
* supported in part by DARPA through contract number FC 306020020525 under the PAC–C program, by the IEEC at SUNY–Binghamton and
the NSF through award no. MIP 9504767 and EIA 9911099

DYNAMIC ALLOCATION OF DATAPATH RESOURCES FOR LOW POWER*

Dmitry Ponomarev, Gurhan Kucuk, Kanad Ghose

Department of Computer Science

State University of New York, Binghamton, NY 13902–6000

e–mail:{dima, gurhan, ghose}@cs.binghamton.edu

Abstract

We show by profiling the execution of SPEC95 benchmarks
that  the usage of datapath resources in a modern superscalar
processor is highly dynamic and correlated.  The one–size–
fits all philosophy used for permanently allocating datapath
resources in a modern superscalar CPU is thus complexity–
ineffective  due to the overcommittment of resources in gener-
al.  We propose a strategy to dynamically and simultaneously
adjust the sizes of two such correlated resources – the dis-
patch buffer (also known as an issue queue) and the reorder
buffer – to reduce power dissipation in the datapath without
significant impact on the performance. We also show how the
resizing technique can be  augmented  with dynamic adapta-
tion of dispatch rate. Representative results show reduction
in power dissipation of  69% for the dispatch buffer and of
52% for the reorder buffer with an average IPC loss below
8.5%.

1. Introduction

Today’s superscalar processors are designed to achieve a
high level of performance; they are also designed following
a “one–size–fits–all” philosophy. The one–size–fits–all ap-
proach results in the permanent allocation of datapath re-
sources to maximize performance across a wide range of ap-
plications.  Earlier studies have indicated that the overall
performance, as measured by the IPC, varies widely across
applications [Wall 91]. The IPC also varies quite dramatical-
ly within a single application, being a function of the pro-
gram characteristics (natural ILP) and that of the datapath
and the memory system. As the natural ILP varies in a pro-
gram, the usage of datapath resources also changes drastical-
ly – where the natural ILP is low, the datapath resources re-
main overcommitted.

We profiled the execution of SPEC 95 benchmarks keeping
track of the changes in the IPCs, dispatch rates and the aver-
age occupancy (number of valid entries) of various struc-
tures used in superscalar processors for supporting aggres-
sive out–of–order execution. Namely, we considered the
reorder buffer (ROB), the dispatch buffer (DB) and the load/
store buffer (LSB). Figure 1 shows representative results for
two of the floating point benchmarks for 200 million instruc-
tions after skipping the first 200 million. Samples of IPC,

dispatch rate and the average occupancy of the ROB, the DB
and the LSB have been taken every 1 million cycles. These
samples reflected the activity within the most recent window
of 1 million cycles. 

As these representative results show, the average occupancy
of the structures changes significantly throughout the course
of program execution. Furthermore, the oscillations in the
DB and the ROB occupancies are correlated – where the DB
occupancy is higher, the ROB occupancy also increases. The
results also suggest that it is hardly possible to efficiently
control the allocation of the DB and the ROB entries solely
based on the instruction dispatch rate. Indeed, changes in the
dispatch rate may effect the DB and the ROB occupancies in
two ways. In some situations, higher dispatch rate corre-
sponds to increased occupancies of the ROB and the DB, be-
cause more instructions are in–flight at the same time, and
the natural ILP within the code fragment is high. This is, for
example, the case with apsi benchmark (part I of figure 1),
where the spikes in the dispatch rate graph closely match the
peaks of the lower three graphs. However, in other situations
the opposite is true, the example of which is a snapshot of hy-
dro2d benchmark shown in part II of Figure 1. Here, lower
dispatch rate corresponds to higher occupancy of the DB and
the ROB. This is a direct consequence of data dependencies
among the instructions with long latencies (low natural ILP).
In such scenarios, the momentary increase in the instruction
dispatch rate results in a quick saturation of the DB (or the
ROB, depending on the configuration), which leads to multi-
ple instruction blockings at the time of dispatch, and in-
eviatble degradation of the dispatch rate.

The premise of this paper is to conserve power and energy
by dynamically and simultaneously resizing multiple data-
path resources to closely track the demands of the applica-
tion; unused resources are deactivated momentarily and
reactivated when the resource demands go up. The net result
is a drastic savings in the overall power/energy with minimal
impact on performance. We also show that an additional lev-
el of control, namely the dynamic variation of the dispatch
rate can be used to achieve further power/energy savings.

The rest of the paper is organized as follows. Related work
is discussed in section 2 followed by the description of the
dynamic datapath resource allocation strategy in section 3.
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Part I. Profile of apsi benchmark Part II. Profile of hydro2d benchmark

Figure 1. Dynamic behavior of two SPEC95 floating point benchmarks. Results are shown for
200 million instructions after skipping the first 200 million. Measurements of IPCs, dispatch rates
and average DB, ROB and LSB occupancies were taken  every 1 million cycles. Each of these
measurements reflect benchmark’s behavior within the most recent window of 1M cycles.
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Section 4 describes our simulation methodology and proces-
sor configuration. Results are presented in section 5 fol-
lowed by our conclusions in section 6.

2. Related Work

It is well–documented that the major power/energy sinks in
a modern superscalar datapath are in the dynamic instruction
scheduling components (consisting of the dispatch buffer –
aka “issue queue”, reorder buffer and the physical registers)
and the on–chip caches. As indicated in [WM 99], as much
as 55% of the total power dissipation occurs in the dynamic
instruction scheduling logic, while 20% to 35% (and some-
times higher) of the total power is dissipated within the on–
chip cache hierarchy. It is therefore not surprising to see a fair
amount of recent research being directed towards the reduc-
tion of the energy dissipation within these components. Of
this large body of work, we mention only the contributions
that focus on dynamic resource allocation.

The dynamic allocation of a single datapath resource was
studied in [BA+ 00, BAS+ 01, FG 01].  In [BAS+ 01, FG 01],
the authors explored the design of an adaptive issue queue,
where the queue entries were grouped into independent
modules. The number of modules allocated was varied dy-
namically to track the ILP; power savings with minimal im-
pact on performance was achieved by turning off unused
modules. In [BAS+ 01], the activity of an issue queue entry
was indicated by its ready bit (which indicates that the corre-
sponding instruction is ready for issue to a function unit).
The number of active issue queue entries, measured on a
cycle–by–cycle  basis, were used as a direct indication of the
resource demands of the application. The control logic’s en-
ergy overhead was also considered carefully in this design.
An additional feature was the possibility of using a faster
clock when the issue queue had fewer active modules; an
asynchronous–synchronous interface was thus made an inte-
gral part of the queue to exploit this feature; it was left un-



clear how the remaining components of the datapath could
be clocked at a higher rate to take advantage of a faster issue
queue. In [FG 01], Folegnani and Gonzalez introduced a
FIFO issue queue that permitted out–of–order issue but
avoided the compaction of vacated entries within the valid
region of the queue to save power. The queue was divided
into regions and the number of instructions committed from
the most–recently allocated issue queue region in FIFO or-
der (called the “youngest region”) was used to determine the
number of regions within the circular buffer that was allo-
cated for the actual extent of the issue queue. To avoid a per-
formance hit, the number of regions allocated was increm-
ented by one periodically; in–between, also at periodic
intervals,  a region was deactivated to save energy/power if
the number of commits from the current youngest region was
below a threshold. The energy overhead of the control logic
for doing this resizing was not made clear. In [KGPK 01], we
have introduced a dispatch buffer design that achieves sig-
nificant energy savings using a variety of techniques, includ-
ing the use of zero–byte encoding, comparators that dissi-
pate energy on a match and a form of dynamic activation of
the accessed regions of the dispatch queue using bit–line seg-
mentation. In [BA+ 00], a reconfigurable cache organization
is used to track program characteristics dynamically and
save energy; a similar approach was also explored in [Alb 99,
BA+ 00]. Bit–line segmentation and subbanking also
achieves similar results [GK 99].  In [PKG 01], we have also
explored the dynamic allocation of banks within a multi–
banked register file to conserve power/energy with a very
low IPC penalty. All of the above are examples of allocating
a single datapath resource to achieve power/energy savings.
In reality, however, resource usage within a datapath are
highly correlated, as seen from Figure 1. For example, there
is a direct correlation between the occupancies of the dis-
patch buffer and the reorder buffer (Figure 1).

Dynamic allocation of multiple datapath resources to con-
serve power/energy was first studied in the context of a mul-
ti–clustered datapath (with non–replicated register files) in
[ZK 00], where dispatch rates and their relationship to the
number of active clusters were well–documented. A similar
but a more explicit study was recently reported in [BM 01],
for the multi–clustered Compaq 21264 processor with repli-
cated register files. The dispatch rate was varied between 4,
6 and 8 to allow an unused cluster of function units to be shut
off completely. The dispatch rate changes were triggered by
the crossing of thresholds associated with the floating point
and overall IPC, requiring dispatch monitoring on a cycle–
by–cycle basis. Significant power savings within the dynam-
ic scheduling components were achieved with a minimum
reduction in the IPC. The dynamic allocation of the reorder
buffer – a major power sink – was left completely unexplored
in this study.  In this paper, we show how multiple resources,
including the dispatch buffer and the reorder buffer can be
controlled dynamically and simultaneously to achieve sig-
nificant power savings with very simple control logic that

avoids performance/usage monitoring on a cycle–by–cycle
basis.

In [CGC 00], resource usages are controlled indirectly
through pipeline gating and dispatch mode variations by let-
ting the Operating System dictate the IPC requirements of
the application.  Along similar lines, we are currently explor-
ing a compiler–directed approach for dynamically allocat-
ing datapath resources based on the IPC requirements, using
the basic infrastructure described in this paper.

3. Dynamic Datapath Resource Allocation Strategy

Figure 2 depicts the superscalar datapath that employs the is-
sue–bound operand fetch policy. Here, even if input registers
for an instruction contain valid data, these registers are not
read out at the time of dispatch. Instead, when all the input
operands of an instruction waiting in the DB are valid and a
function unit of the required type is available, all of the input
operands are read out from the register file (or as they are yet
to be written to the register file, using bypassing logic to for-
ward data from latter pipeline stages) and the instruction is
issued. The dispatch/issue logic can be implemented using
a global scoreboard that keeps track of instructions and regis-
ter/FU availability. Alternatively, an associative logic can be
used to update the status of input registers for instructions
waiting within the DB (as shown in Figure 2). Examples of
processors using this datapath style are the MIPS 10000,
12000, the IBM Power 3, the HP PA 8000, 8500, and the
DEC 21264 [Mi 9X, Bh 96].

We concentrate on the dynamic allocation and deallocation
of two major datapath resources, namely the DB and the
ROB. The dynamic allocation of other resources (register
files, load/store buffer etc.) in conjunction with the DB and
the ROB is being currently explored and the results are to be
presented in a forthcoming paper. The organization of the
DB allowing for incremental allocation is depicted in Figure
3.  The ROB is partitioned in a similar fashion.  The DB and
the ROB are each implemented as a number of independent
partitions. Each partition is a self–standing and independent-
ly usable unit, complete with its own precharger, sense amps,
input/output drivers.  In fact, the number of entries in a DB
and ROB partition are 8 and 16 respectively in our studies.
The maximum number of partitions available is 8 for the DB
(for a total of 64 entries) and 8 for the ROB (for a total of 128
entries). A number of the DB (or ROB) partitions can be
strung up together to implement a larger DB (or ROB). The
connection running across the entries within a partition (such
as bitlines, forwarding bus lines etc.) can be connected to a
common through line (shown on the right in Figure 3)
through the bypass switches to add (i.e., allocate) the parti-
tion to the current DB (or ROB) and extend the effective size
of the DB (or ROB).  Similarly, by turning off the bypass
switches associated with a partition, it can be deallocated
from the current DB (or ROB). Unallocated partitions are
turned off to save power/energy. Entries can be allocated in
the DB – across one or more active partitions in any order;
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Figure 2. Superscalar datapath with issue–bound operand fetching
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an associative searching mechanism is used to look up free
entries. Entries within the active ROB are used in a circular
FIFO, and their allocation/deallocation strategies are not as
straightforward as that for the DB. 

Figure 3.  Partitioned DB
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Below we discuss the strategies for the DB and the ROB re-
sizing in the context of the aformentioned datapath.

3.1 Dispatch Buffer

Two separate phases are implemented for the DB resizing:
One is used for resizing the structure down, and the other is
used for resizing it up. We describe each of these phases be-
low.

Resizing down

The decision of whether to decrease the DB size or leave it
at its current level is made periodically – once every DB_UP-
DATE_PERIOD cycles. During this period, the DB occu-
pancy (equal to the number of allocated entries within the ac-
tive region of the DB) is sampled several times with the
frequency of once every DB_SAMPLE_PERIOD cycles.
The average of these samples is taken as the AC-
TIVE_DB_SIZE in the current update period. Both DB_UP-
DATE_PERIOD and DB_SAMPLE_PERIOD were chosen
as powers of 2 to let the integer part and the fractional part
of the computed DB occupancy be isolated easily in the oc-
cupancy counter. This avoids the use of a full–fledged divi-
sion logic. Figure 4 depicts the relationship between
DB_UPDATE_PERIOD and DB_SAMPLE_PERIOD.

At the end of every update period, the difference
(DIFF=CURRENT_DB_SIZE–ACTIVE_DB_SIZE)  is
computed, where CURRENT_DB_SIZE is the size of the
dispatch buffer at the end of the update period and AC-
TIVE_DB_SIZE is the average of the samples taken during
this update period. If DIFF is less than the minimum amount
by which DB size can be reduced (DB_DECREMENT, this
is equal to the partition size), then the decision is to leave the
CURRENT_DB_SIZE unchanged. If, however, DIFF is
greater (or equal) than DB_DECREMENT, two scenarios
are possible depending on whether an aggressive or a conser-
vative (non–aggressive) downward resizing is implemented.
If a conservative scheme is in use, then CUR-
RENT_DB_SIZE is always decremented by one partition (8
entries in the current implementation). If an aggressive
scheme is used, then CURRENT_DB_SIZE is decremented
by the maximum allowable number of partitions as deter-
mined by DIFF. 

ACTIVE_DB_SIZE provides a reasonable approximation
of the average DB occupancy within the most recent
DB_UPDATE_PERIOD. At the end of every sample period,
we record the DB occupancy by using bit–vector counting
logic for each active partition and adding up these counts.
Estimation of power consumption in this process is beyond
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the scope of this paper. The fact that this counting is per-
formed only at the end of the sampling period (as opposed
to maintaining a dynamic count on a cycle–by–cycle basis)
suggests that the energy dissipated in estimating the DB oc-
cupancy is negligible.  The difference between the current
size of the DB and ACTIVE_DB_SIZE in the update period,
as computed according to the resizing strategy described in
this section, indicates the degree of DB overcommitment.

After the decision to reduce the DB size has been made, it is
necessary to wait till all the instructions are issued from the
partition that is being turned–off. Only after that the actual
resizing can take place. During this transition period, the dis-
patch would stall if the DB entry allocated for the instruction
belongs to the partition that will become inactive. Other-
wise, dispatches may continue to the active partitions of the
DB.

Resizing up

The second phase of the resizing strategy is implemented to
scale the DB size back up once the demands of the applica-
tion begin to require more resources. Here, we use the DB
overflow counter (DB_OVERFLOW), which counts the
number of cycles when dispatch is blocked because of the
absence of a free entry in the DB to hold the new instruction.
This counter is initialized to 0 every DB_UPDATE_PE-
RIOD cycles and is incremented by one whenever instruc-
tion dispatch is blocked because of the unavailability of a
free DB entry to hold a new instruction. Once the overflow
counter exceeds the OVERFLOW_THRESHOLD, the
CURRENT_DB_SIZE is incremented by adding another
partition. After that, the counter is reinitialized. Note, that
for performance reasons, the process of increasing the size
of the DB is more aggressive than the process of shrinking
the DB. Instead of waiting for DB_UPDATE_PERIOD
cycles to increase the DB size, this is done as soon as the
overflow counter reaches the OVERFLOW_THRESHOLD.
To avoid the occurrence of several such incremental updates
in one update period, especially if aggressive downsizing
strategy is employed which can sometimes reduce the DB
size unjustifiably, we reset the update period counter every
time the DB size increase is triggered. This is to avoid the in-
stability in the system associated with the fact that DB is
sampled for different maximum sizes in the same update pe-
riod.

By varying the different thresholds we can make either one
of the processes more aggressive depending on the design
goals as dictated by power (resizing down) / performance

(resizing up) tradeoffs. Notice  that a  resource  is  scaled
down only if the sampling of the resource occupancy discov-
ers that resource is overcommitted – this is  to avoid a poten-
tial performance loss associated with more aggressive de-
signs.

3.2 Reorder Buffer

The resizing of the ROB requires additional considerations
because of the FIFO nature of the ROB. In particular, the
ROB is a circular FIFO structure with two pointers –
ROB_tail and ROB_head. ROB_head indicates the next free
entry in the ROB and is used during instruction dispatch to
reserve the entries in the ROB in program order. ROB_tail
is used during commit stage to update the architectural regis-
ters in program order.  Such an organization of the ROB sug-
gests that in some situations partitions can be activated and
deactivated only when the queue extremities coincide with
the partition boundaries. This involves the following
changes to the scheme described for the DB:

Resizing down

Once the decision to resize the ROB down is made,
ROB_head pointer should not be allowed to exceed the new-
ly established ROB_SIZE. To ensure this, dispatch will
block to prevent the advance of the ROB_head. In addition,
the resizing cannot take place until ROB_tail is smaller than
ROB_head. These two conditions ensure that all instructions
in the to–be–deactivated partition(s) are committed and no
new instruction is dispatched into these partitions before the
partitions are actually deactivated.

Resizing up

If ROB_tail <ROB_head, then the ROB size can be in-
creased immediately. Otherwise, one should wait until this
condition is reached (the tail pointer becomes a 0, which
would preserve the correct order of instruction commit-
ments).

Figure 5 depicts the possible combinations of ROB_head
and  ROB_tail disposition at the time the decision to resize
the structure is made.

If the decision to resize the ROB down is made in the situa-
tion of Figure 5a, dispatch should continue until
ROB_head=NEW_ROB_SIZE.  That should be the last
instruction allowed to dispatch unconditionally. At this
point, dispatch stalls if ROB_tail>ROB_head . Otherwise,
the ROB is resized down by deactivating the partition be-
tween NEW_ROB_SIZE and CURRENT_ROB_SIZE.
Note, that many cycles can pass between the decision to re-
size and actual resizing.  If this disposition of pointers is en-
countered when the decision to resize up is made,  the resiz-
ing can be performed immediately, allowing the ROB_head
pointer to increment till it reaches the new boundary.

In the case of Figure 5b the conditions for performing actual
downsizing are the same. However, a new partition can not
be added to the ROB until ROB_tail is less than ROB_head.
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To resize the ROB down in the situation depicted in Figure
5c, it is necessary to wait till ROB_tail becomes a zero



to set the static values of T1 and T2 that would provide a rea-
sonable power–performance trade–off even for the majority
of the benchmarks. This is fundamentally because the differ-
ence of the IPCs and dispatch rates varies considerably
among the SPEC benchmarks due to the varying branch pre-
diction accuracies and frequencies of branch instructions.
Another reason to keep the thresholds adaptive is to avoid the
following two disastrous scenarios:

a) Suppose an application with a high IPC runs with the dy-
namic IPC of 3, thus commanding the MDR of 4. Further
suppose that the threshold values are statically set like this:
T1=1.7, T2=2.7, d=0.1. Then, the absence of the ILP in a
small piece of code results in a momentarily drop of dynamic
IPC of this application from 3.0 to, say, 1.4. The MDR selec-
tion algorithm described so far will then set the MDR for the
next period P to 2, because  threshold T1 has been crossed.
The value of transition IPC would be recorded as 1.4. Then,
suppose, the ILP picks up and the IPC goes up to 1.6 and can-
not exceed that because of the limitation on the dispatch rate,
branch prediction accuracy and frequency of branches. Lets
assume that 1.6 is the maximum IPC that can be sustained for
this benchmark for the dispatch rate of 2, just like 3.0 was the
maximum sustained IPC for the dispatch rate of 4. Of course,
the application is then doomed to stay in the zone with the
MDR of 2, resulting in a tremendous IPC drop compared to
its potential. All of this happens because the threshold T1
was set too high. At first glance, the easiest solution would
be to simply use the lower value of T1. But then, scenario b)
may occur:

b) Let us suppose that the smaller value of T1 (1.4) is used
to cope with the above sequence of events. An application
can experience the IPC drop from 3.0 to the value just above
T1+d (1.6, for example). The IPC of this application will
then stay at 1.6 and the dispatch rate will stay at 3, potentially
wasting a possibility to try a lower MDR of 2 for power sav-
ings. Of course, this is not as bad as the scenario a), but con-
siderable power savings potential can be neglected in this
case, which is undesirable.

Therefore, the following mechanisms are proposed to cope
with the above situations. To prevent the application from
being permanently stuck at MDR of 2, we decrement T1 by
d if MDR stays at 2 for K1 (10 in our current experiments)
periods P in a row. Similarly, T2 is decreased by d if MDR
stays at 3 for K2 (10 currently)  periods P in a row. By the
same token, it is desirable to allow the application to test the
waters of the lower MDR even if current threshold values do
not allow this – consequently we decrement T1 by d if MDR
stays above 2 for K3 (currently 5) periods P in a row. Also,
T2 is incremented by d if MDR stays at 4 for K4 (currently
5) periods P in a row. The initial values of T1 and T2 were
set as 1.6 and 2.5 respectively for all experiments presented
in this paper. T1 was allowed to move in the region between
0.5 and 1.9, and T2 boundaries were set as 2.1 and 2.5. The
upper bound for T2 was deliberately set low for performance
reasons.

Since the P periods are relatively long (32K cycles in our cur-
rent experiments) and the value of d is fairly small (the value
of 0.1 was used in all experiments described in the results
section), such an optimization does not bring any instability
into the system, but rather allows applications to test differ-
ent MDR zones. In any case, the wrong decisions would be
undone in a fast fashion – almost always in the next P period.

Additional  tuning can be done by dynamically adapting the
update periods and possibly the overflow thresholds. This is,
however, beyond the scope of this paper.

4. Simulation methodology

The widely–used Simplescalar simulator [BA 97] was sig-
nificantly modified to implement true hardware level,
cycle–by–cycle  simulation models for such datapath compo-
nents as dispatch buffers, reorder buffers, load–store buffers,
register files, forwarding interconnections and dedicated
transfer links. The Simplescalar simulator lumps ROBs,
Physical Register Files (PRFs) and the DB together into
RUUs, making it impossible to directly assess switching ac-
tivities within these components independently and to make
an independent resizing decisions for each structure. It also
assumes a single stage that performs instruction decoding,
dispatching and register renaming.  Such feats are difficult
to accomplish entirely within a single, realistic pipeline
stage. The front end of the Simplescalar pipeline was there-
fore modified to perform these steps over two pipeline
stages.

For estimating the energy/power for the key datapath com-
ponents, the transition counts and event sequences gleaned
from the multithreaded simulator were used, along with the
energy dissipations for each type of event, as measured from
the actual VLSI layouts using SPICE.  CMOS layouts for the
DB, PRF, architectural register files and ROB in a 0.5 micron
4 metal layer CMOS process (HPCMOS–14TB) were used
for the key datapath components to get an accurate idea of
the energy dissipations for each type of transition.  The re-
sults for the 0.5 micron layouts are quite representative, al-
though greatly scaled down compared to what one would see
with 0.18 micron implementations running at a faster clock
rate. The exception to this are the wire dissipations outside
these components. Dissipations on such wires at small fea-
ture sizes become relatively dominant.

The register files that implement the ROB and DB were care-
fully designed to optimize the dimensions and allow the use
of a 300 MHz clock. A Vdd of 3.3 volts is assumed for all the
measurements (The value of the clock rate was determined
by the cache layouts for a two–stage pipelined cache in the
same technology.) In particular, these register files feature
differential sensing, limited bit line driving and pulsed word
line driving to save power. Augmentations to the register file
structures for the DB were also fully implemented; a pull-
down comparator was used for associative data forwarding
to entries within the DB and the device sizes were carefully
optimized to strike a balance between the response speed and
the energy dissipations. For each energy dissipating event,
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SPICE measurements were used to determine the dissipated
energy. These measurements were used in conjunction with
the transitions counted by the hardware–level, cycle–by–
cycle simulator to estimate energy/power accurately.

Our methodology in computing the energy dissipations with-
in these datapath components is to look at the traffic on each
of the internal buses for the DB and the ROB and the traffic
directed through register file ports and use these traffic mea-
sures to quantify the resulting energy requirements.

For the traffic directed to the DB from the FUs, we also re-
cord the number of DB entries that match the tag value
floated on the result buses to estimate energy dissipations in
the tag matching process . A precharged comparator, similar
to what has been described in [PJS 96] is used; mismatches
cause energy dissipation by discharging the match lines.

The configuration of the system studied was as follows. The
L1 I–cache and L1 D–cache were both 64 KBytes in capacity
with a line size of 32 Bytes, with the former being direct–
mapped and the latter being 4–way set–associative. A 4–way
set–associative,  integrated L2 cache with a capacity of 512
KBytes and a line size of 64 Bytes was assumed. The maxi-
mum sizes of the dispatch buffer and the reorder buffer were
kept at 64 entries and 128 entries respectively. The physical
register file for integers and floats were 128 in number each.
The function units are as follows: 4 integer units, one integer
multiply/divide  unit, 4 floating point multiply–add units,
one floating point multiply/divide unit one load unit and one
store unit. The following latencies of basic operations were

assumed: integer addition – 1 cycle, floating point addition
– 2 cycles,  multiplication – 4 cycles, division – 12 cycles,
load operation  – at least 2 cycles excluding address com-
putation. A 4–way dispatch, a 4–way commitment and a
6–way issue were assumed. For all of the SPEC 95 bench-
marks, the results from the simulation of the first 200 million
instructions were discarded and the results from the execu-
tion of the following 200 million instructions were used.
Specified optimization levels and reference inputs were used
for all the simulated benchmarks.

5. Trends and results

In the following discussion, we refer to the resizing strategy
with fixed dispatch rate as FDR (Fixed Dispatch Rate) and
we refer to the resizing strategy with adaptive dispatch rate
as ADR (Adaptive Dispatch Rate).

Clearly, the values of overflow thresholds and update peri-
ods, and more importantly, their  ratios, define the power–
performance characteristics of the adaptive datapath dis-
cussed in this paper.  Figure 7 shows IPCs, and the average
sizes of the DB and the ROB for various values of overflow
thresholds.  Similar results are shown in Table 1.

The update periods of 2K cycles were chosen and the dis-
patch rate was kept constant at 4 for these experiments.  As
expected, lower  overflow thresholds result in higher IPCs
and larger average sizes of the structures, which directly
translates into higher power dissipation.



Overflow Threshold 128 512 2048

 
F

DB size drop % 52 64 74
F
D

ROB size drop % 35 51 64
D
R IPC drop % 0.7 3.5 10.0

A
D

DB size drop % 59 70 78
D
R

ROB size drop % 44 58 70
R

IPC drop % 5.0 8.5 15.6

Table 1. Effects of various overflow threshold values on FDR
and ADR (update period is fixed at 2K cycles). Results are
shown for the averages across all SPEC95 benchmarks.

We experimented with the values of overflow thresholds and
various update periods, and found that the best trade–off be-
tween power (average sizes of the structures) and perfor-
mance (IPC  value) was achieved when the ratio of update
period to overflow threshold was 4. (As discussed above, we
limited the values of thresholds and update periods to powers
of 2 – this is to simplify the hardware implementation). In
this case, the overflow  threshold is reached if the rate at
which blocks at dispatch occur is greater than one block in
four cycles. This provides a reasonable balance between the
reduction in power dissipation and performance loss (which
we wanted to keep below 10%).  Results in the Figure 8 are
for the system with overflow thresholds of 512, update peri-
ods of 2K cycles,  the period P (period of dispatch rate up-
date) of 32K cycles and sampling period of 16 cycles for both
the DB and the ROB. We deliberately chose to keep the up-
date period of structure sizes smaller than the update period
of dispatch rate to allow  the sizes to change and stabilize af-
ter the dispatch rate is changed. All results in Figures 7 and
8 are shown for the non–aggressive resizing strategy, where
the sizes can be decremented by no more than one block. We
discuss the aggressive alternative later.  

Graphs shown in  Figure 8 compare the performance of three
systems. As the base case, we take a system where no resiz-
ing is  used and sizes of the DB and the ROB are always at
their maximums. Then we consider the system where the DB
and the ROB are resized according to the strategy described
in this paper, but the maximum dispatch rate is constant at
4 dispatches/cycle (FDR). Finally, the augmented resizing
strategy with adaptive dispatch rate is considered (ADR).
For the FDR scheme, the average IPC drop is about 3.5%
across all of the SPEC95 benchmarks. Reduction of the aver-
age DB and ROB sizes is 64% and 51% respectively. Reduc-
tion in power dissipation is 63.5% 49% for the DB and the
ROB respectively.

For the ADR scheme, the drop is 8.5%. Average DB and
ROB sizes are reduced further and total reduction compared
to the base case is 70% and 58% respectively. Power dissipa-
tion is reduced by 69% for the DB and by 52% for the ROB.

Thus, significant power savings can  be realized using the dy-
namic resizing strategy proposed in this paper without sig-
nificant degradation of IPC performance.

Another potential advantage of introducing the variable dis-
patch rate is the possibility of having dual–banked DB. Each
of these two banks would have half as many read and write
ports as the single DB in the base case. If the dispatch rate
is 4 or 3, both banks are active, but if the dispatch rate is 2,
one of these banks can be temporarily turned off.  This  may
lead to further significant reduction in power dissipation. We
are currently in the process of quantifying these additional
advantages of variable dispatch rate. Along the similar lines,
power savings can be achieved in the register file, if parti-
tioned register files are used, similar to those proposed in our
previous work  [PKG 01].

Figure 9 breaks down the total execution time into three
parts, each of these refers to the percentage of cycles when
the corresponding MDR is used. Results are shown for the
averages of all SPEC95 benchmarks.

For the system configuration of Figure 7, we also computed
the percentage of time when the algorithm for resizing the
structures down makes the decision to resize as opposed to
making a decision to leave the sizes unchanged for different
values of overflow thresholds. Results are summarized in
Table 2 below. Notice that the percentages are higher for the
DB, because its minimum partition size is smaller. As the
overflow threshold decreases, the decision to resize down is
made more often (approaching 100% as threshold becomes
smaller). This is because the sizes are increased more often
for the lower overflow thresholds, and thus there is more po-
tential to resize it down.

overflow threshold 128 256 512 1024 2048

DB resizing down % 84 73 52 37 26

ROB resizing down % 55 45 37 27 17

Table 2. Effects of various overflow threshold values on resiz-
ing decisions. Results are shown for the FDR scheme for the
averages across all SPEC95 benchmarks.

We also experimented with the update periods and prelimi-
nary results show that there is little difference in the structure
sizes and slightly higher IPC drop for larger update periods.
This is  because the system with lower update periods cap-
tures the dynamic behavior and reacts to the changes in a
more fine–grained manner. At the same time, we did not
want to make the update period too small for two reasons.
First, it will increase the overhead of instrumentation needed
to support our algorithms and second, such a system could
easily overreact to the momentarily events such as short
spikes in pipeline activities. 

We also studied the impact of employing aggressive–decre-
ment mode. The aggressive mode saves less than 8% in the
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Figure 8. Effects of various resizing schemes on ROB and IDB sizes, IPCs and power dissipation
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Figure 9. Distribution of maximum dispatch rates during the execution of SPEC95 benchmarks
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average ROB size, and less than 2% in the average DB size.
The difference is almost invisible for SPEC95int bench-
marks. SPEC95fp benchmarks have some benefit from the
aggressive mode with some penalty in the IPC. The IPC dif-
ference between these two modes is less than 2% in favor of
non–aggressive mode.

Finally, we explored processor configuration with smaller
DB and ROB sizes. We considered a dispatch buffer of 32 en-
tries and a reorder buffer of 64 entries. Partition size was 8
entries for both structures. We observed no IPC drop
(compared to the system with 64 and 128 entries, respective-
ly) for integer benchmarks, and 9% IPC drop for floating
point benchmarks on the average. The worst performing
floating point benchmarks were mgrid (IPC drop of 21.1%),
swim (19.4%) and hydro2d (18.5%). Even in this case, con-
siderable power savings were realized using dynamic re-
source allocation strategies described in this paper. Specifi-
cally for the ADR scheme, power dissipation was reduced by
42% in the DB and by 38% in the ROB.

6. Conclusion & Work in Progress

We exploited the variations in  usage of datapath structures
to reduce power dissipation in superscalar processors
through dynamic resizing of major datapath components –
the dispatch buffer and the reorder buffer. Two separate
phases of the resizing strategy are described in this paper.
The first phase reduces the size if the sampling of the actual
usage patterns indicates that the structure is overcommited.
The second phase increases the size if an earlier decision to
reduce the size led to an unacceptable performance degrada-
tion in the form of multiple instruction blockings at the time
of instruction dispatch. The resizing strategy is then aug-
mented by introducing the technique for dynamic control of
the maximum dispatch rate based on the periodic monitoring
of the actual system performance in the form of IPC. Our re-
sults indicate that the sizes of the DB and the ROB can be re-
duced by as much as 70% and 58% respectively with only
less than 8.5% loss in performance. This translated to power
savings of about 69% for the DB and 52% for the ROB.

As an extension of the work described in this paper, we are
currently exploring the control and dynamic allocation of
datapath resources beyond the DB and ROB (such as
memory queues, register files, caches, function units).  Addi-
tional work in progress is looking at the use of compiler–in-
serted directive in unused fields of instructions to change re-

source allocation dynamically – a natural transition of the
hardware–directed  resource allocation techniques of the cur-
rent work into the compiler.
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