
Performance Analysis of a Multithreaded PDES Simulator on Multicore Clusters

Jingjing Wang, Dmitry Ponomarev, and Nael Abu-Ghazaleh
Computer Science Department

State University of New York at Binghamton
Binghamton, NY 13902, U.S.A

{jwang36,dima,nael@cs.binghamton.edu}

Abstract—The performance of fine-grained applications such
as Parallel Discrete Event Simulation (PDES) is limited by
communication overheads. Multi-core architectures with tightly
integrated cores on a single chip can substantially reduce the
communication cost. The number of cores available on such
machines remains low. To scale the simulation, it is important
to be able to effectively use Clusters of Multicores (CMs).
However, the high communication overheads between remote
machines can significantly limit scalability. It is unclear if, in
the presence of relatively slow links, there is a benefit of having
the low latency between the cores on the same machine. In this
paper, we first extended a multithreaded PDES simulator to
support CMs. In addition, we show that remote communication
forms a primary challenge to scalability due to both latency
and message processing software overheads.

I. INTRODUCTION

Discrete Event Simulation (DES) is a key application used
in the design and analysis of systems in which the state
changes are discrete [1]. Parallel Discrete Event Simula-
tion (PDES) [2], [3], [4] is used to improve the capacity
and performance of DES by leveraging parallel processing.
However, PDES applications suffer high overheads from
communication.

Today, clusters of multicores (CMs) are widely used to
reach higher scales of applications. In such environment,
cores on the same machine communicate through low la-
tency shared memory (or other intra-chip communication),
while message passing is used for the communication be-
tween cores on different machines [5]. While PDES simu-
lations executing on a single multicore exhibit very good
performance, it is unclear whether this benefit can carry
over to CMs, where some of the links between cores have
substantially higher latency and message communication
overhead.

To answer this question, we use as our experimental basis,
the Rensselaers Optimistic Simulation System (ROSS) [6]:
a state of the art PDES simulator that employs message
passing for communication using MPICH [7]. To achieve
a better performance, a multithreaded version of ROSS
(ROSS-MT) was developed for use on a single multi-core
machine in our previous work [8]. In order to investigate
the impact of the heterogeneous communication latency
(intra vs. inter-core) on the performance and scalability

of PDES in CM environments, we extend ROSS-MT to
support CMs by using MPICH to communicate between
cores on different machines; we call this version CM Multi-
threaded ROSS (ROSS-CMT). The MPICH libraries are
used for the communication across the network. However,
the MPICH libraries are not thread safe [9], and access
to them is serialized, incurring high overhead when more
than one thread invokes MPI functions simultaneously. Our
experiments show that when we allow each thread to use
MPI for its remote messages, the overall performance is
worse than the baseline process-based ROSS (ROSS-MPI).
To address this issue, we set aside one thread on each
machine to perform communication across the network. It
takes messages generated by the simulation threads and
sends them to their destinations. It also receives remote
messages and forwards to the destination thread.

We first use ROSS-CMT to investigate the impact of
the heterogeneous communication latency (intra vs. inter-
core) on the performance and scalability of PDES in CM
environments. We show that the higher latency causes a
higher percentage of rollbacks for optimistic simulation.
In addition, we show that ROSS-CMT achieves a better
performance than MPI-based version on multi-core clusters.

II. DESIGN OVERVIEW OF ROSS-CMT

In ROSS, events are classified into three types based on
the relationship between the originating and target PEs: (1)
a local event is one where the sending PE is itself the target;
(2) a regional event refers to events sent to another PE on
the same machine; and (3) a remote event is generated from
a PE to another on a different machine.

Figure 1 shows the communication mechanism in ROSS-
CMT on a cluster of two machines with two threads each.
Consider the case where thread 2 on the first machine has
a regional event targeted to thread 1. This event, shown
with dashed arrows (tagged with number 1) in Figure 1,
is communicated using an insertion of a pointer to a copy
of the event into the input queue of thread 1. Later thread 1
queues this event into its event queue (tagged with 2 on the
figure).

The solid arrows in Figure 1 show the communication of a
remote event originating from thread 2 on the first machine



Event Queue

Sent Events

Outq

Inq

1

Thread 2

1

2

Machine 1

Event Queue

Inq

Thread 1

2

Posted Sends

Machine 2

Event Queue

Inq

Thread 1

Event Queue

Inq

Thread 2

3

4

5

Posted Sends

Posted Recv Posted Recv

Outq Outq Outq

Sent Events Sent Events Sent Events

Event Scheduler Event Scheduler Event Scheduler Event Scheduler

Figure 1. ROSS-CMT Communication Mechanism

to thread 2 on the second machine. The remote event is
queued into the output queue of the sending thread. Thread 1
(the communication thread) later looks up this output queue,
and sends the event to thread 1 of the second machine. Once
thread 1 of the second machine probes (or polls) this event
successfully, it then inserts the pointer of this event into
the input queue of thread 2. For a situation where more
than two threads exist on each machine, the communication
thread looks up the output queue of each thread in round
robin fashion.

III. PERFORMANCE EVALUATION

In the experiments we use Phold benchmark [10] to
evaluate the performance of both ROSS-CMT and ROSS-
MPI on a cluster of 4-core Intel core i7 machines. Each
machine has 4 cores, but with hyperthreading, can execute
up to 8 concurrent threads. The machines are connected
through a Gigabit Ethernet switch.

A. Rollbacks caused by Heterogeneous Latency

0 3 6 9 12 15 18 21 24
0

10

20

30

40

50

60

70

80

P
er

ce
nt

 o
f R

em
ot

e 
R

ol
lb

ac
ks

 (
%

)

Non−Local Communication (%)

 

 

Baseline ROSS−CMT

Figure 2. The Percentage of Rollbacks caused by remote events

Figure 2 shows the percentage of rollbacks caused by
remote events as a function of the percentage of these remote
events. Since these events incur significant latency, they are
often late by the time they arrive, causing a rollback. Clearly,

a disproportionate percentage of rollbacks are caused by
remote events; even at 2% remote event percentage, over
50% of the rollbacks are caused by remote events. However,
addressing latency at the simulation kernel level is difficult
since it is a problem of the underlying network protocol
stack and network hardware.

B. Performance of ROSS-CMT vs. ROSS-MPI under differ-
ent percentages of non-local communication

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
ds

)

Non−Local Communication (%)

 

 

ROSS−MPI(8−way)

Baseline ROSS−CMT(8−way)

ROSS−MPI(16−way)

Baseline ROSS−CMT(16−way)

ROSS−MPI(32−way)

Baseline ROSS−CMT(32−way)

Figure 3. Performance of ROSS-CMT and ROSS-MPI

ROSS−MPI Baseline ROSS−CMT
0

20

40

60

80

100

C
P

U
 U

til
iz

ed
 (

%
)

 

 

GVT

Event Send

Event Receive

Event Processing

Other

Figure 4. CPU Usage of Baseline ROSS-CMT vs. ROSS-MPI under 32-
way simulation (100% non-local communication)

Figure 3 shows the performance of ROSS-CMT vs.
ROSS-MPI under 8-way, 16-way and 32-way simulation on
4 machines, with 2 cores, 4 cores and 8 cores each machine
respectively. The x-axis shows the percentage of non-local
communication, which is the sum of both regional (events
to cores on the same machine) and remote (to cores on
other machines) events. At 0% non-local communication,
the simulation run-time is low. However, as the remote
communication increases, even modestly, the execution time
increases substantially. For the 32-way simulation, at 50%
non-local communication (or 25% remote communication),
the simulation runs 5 time slower than the 0% remote
communication case for both ROSS-CMT and ROSS-MPI.
At 100% non-local communication, it is an order of magni-
tude slower than the case with 0% remote communication.
Clearly, the impact of network communication is significant.



It is worth it to note that the performance gain from ROSS-
CMT over ROSS-MPI increases as the non-local commu-
nication percentage increases, which allows more regional
events to take advantage of the faster direct communication
available in ROSS-CMT.

Figure 4 shows the CPU usage of each stage in the
32-way simulation with 100% non-local event percentage
(50% regional and 50% remote) for both ROSS-CMT (the
communication thread) and ROSS-MPI. In ROSS-CMT, a
smaller percentage of time is spent on GVT computation
(10% compared to 26.1% for MPI), but more time is spent
on sending events (49.8% compared to 40.55%). In addition,
ROSS-CMT and ROSS-MPI have a similar percentage of
time spent on event processing (7.7% for ROSS-CMT com-
pared to 5.2% for ROSS-MPI). It is important to consider
optimizations that can reduce this overhead.

C. Scalability Analysis

0 8 16 24 32 40 48 56 64
0

1

2

3

4

5

6

7

8
x 106

E
ve

nt
 R

at
e 

(e
ve

tn
s/

se
c)

Number of Nodes (8 Machines)

 

 

ROSS−MPI(20% Remote)

Baseline ROSS−CMT(20% Remote)

ROSS−MPI(80% Remote)

Baseline ROSS−CMT(80% Remote)

Figure 5. Scalability as number of cores used per machine is increased

Figure 5 shows the scalability of the simulator with remote
percentage of 20% and 80% (communication across the
network). In particular, the simulation is performed on 8
machines, and we increase the number of cores used on
each machine increasing the total number of cores used on
the x-axis. When only a single core is used (8 cores on the
x-axis), the two versions perform close to each other since
they each have a single thread per process communicating
through MPI. However, as the number of cores per machine
is increased, ROSS-CMT is able to take advantage of the
more efficient communication among threads on the same
machine avoiding the use of MPI for those events.

IV. CONCLUDING REMARKS AND FUTURE WORK

Heterogeneous delays exist in CMs: communication on
the same machine is fast, but communication across ma-
chines incurs both high overhead and latency. It is unclear if
in the presence of such slow/high overhead links, the low-
latency on each single machine significantly improves the
scalability of PDES. To answer this question, we extended

a multi-threaded version of the ROSS simulator to work
in CM environments. We discover that: (1) There is some
benefit from multi-cores even within a cluster environment
compared with the MPI version; however (2) the network
connections significantly impact the performance relative
to a situation where all links are of low latency. For our
future work, we will explore some optimizations to provide
significant improvement in the scalability of the ROSS-CMT
simulator in CM environments.

ACKNOWLEDGEMENTS

This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-11-
2-0004 and by National Science Foundation grants CNS-
0916323 and CNS-0958501. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies and endorsements, either
expressed or implied, of Air Force Research Laboratory,
National Science Foundation, or the U.S. Government.

REFERENCES

[1] A. M. Law and W. D. Kelton, Simulation Modeling and
Analysis, 3rd ed. McGraw-Hill, 2000.

[2] R. Fujimoto, “Parallel discrete event simulation,” Communi-
cations of the ACM, vol. 33, no. 10, pp. 30–53, Oct. 1990.

[3] J. Misra, “Distributed discrete-event simulation,” Computing
Surveys, vol. 18, no. 1, pp. 39–65, Mar. 1986.

[4] P. F. Reynolds Jr., “A spectrum of options for parallel
simulation,” in Winter Simulation Conference. Society for
Computer Simulation, 1988, pp. 325–332.

[5] K.Asanovic, R.Bodik, J.Demmel, J.Kubiatowicz, K.Keutzer,
E.Lee, G.Necula, D.Patterson, K.Sen, J.Shalf, J.Wawrzynek,
and K.Yelick, “The landscape of parallel computing research:
A view from berkeley 2.0,” Jun. 2007, presentation slides
available at http://view.ececs.berkeley.edu.

[6] C. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-
performance, low memory, modular time warp system,” in
Proc of PADS, 2000.

[7] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
Cambridge, MA: MIT Press, 1994.

[8] D. Jagtap, N.Abu-Ghazaleh, and D.Ponomarev, “Optimization
of parallel discrete event simulator for multi-core systems,”
in Proc. of IPDPS, 2012.

[9] G. D. Sharma, R. Radhakrishnan, U. V. Rajesekaran, N. B.
Abu-Ghazaleh, and P. A. Wilsey, “Time warp simulation on
clumps,” in Proc of PADS, May 1999.

[10] R. Fujimoto, “Performance of time warp under synthetic
workloads,” Proceedings of the SCS Multiconference on Dis-
tributed Simulation, vol. 22, no. 1, pp. 23–28, Jan. 1990.


