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ABSTRACT
Performance and scalability of Parallel Discrete Event Simulation
(PDES) is often limited by fine-grain communication, especially in
execution environments with high communication cost. Low laten-
cies of on-chip communication in emerging manycore processors
promise to substantially alleviate conventional PDES bottlenecks.
However, scaling to manycore clusters requires balancing faster
on chip communication with slower traditional network commu-
nication between cluster nodes. In this work, we investigate per-
formance of PDES on a cluster of Intel’s Knights Landing (KNL)
processors, identify performance bottlenecks, and propose tech-
niques to address them.

Specifically, we propose three performance optimizations: (1) a
new design of the communication buffer centered around the use
of atomic compare-and-swap operations to reduce synchronization
overhead between a dedicated communication thread and compu-
tation threads; (2) careful selection of the number of computation
threads per communication thread to limit the pressure on each
communication thread; and (3) balancing the timing of commu-
nication and computation threads to ensure their synchronized
forward progress. Combined, these optimizations result in a 2X -
16X speedup over baseline implementations in ROSS simulator.
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1 INTRODUCTION
In this paper, we focus on understanding and improving PDES per-
formance on clusters of manycore processors with an emphasis on
the communication subsystem. We perform our studies using ROSS
optimistic PDES simulator [8, 9]. The initial version of ROSS is
process-based and uses MPI for communication; we call this ROSS-
MPI. A single-process, multithreaded version of ROSS (called ROSS-
MT) was developed in [27] and later ported to run on manycore
processors in [45]. Running simulations in a clustered manycore
environment requires a hybrid communication model, where mes-
sages sent locally within each manycore chip (we call this a single
simulation node) are handled using thread-based communication
through shared memory, while messages sent to a remote node are
handled using MPI calls. A hybrid communication version of ROSS
to support execution on a cluster (called ROSS-CMT) was developed
in [43]. Unfortunately, when moving beyond modest core counts,
ROSS-CMT fails to scale on manycore clusters. Worse, performance
suffers drastically when compared to the single node performance
of [45] even without remote inter-node communication. To allevi-
ate these bottlenecks, in this paper we describe a ROSS-based PDES
engine specifically optimized for manycore architectures (we call it
ROSS-MC-CMT).

Specifically, we attack the problem of slow inter-node communi-
cation on a cluster of manycores in three ways. First, we address
the inefficiency in processing remote events from ROSS-CMT in-
ternal queues. Previous work demonstrated that with MPI-based
communication across cluster nodes, performance does not scale
with the increase of thread count when threads are provisioned
within the same MPI process and access shared communication

https://doi.org/10.1145/3437959.3459252
https://doi.org/10.1145/3437959.3459252


queues. The primary reason for this is significant locking overhead,
which essentially serializes threads that are trying to make MPI
calls [1]. To address this well-known locking problem, one solution
is to designate one thread per cluster node to handle MPI-based
communication, as was implemented for PDES in [43]. However,
that study was performed on a system with quad-core processors,
where a single thread can cope with the demands of the entire clus-
ter node. If one were to extend this idea to a 64-core cluster node
and dedicate one thread to service MPI traffic to/from the remaining
63 threads on that node, the communication infrastructure quickly
saturates and the communication thread is no longer capable of
keeping up with the event processing load, as we demonstrate in
this paper. We address this problem by applying a more efficient
algorithm to PDES communication queues that is based on the use
of atomic compare-and-swap operations. This modification allows
a single MPI-dedicated thread to cope with the event processing
demands of the rest of the threads running on this chip.

Second, we consider the optimal number of communication
threads per cluster node. A naive solution is to dedicate one PDES
process per cluster node, with the number of threads equal to the
number of cores on that node. However, provisioning too many
threads per process puts stress on the MPI communication thread,
as we described above. We thoroughly analyze these trade-offs and
derive optimal provisioning of communication threads depending
on the details of the communication subsystem.

Third, we address the inefficiency stemming from mismatch in
the forward progress between computation and communication
threads in terms of their arrival to the barriers. Barrier synchroniza-
tion is used for computing Global Virtual Time (GVT), which is a
key synchronization subsystem in PDES, allowing threads to agree
on a common time and garbage collect events timestamped prior
to this time. Traditional barrier-based GVT synchronization works
well when all threads are making comparable forward progress;
no thread waits at the barrier for a long time, and the CPUs are
highly utilized. When processing threads arrive at the barrier well
ahead of a slower communication thread, the event rates will be
negatively impacted, since no event processing occurs during the
waiting time. To address this inefficiency, we propose to adjust the
GVT frequency for the communication threads to match the CPU
utilization of the processing threads. To achieve this automatically,
we describe a control loop that converges to the desired frequency
based on the simulation runtime statistics.

In summary, this paper identifies performance bottlenecks, pro-
poses three new performance optimizations, and demonstrates
many-fold performance improvements on a many-core cluster.
Specifically, these contributions are:

• Identifying scaling issues with PDES on manycore
clusters.We demonstrate that currentMPImessage queuing
mechanisms available in the ROSS-CMT simulation engine
are insufficient to support many processing threads with
a single communication thread per node dedicated to MPI
processing. We also show that another inefficiency with
a dedicated communication thread is a significant drop in
CPU utilization of the threads that have to wait for barrier
synchronization for a longer duration. We propose three
optimizations to address these performance issues.

• Optimization 1: CAS Protected Communication
Buffer. We propose an alternative design of PDES com-
munication queue that is based on the use of atomic
compare-and-swap (CAS) operations. While algorithmically
this is not new, ours is the first paper that proposes the
application of this type of queue to PDES.

• Optimization 2: Multiple Dedicated Communication
Threads. We investigate an optimal provisioning of com-
munication threads per cluster node.

• Optimization 3: Decoupled Interval GVT.We propose a
calculated variable GVT interval to balance the synchroniza-
tion between the processing and communication threads.

• Detailed performance characterization on amanycore
cluster. We demonstrate that proposed optimizations result
in a significant performance improvement on an 8-node
KNL cluster, achieving speedup in the range of 2X - 16X over
ROSS-MPI and ROSS-CMT.

2 BACKGROUND AND METHODOLOGY
The key idea behind PDES [16] is to run multiple logical processes
(LPs) in parallel on multiple processing cores. The LPs commu-
nicate with each other by exchanging time-stamped event mes-
sages [16, 28]. The LPs maintain their own local event queues and
process events from these queues in time-stamped order. Some
events are generated locally within the LP, while other events are
generated remotely, thus taking longer time to arrive. To ensure
that events are executed at different LPs in correct time-stamped
order, the simulation needs to be synchronized. Two types of syn-
chronization algorithms are used in PDES systems: conservative
and optimistic. In conservative simulation, global virtual time is ad-
vanced synchronously for all LPs. In contrast, optimistic simulators
do not maintain event ordering explicitly and instead temporarily
allow the LPs to proceed independently without synchronization.
When a time-stamped message with a time in the past is received
by an LP, a rollback to a checkpoint earlier than the time of the
received message is initiated.

The rollback restores the state of the local objects to that prior
state; messages erroneously sent out are cancelled with a special
kind of message called an anti-message. To support rollbacks, state
checkpoints during simulation runs are created. These event his-
tories can grow large over time and the ones that are no longer
needed must be garbage collected. To achieve this, the Global Vir-
tual Time (GVT) is periodically computed to compute the global
progress of the simulation.

GVT at any given time is computed as the minimum of the
timestamps of all LPs as well as in-flight messages. Once a GVT
computation successfully completes, the simulation state that was
kept to recover to an early state is garbage-collected and all events
processed with a timestamp earlier than GVT are committed. On a
rollback, the simulation state is restored to the most recent valid
state.

In the absence of rollbacks, optimistic simulators are clearly supe-
rior to conservative simulators because they avoid the overhead of
fine-grain synchronizations among the LPs. However, the rollbacks
can cause significant performance issues in optimistic simulators.
Specifically, any messages erroneously sent to other LPs have to



be canceled by sending anti-messages. Furthermore, cascading roll-
backs can occur when a rollback at one node causes a sequence of
rollbacks at other nodes as the anti-messages are sent out. In this
context, the GVT interval is an important parameter that impacts
performance of optimistic PDES. Larger GVT intervals reduce the
overhead of GVT creation, but increase the probability of a rollback
(since the disparity between local simulation times for different
LPs increases) and also increase memory pressure because more
state has to be kept around to support recovery. On the other hand,
smaller GVT intervals increase the overhead of GVT computation
and garbage collection phases.

Our workload is a standard synthetic benchmark called
PHold [17]. Phold is a communication-centric simulation model
where the receipt of an event invokes the sending of an event to a
random destination. Event population is fixed with initialization
of a fixed number of events per PE, in our experiments 1 event per
PE. Our model also allows us to control event processing duration
through a parameter called Event Processing Granularity (EPG) - a
simple processing loop employing floating point calculations. The
value of EPG controls the number of iterations of this processing
loop for each event. As such, this is a relative workload measure
not an absolute one.

We report the results of our analysis in terms of committed
events per second. As we increase the number of processing nodes,
we maintain the same number of starting events per node, thus pro-
portionately increasing the total number of events in the simulator.
If the underlying system is capable of efficiently keeping up with
this load without incurring additional delays, we can expect the
committed event rate to also show improvements commensurate
with the increase in the number of nodes. This is known as weak
scaling [3].

Our hardware platform is an 8-node cluster of Intel Knights
Landing (KNL) processors (Intel Xeon Phi 7230 @ 1.30GHz). The
7230 KNL processor features 64 cores with each core capable of four
simultaneous hardware threads [40]. Each KNL node is equipped
with 96 GB of DDR4 memory. Our systems use the KNL as a stan-
dalone CPU (as opposed to an accelerator) running CentOS 7 Kernel
version 3.10.0 with gcc version 4.8.5 and MPICH version 3.2 with
Nemesis Support from shared memory communication initialized
at run time with MPI_THREAD_FUNNELED.

The KNL nodes are connected with commodity Intel X550T 10
Gigabit Ethernet Network Interface Cards. These are connected
through a dedicated Netgear ProSafe XS728T 10 Gigabit network
switch. Neither Remote DMA (RDMA) or RDMA over Converged
Ethernet (RoCE) are supported by this hardware.

While KNL is a novel architecture, our studies did not exploit
any unique design features of this architecture (such as different
memory modes, vector processing units etc). At the time experi-
mentation began, the KNL architecture provided the highest core
counts available on a commercial CPU. The subsequent release of
the Intel Cascade Lake with 56 2-way cores (112 threads) as well
as AMD Epyc Rome with 64 2-way cores (128 thread) indicate a
convergence of manycore systems with general purpose processors.
We expect that the results of this study will be relevant for future
generations of manycore systems.

We perform our experiments using ROSS optimistic PDES sim-
ulator [8, 9]. To run the simulator in a cluster environment, we

use a hybrid communication model, where messages sent locally
within each manycore chip (we call this a single simulation node)
are handled using thread-based communication through shared
memory, while messages sent to a remote node are handled using
MPI calls. The multithreaded version of ROSS (called ROSS-MT)
was developed in [27], and the hybrid communication infrastruc-
ture to support the execution on clusters (called ROSS-CMT) was
developed in [43].

3 BOTTLENECK ANALYSIS OF ROSS-CMT
We started our experiments with ROSS-CMT [43]. A direct port
of ROSS-CMT to the KNL-based manycore cluster did not provide
performance scaling with the increase of the number of threads.
Furthermore, we observed suboptimal performancewhen compared
to using ROSS-MT on a single KNL node [45], even without inter-
node communication in the ported code.

The structure of the original ROSS-CMT code is shown in Fig-
ure 2a. As with ROSS-MT, a shared memory communication buffer
exists for every thread to receive messages from other threads. Any
thread can send a message to any other thread by acquiring mutex
and placing the message in the destination thread’s buffer.

In addition to simulation processing, LP Thread 1 is also tasked
with processing MPI communication with other nodes. Each thread
is allocated its own outgoing buffer to hold outgoing MPI messages,
while Thread 1 completes the MPI communication. Additionally,
LP Thread 1 checks for incoming MPI messages and processes
them utilizing the same shared memory communication buffer.
Given the substantial commonality in ROSS-MT and ROSS-CMT
code bases, the overhead of the additional code to support cluster
communication in ROSS-CMT is the obvious cause for the observed
performance loss.

To further isolate the source of the performance degradation
compared with ROSS-MT, we sequentially eliminated portions of
the cluster communication code in ROSS-CMT.We performed these
tests using a single node with a single process, thus eliminating
the overhead of MPI remote messaging in this analysis, though
we still accounted for the MPI calls themselves. The results of this
experiment are depicted in Figure 1.

Figure 1: Overhead of Individual Components of MPI Com-
munication in ROSS-CMT using Single Node



When all cluster communication calls are included, we observed
the event rate of 3.4 million committed events per second. This is
a 10x drop from the case depicted asNo Clusterwhich achieves
as high as 36 million committed events per second.No Cluster
represents the case that eliminates all cluster communication calls -
e�ectively the same as ROSS-MT code running on a single node.

Checking for received MPI messages shows substantial overhead
as demonstrated by the bar denotedNo Recv Check. Since Phold
event destinations are random, receipt of an event is asynchronous.
Thus, a non-blocking MPI receive check must be used. The polling
interval of this check is proportional to the number of threads being
serviced. If an event is received, it is placed in the local event queue
of the destination thread.

Figure 1 depicts overhead with no actual message tra�c, and in
that situation removal of the MPI Send checks (as shown inNo Send
Check) has substantially less impact on performance than other
factors. However, as we reintroduce remote communication, some
obvious problems arise (not shown in graph). First, we observe
that as we increase the number of threads, we �nd LP Thread 1
quickly saturates while the remaining processing threads show
decreasing CPU utilization. Performance analysis of ROSS-CMT
indeed uncovers a basic scaling limitation. As each LP thread has
its own outgoing MPI bu�er which must be individually checked,
the out queue processing load on Thread 1 grows with the number
of threads, making it a bottleneck.

With modest thread counts that were used by [43], this was not
a problem - that study used quad-core machines. However, as we
move to manycore architectures, the number of threads is higher
and therefore the process of checking the communication bu�er
for messages becomes a major performance bottleneck.

4 OPTIMIZING ROSS FOR MANYCORE
CLUSTERS

In this section we describe three optimizations of ROSS for many-
core clusters. First, we examine the cost of MPI communication in
ROSS-CMT where LP Thread 1 acts as a LP for a nodeand it also
handles all MPI communication for the process as shown in Figure
2a.

One solution is to distribute MPI processing across all threads.
MPI supports concurrent multithreaded operation by specifying
the MPI_THREAD_MULTIPLE �ag. Though MPI focuses on com-
munication between processes, the MPI tag can be used to send
and receive thread-speci�c messages.

The architecture representing this scenario is shown in Figure 2b.
Unfortunately, as previously noted, the system calls to check for
MPI receives are expensive even at low remote communication
frequencies, a cost that all the processing threads must incur in this
scheme. Furthermore, our analysis revealed that MPI message rate
performance su�ers as thread count expands.

These results are supported by studies of [1, 6, 25] related to
MPI performance issues. These works center on improving mul-
tithreaded performance in MPI implementations. However, no
scheme outperforms a non-concurrent MPI implementation, where
only a single thread performs MPI calls. Thus, we seek to achieve
highest performance using a non-concurrent MPI implementation.

For the scope of this work, we make MPI calls from a single thread
per process.

While a single MPI thread per process provides the best perfor-
mance, our experiments showed that as remote communication
increases, the CPU utilization of the communication thread sat-
urates, thus starving processing threads of data. This imbalance
creates a cascade of rollback messages caused by events arriving out
of order, creating erroneous optimistic execution. This mismatch is
further complicated by the Global Virtual Time (GVT) computation.
The communication thread is an integral part of the synchroniza-
tion process. As synchronisation in this model is based on a barrier,
processing threads can be blocked at the barrier waiting for the
communication thread. Thus, in addition to throughput, we must
consider load balancing.

Given this analysis, we propose three optimizations which fall
into two categories. First, we propose a dedicated communication
thread with an improved communication bu�er to reduce con-
tention between the processing threads when communicating re-
motely. This reduces communication latency and in turn reduces
rollbacks. Second, we propose multiple dedicated communication
threads per node by partitioning the threads into multiple pro-
cesses. This prevents processing threads from overwhelming the
communication thread. Finally, we propose a decoupled GVT in-
terval algorithm that improves synchronization at the GVT barrier
given the dissimilar workloads of the communication and process-
ing threads. The latter two optimizations provide load balancing.
The relationship of these optimizations is shown in Figure 3.

4.1 Optimization 1: Compare-and-Swap
Protected Communication Bu�er (CAS-CB)

Figure 2c depicts the architecture with a dedicated MPI commu-
nication thread. We observed that signi�cant CPU time of an LP
thread is spent idle in system calls - speci�cally, accessing mu-
tex variables associated with communication bu�ers. To eliminate
this overhead, we propose to use acircular bu�er protected using
compare-and-swapatomic instruction. The bu�er is con�gured as
multiple producers, single consumer with one bu�er per thread and
one larger bu�er for the communication thread.

Each bu�er has three associated indexes. The read index is only
modi�ed by the consumer and thus need not be protected. The write
index, given that multiple producers are competing for access, must
be protected by an atomic operation. However, as the consumer
is also using the delta between the read index and the write index
as an indication that more data is available, we need the index
to only be updated when it is already written to the bu�er. To
eliminate this contention, we add a third index calledreserved.
The reserved index is accessed with a Compare And Swap (CAS)
atomic operation. If the reserved index is greater than the write
index, a bu�er write access is in progress indicating to producers
to back o� and retry. Our indexes are implemented using a 64-bit,
non-decreasing counter which is then modulo the bu�er length.
This avoids any problems caused by the counters wrapping back to
0 (also known as the ABA problem) [42]. For analysis purposes, we
do not exceed 64-bits during our run time.

The three states of the CAS protected communication bu�er are
shown in Figure 4. In the empty state, the read index, the reserve



(a) ROSS-CMT (b) Distributed MPI (c) Dedicated MPI Thread (d) CAS Protected Communica-
tion Bu�er

Figure 2: Communication Alternatives

Figure 3: Proposed Optimizations and Their Relationship

Algorithm 1 CAS Communication Bu�ers

1: procedure Producer
2: if , A8C4�=34GŸ '403�=34G then
3: if , A8C4�=34G== '4B4AE43�=34Gthen
4: if ��( ¹'4B4AE4�=34G• '4B4AE4�=34G¸ 1º then
5: , A8C4"4BB064C>�D5 5 4A»'4B4AE4�=34G¼
6: �=2A4<4=C, A8C4�=34G
7: else
8: '4CA~

9: else
10: '4CA~

11: else
12: '4CA~

13: procedure Consumer
14: if , A8C4�=34G¡ '403�=34G then
15: '403"4BB0645 A><�D5 5 4A»'403�=34G ¸ 1¼
16: �=2A4<4=C'403�=34G
17: else
18: '4CA~

index, and the write index are all at the same position. When a node
successfully completes a compare and swap operation, the reserve
index is incremented to the next bu�er index. When the write and

Figure 4: The three states of the CAS bu�er: Idle, Write in
Progress, Write Complete

reserve indexes di�er, this indicates that a write is in progress. In
this state, producers do not attempt a compare and swap, allowing
the node that succeeded to store data in the reserved slot. When the
data store is complete, the write index is incremented to match the
reserved index entering the �write complete� state. This is done with
a compare and swap operation to indicate if a fault has occurred as
no changes to the write pointer should occur while in the �write in
progress� state. In the �write complete� state, the bu�er is available
for both another write access as well as a read access, as indicated
by the delta between the write and read pointers. As we have a
single consumer, no compare and swap operation is needed on the
read side of the bu�er. This architecture is shown in Figure 2d.

There are three cases where the producer will fail to obtain a
bu�er: if the circular bu�er is full, if there is a write in progress,
or if there is a direct collision requesting the bu�er. The circular
bu�er was sized large enough (16MB) to eliminate the bu�er full
condition in our simulations. This is possible in part because of
the relative small amount of information associated with a PHOLD
event. In our simulation, failure to obtain a bu�er results in a spin
lock. However, as part of our performance analysis we monitored
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