 132. Performing the EM model fitting, we
obtain the conditional probability of each “code word” to
every concept, i. e.,P (ri|zk). Manually checking the vi-
sual contents of the region sets corresponding to the top
10 highest “code words” in every semantic concept, we
observe that these discovered concepts indicate seman-
tic interpretations, such as “people”, “building”, “outdoor
scenery”, “plant”, “automotive race”.

In terms of computational complexity, despite of the it-
erative nature of EM, the computing time for the model fit-
ting at K = 132 is acceptable (less than 1 second). The
average number of iterations upon convergence for an im-
age is less than 5.

To show the effectiveness of the probabilistic model in
image retrieval, we have compared the accuracy of our
method with that of UFM [3]. UFM is a method based
on fuzzified region representation to build region-to-region
similarity measures for image retrieval. We compare our
approach with UFM because it is available to us and re-
flects the performance of the state-of-the-art CBIR systems.
In addition, since the same image segmentation and feature
extraction methods are used in UFM as in ours, a fair com-
parison of the performance is expected.

Figure 3: Average precision comparisons between two ver-
sions of our approach and UFM.

The systematic comparison results on the 1,500 query
image set are shown in Fig. 3. Two versions of our
approach (one with query expansion and movement and
another without) and UFM are compared. It is shown
that the performance of our probabilistic model has higher
overall precision than UFM and the query expansion and
movement with interaction of constructed negative exam-
ple boost the retrieval accuracy significantly.

6. Conclusions
The main contributions of this work are the identification
of the problem existing in most region-based CBIR meth-
ods —- unreliable region evidence in semantic content, and
the development of a promising hidden semantic concept
discovery technique to solve for the problem. Through per-
forming image segmentation with multiple features and de-
veloping a SOM based quantization method to generate a
visual dictionary, a uniform and sparse region-based repre-
sentation scheme is obtained. On the basis of this repre-
sentation a probabilistic model of the image database is de-
fined. The model assumes that the regions, hidden semantic
concepts, and images are random variables and the objec-
tive is to discover concept distributions with samples from
the (region, image) distributions. Based on this model, the
EM method is applied to derive an iterative procedure to
discover the hidden semantic concepts in the database. An
elaborated relevance feedback based retrieval algorithm is
designed to support the model and improve the retrieval ac-
curacy. The image querying is performed by integrating the
posterior probabilities of the transformed images to discov-
ered semantic concepts. Supported by the solid statistical
foundation, this approach enables a retrieval by higher or-
der semantic indicants which are more reliable, hence im-



proves the retrieval accuracy. The experimental evaluations
on a database of 10,000 general-purpose images demon-
strate the promising effectiveness of the approach in image
retrieval.
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