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Abstract
The “one–size–fits–all” philosophy used for

permanently allocating datapath resources in today’s
superscalar CPUs to maximize  performance across a wide
range of applications results in the overcommitment of
resources in general.  To reduce power dissipation in the
datapath, the resource allocations can be dynamically
adjusted based on the demands of applications.  We propose
a mechanism to dynamically, simultaneously and
independently  adjust the sizes of the issue queue (IQ), the
reorder buffer (ROB) and the load/store queue (LSQ)  based
on the periodic sampling of their occupancies to achieve
significant power savings with minimal impact on
performance.  Resource upsizing is done more aggressively
(compared to downsizing) using the relative rate of blocked
dispatches to limit the performance penalty. Our results are
validated by the execution of  SPEC 95 benchmark suite on
a substantially modified version of Simplescalar simulator,
where the IQ, the ROB, the LSQ and the register files  are
implemented as  separate structures, as is the case with most
practical implementations.  For the SPEC 95 benchmarks,
the use of our technique in a 4–way superscalar processor
results in a power savings in excess of 70% within individual
components and an average power savings of 53% for the IQ,
LSQ and ROB combined for the entire benchmark suite with
an average performance penalty of only 5%.

Keywords: superscalar processor, energy–efficient
datapath, power reduction, dynamic instruction scheduling.

1.  Introduction

Contemporary superscalar datapath designs attempt to
push the performance envelope by employing aggressive
out–of–order instruction execution mechanisms.  These
processors are also designed following a “one–size–fits–all”
philosophy resulting in the permanent allocation of datapath
resources to maximize performance across a wide range of
applications.  Earlier studies have indicated that the overall
performance, as measured by the number of instructions
committed per cycle (IPC), varies widely across applications
[19].  The IPC also changes quite dramatically within a single
application,  being a function of the program characteristics
(natural instruction–level parallelism – ILP) and that of the
* supported in part by DARPA through contract number 
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datapath and the memory system.  As the natural ILP varies
in a program, the usage of datapath resources also changes
significantly.

It is well–documented that the major power/energy sinks
in a modern superscalar datapath are in the dynamic
instruction scheduling components (consisting of the issue
queue (IQ), the reorder buffer (ROB), the load/store queue
(LSQ) and the physical registers) and the on–chip caches.  As
indicated in [23], as much as 55% of the total power
dissipation occurs in the dynamic instruction scheduling
logic, while 20% to 35% (and sometimes higher) of the total
power is dissipated within the on–chip cache hierarchy.  It is
therefore not surprising to see a fair amount of recent
research being directed towards the reduction of the energy
dissipation within these components.

In this paper we introduce a technique for reducing the
power dissipation within the IQ, the LSQ and the ROB in a
coordinated fashion.  The basic approach is a technology
independent solution at the microarchitectural level that
divides each of the IQ, the LSQ and the ROB into
incrementally  allocable partitions. Such partitioning
effectively permits the active size of each of these resources
(as determined by the number of currently active partitions)
to be varied dynamically to track the actual demands of the
application,  and forms the basis of the power savings
technique presented here.  We also show  how simple
circuit–level  implementation techniques can be naturally
augmented into our multi–partitioned resource allocation
scheme to achieve substantial power savings without any
compromise of the CPU cycle time.  Our basic approach for
reducing the power dissipation within the IQ, the LSQ and
the ROB is orthogonal to the approach taken by the more
traditional techniques that use voltage and frequency
scaling; such techniques can be deployed in conjunction with
our scheme.

The technique proposed here uses sampled estimates of
the occupancies of the IQ, the LSQ and the ROB to turn off
unused (i.e. unallocated) partitions within these resources to
conserve power.  As the resource demands of the application
go up, deactivated partitions are turned back on to avoid any
undue impact on performance.  The proposed approach is
thus effectively a feedback control system that attempts to
closely track the dynamic demands of an application and
allocates “just the right amount of resources at the right time”
to conserve power.

Recent approaches for power energy reduction based on
the broad notion of feedback control, as discussed in Section



2, are based on the use performance metrics like the IPC,
commit rates from newly allocated regions of a resource or
sensed temperatures as well as continuous measures of the
occupancy of a single resource (namely the IQ).  Rather than
use IPCs and other measures of performance such as cache
hit rates, misprediction rates or physical parameters like
sensed temperature to drive dynamic resource allocations
and deallocations, we use the immediate history of actual
usages of the IQ, the LSQ and the ROB to control their
effective sizes independently.  The actual resource usages are
not monitored continuously but sampled periodically,
keeping hardware requirements simple.  Resources are
downsized, if need be, at the end of periodic update intervals
by deallocating one or more partitions and turning them off.
Additionally, resource allocations are increased before the
end of an update period if the resources are fully utilized and
cause instruction dispatching to be blocked for a
predetermined number of cycles.  This relatively aggressive
strategy for increasing resource allocation allows us to
severely limit the performance loss and yet achieve
significant power savings.

The rest of the paper is organized as follows.  Section 2
describes related work and the motivations for the present
work.  Section 3 describes the superscalar datapath assumed
for this study and identifies sources of power dissipation in
the major components of the datapath such as the IQ, the ROB
and the LSQ.  Our simulation methodology is described in
Section 4.  Section 5 explains the complications involved in
resizing of datapath components in general.  In Section 6, we
study the correlations among the occupancies of the IQ, the
ROB, and the LSQ.  Our resizing strategy  is described in
Section 7.  In Section 8 we discuss the simulation results,
followed by our conclusions in Section 9.

2.  Related Work and Motivations

The technique presented in this paper for reducing power
dissipation in the instruction scheduling logic hinges on the
estimation of resource occupancies.  The resource usages
and the dynamic behavior of the SPEC 95 benchmarks were
reported in [21] using the well–used Simplescalar simulator
[8], where the reorder buffer, the physical registers and the
issue queue are integrated into an unified structure, called the
Register Update Unit (RUU).  The correlations among the
IPC, RUU occupancy, cache misses, branch prediction,
value prediction and address prediction were also
documented in [21].  We extend the study of [21] to
architectures where the issue queue and the reorder buffer are
implemented  as distinct resources, as in most practical
implementations  of superscalar datapaths.  We also study the
correlations among the usage of these resources.  Our studies
show why a distributed, dynamic allocation of these
resources is needed for reducing the power/energy
dissipation (Section 6).

Dynamic resource allocations within a single datapath
component (the IQ) for conserving power was studied in [9,
10, 12].  Specifically, in [9, 10], the authors explored the
design of an adaptive issue queue, where the queue entries
were grouped into independent modules.  The number of

modules allocated was varied dynamically to track the ILP;
power savings was achieved by turning off unused modules.
In [9, 10], the activity of an issue queue entry was indicated
by its ready bit (which indicates that the corresponding
instruction is ready for issue to a function unit).  The number
of active issue queue entries, measured on a cycle–by–cycle
basis, was used as a direct indication of the resource demands
of the application.  We believe that resource occupancies
provide a more accurate measure of the resource needs of the
program rather than the number of ready entries within the
active modules of the IQ.  Our simulations show that the
number of ready entries is considerably lower than the
number of allocated entries in the IQ on the average.
Consequently, downsizing the IQ based on the ready bits is
very aggressive and the performance drop for some
applications may be fairly significant, as can be seen from the
results shown in [10].  In addition, the notion of ready entries
is only applicable to the IQ.  Dynamic allocation within the
ROB and the LSQ requires the consideration of alternative
strategies.

The performance drop reported in [9, 10] was limited by
monitoring the IPC and ramping up the issue queue size if the
measured IPC was lower than the IPC obtained by previous
measurement by a constant factor.  This works under the
assumption that the only cause of the IPC drop is the lack of
datapath resources.  In reality, the IPC drop may be attributed
to a variety of other factors, including the higher branch
misprediction rate and the higher I–cache miss rate.  Figure
1 demonstrates the behavior of two SPEC 95 floating point
benchmarks, where the IPC drop is caused by different
reasons.  Measurements of the IPCs, the average IQ and ROB
occupancies and the I–cache miss rates were taken every 1
million cycles.  Each of these measurements reflect the
benchmark’s behavior within the most recent window of 1
milion cycles.  Results are shown for the execution of 200
million instructions after skipping the first 200 million for
two benchmarks.  The configuration of the simulated system
used was as given in Section 4.  The resource upsizing
strategy proposed in [9, 10] is an adequate response to the IPC
drop for the hydro2d benchmark (Figure 1 (b)), where the
drop is caused by the transition from a period of high–ILP
execution to a low–ILP one.  Here,  the datapath resource
usage increases due to the data dependencies over the
instructions with long latencies and the allocation of new
resources is justified.  In contrast, the IPC drop during the
execution of fpppp benchmark is mostly caused by the
increased percentage of the I1–cache misses (Figure 1(a)).
The resources remain underutilized and ramping up the
resource sizes in such situation results in higher power
dissipation without any impact on performance.  Similarly,
when the branch misprediction rate increases,  more
instructions are flushed from the IQ, the ROB and the LSQ,
again resulting in the underutilization of these resources.  

To summarize, the IPC drop alone (as used in [9, 10]) is
not a sufficient driver for the resizing decision.  In the very
least, it must be used in combination with the I–cache miss
rate and the branch misprediction rate statistics and possibly
other metrics.  In this paper, we monitor the resource
undercommitment  by recording the number of cycles when
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Figure 1.  Dynamic behavior of two SPEC95 floating point benchmarks
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b) Behavior of hydro2d benchmark
simulation cycles (in millions)
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dispatch blocks because of the non–availability of free
entries within the IQ, the ROB or the LSQ.  This information,
directly indicating the increased resource demands, is then
used to drive the upsizing decision.

In [12], Folegnani and Gonzalez introduced a FIFO issue
queue that permitted out–of–order issue but avoided the
compaction of vacated entries within the valid region of the
queue to save power.  The queue was divided into regions and
the number of instructions committed from the
most–recently allocated issue queue region in FIFO order
(called the “youngest region”) was used to determine the
number of regions within the circular buffer that was
allocated for the actual extent of the issue queue.  To avoid
a performance hit, the number of regions allocated was
incremented by one periodically; in–between, also at
periodic intervals, a region was deactivated to save
energy/power if the number of commits from the current
youngest region was below a threshold.  The energy overhead
of the control logic for doing this resizing was not made clear.
Additional energy savings were documented by not
activating forwarding comparators within entries that are
ready for issue or entries that are unallocated.  In [17], we
have introduced an issue queue design that achieves
significant energy savings using a variety of techniques,
including the use of zero–byte encoding, comparators that
dissipate energy on a match and a form of dynamic activation
of the accessed regions of the issue queue using bit–line
segmentation.    Many of the techniques used in [17] can be
employed in conjunction with the scheme proposed in this
paper to achieve a higher level of power savings.

In reality, the usage of multiple resources within a
datapath is highly correlated, as seen from the results
presented in this paper (and in some of the work cited below).
The allocation of multiple datapath resources to conserve
power/energy was first studied in the context of a
multi–clustered  datapath (with non–replicated register files)
in [25], where dispatch rates and their relationship to the
number of active clusters were well–documented.  A similar
but a more explicit study was recently reported in [5], for the
multi–clustered  Compaq 21264 processor with replicated
register files.  The dispatch rate was varied between 4, 6 and
8 to allow an unused cluster of function units to be shut off
completely.  The dispatch rate changes were triggered by the
crossing of thresholds associated with the floating point and
overall IPC, requiring dispatch monitoring on a
cycle–by–cycle  basis.  Fixed threshold values as used in [5]
were chosen from the empirical data that was generated
experimentally.  Significant power savings within the
dynamic scheduling components were achieved with a
minimum reduction of the IPC.  The dynamic allocation of
the reorder buffer – a major power sink – was left completely
unexplored in this study.

In [15], the dispatch/issue/commit rate (“effective
pipeline width”) and the number of reorder buffer entries (the
unified RUU size of the Simplescalar simulator) was
dynamically adjusted to minimize the power/energy
characteristics  of hot spots in programs.  This was done by
dynamically profiling the power consumption of each
program hot spot on all viable ROB size and pipeline width
combinations.  The configuration that resulted in the lowest
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power with minimum performance loss was chosen for
subsequent executions of the same hotspot.  A 25% drop in
the energy/instruction was reportedly achieved with this
technique, as seen in the apparently preliminary results of
[15].  Critical implementation details, including the
overhead of hardware profiling and the manner in which
optimum configurations are stored and reused were not
discussed.  The technique presented in this paper, in contrast,
does not use dynamic profiling and instead adapts the
datapath resources to match the demands of the program.

In [13], resource usages are controlled indirectly through
pipeline gating and dispatch mode variations by letting the
Operating System dictate the IPC requirements of the
application.   An industry standard, Advanced Configuration
and Power Interface (ACPI) defining an open interface used
by the OS to control power/energy consumption is also
emerging [1].  Along similar lines, we are currently exploring
a compiler–directed approach for dynamically allocating
datapath resources based on the IPC requirements, using the
basic infrastructure described in this paper.

In [4], a dynamic thermal management scheme was
investigated to throttle power dissipation in the system by
using several  response mechanisms during the periods of
thermal trauma. These included voltage and frequency
scaling, decode throttling, speculation control and I–cache
toggling.  Some of these techniques indirectly controlled the
resource usages but did nothing to vary the individual
resource allocations.  Consequently, they are of limited use
in reducing leakage dissipations directly.  Although not
reported here, the technique proposed in this paper reduces
such leakage dissipations, as it shuts down unused parts of the
IQ, the LSQ and the ROB.

The reconfiguration of caches and the memory hierarchy
in reducing the energy dissipation were explored in [2, 6] and
represent approaches for reducing energy dissipation by
matching the characteristics of some or all of the memory
hierarchy to track the application’s usage.  Dynamic resource
allocation within caches were studied in [6],  [16] and [24].
More general forms of dynamically allocating cache and
storage resources were proposed in [14].  As we focus on
dynamic resource allocation directly connected with the
instruction scheduling logic, we omit discussions on these

techniques in this paper.

3.  Superscalar Datapath and Sources of 
Energy Dissipation

Figure 2 depicts the superscalar datapath that we
considered for this study.  Here, the ROB entry set up for an
instruction at the time of dispatch contains a field to hold the
result produced by the instruction – this serves as the analog
of a physical register.  We assume that each ROB entry may
hold only a 32–bit result, thus requiring the allocation of two
ROB entries for an instruction producing a double–precision
value.  A dispatched instruction attempts to read operand
values either from the Architectural Register File (ARF)
directly (if the operand value was committed) or
associatively from the ROB (from the most recently
established entry for an architectural register), in case the
operand value was generated but not committed.  Source
registers that contain valid data are read out into the IQ entry
for the instruction.  If a source operand is not available at the
time of dispatch in the ARF or the ROB, the address of the
physical register (i.e., ROB slot) is saved in the tag field
associated with the source register in the IQ entry for the
instruction.

When a function unit completes, it puts out the result
produced along with the address of the destination ROB slot
for this result on a forwarding bus which runs across the
length of the IQ and the LSQ [19].  An associative tag
matching process is then used to steer the result to matching
entries within the IQ.  Since multiple function units complete
in a cycle, multiple forwarding buses are used; each input
operand field within an IQ entry thus uses a comparator for
each forwarding bus.  Examples of processors using this
datapath style are the Intel Pentium II and Pentium III.  [18].

For every instruction accessing memory, an entry is also
reserved in the LSQ at the time of instruction dispatch.  As
the address used by a load or a store instruction is calculated,
this instruction is removed from the IQ, even if the value to
be stored (for store instructions) has not yet been computed
at that point.  In such situations, this value is forwarded to the
appropriate LSQ entry as soon as it is generated by a function
unit.  All memory accesses are performed from the LSQ in
program order with the exception that load instructions may



bypass previously dispatched stores, if their addresses do not
match.  If the address of a load instruction matches the
address of one of the earlier stores in the LSQ, the required
value can be read out directly from the appropriate LSQ
entry.

The IQ, the ROB and the LSQ are essentially
implemented as large register files with associative
addressing capabilities.  Energy dissipation takes place in the
issue queue in the course of:  (a) establishing the IQ entries
for dispatched instructions; (b) forwarding results from the
FUs to the matching IQ entries, (c) issuing instructions to the
FUs and, (d) flushing the IQ entries for instructions along the
mispredicted paths.

Energy dissipations take place within the ROB during
reads and writes to the register file that implements the ROB
or when associative addressing is used. Specifically, these
dissipations occur in the course of: (a) establishing the ROB
entries, (b) reading out part of a ROB entry (when memory
instructions are moved to the LSQ or when the valid data
value for the most recent entry for an architectural register
is read out), (c) reading out all of a ROB entry (at the time of
committing an instruction), (d) writing results from FUs to
the ROB entries and, (e) flushing the ROB entries on
mispredictions or interrupts.

Energy dissipations occur within the LSQ in the course
of: (a) establishing a LSQ entry, (b) writing computed
effective addresses into a LSQ entry, (c) forwarding the result
of a pending store in the LSQ to a later load, (d) forwarding
the data in a register to be stored to a matching entry in the
LSQ and (e)  initiating D–cache accesses from the LSQ.

4.  Simulation Methodology

The widely–used Simplescalar simulator [8] was
significantly modified to implement true hardware level,
cycle–by–cycle  simulation models for such datapath
components as the IQ, the ROB, the LSQ, register files,
forwarding interconnections and dedicated transfer links.
The Simplescalar simulator lumps the ROB, physical
register files (PRFs) and the IQ together into RUUs, making
it impossible to directly assess switching activities within
these components and to make independent resizing
decisions for each structure.  Quite unlike the
implementation  used in Simplescalar (and power estimation
tools like Wattch [3] and the one in [11], which are based on
Simplescalar),  the number of IQ entries and ROB entries –
as well as the number of ports to these structures – are quite
disparate in modern microprocessors, making it imperative
to use distinct implementations of at least the ROB and the
IQ in the simulator for accurately estimating the total chip
power as well as the power dissipated by the individual
components.

For estimating the energy/power for the key datapath
components, the event counts gleaned from the simulator
were used, along with the energy dissipations for each type
of event described in Section 3, as measured from the actual
VLSI layouts using SPICE.  CMOS layouts for the IQ, the
ROB and the LSQ in a 0.5 micron 4 metal layer CMOS

process (HPCMOS–14TB) were used to get an accurate idea
of the energy dissipations for each type of transition.  The
register files that implement the ROB, the IQ, and the LSQ
were carefully designed to optimize the dimensions and
allow for the use of a 300 MHz clock.  A Vdd of 3.3 volts is
assumed for all the measurements.

Parameter Configuration

Machine width 4–wide fetch, 4–wide issue, 4–wide commit

Window size 32 entry issue queue, 128 entry reorder buffer,
32 entry load/store queue

L1 I–cache
(I1–cache)

32 KB, 2–way set–associative, 32 byte line,
2 cycles hit time

L1 D–cache
(D1–cache)

32 KB, 4–way set–associative, 32 byte line,
2 cycles hit time

L2 Cache
unified

512 KB, 4–way set–associative, 64 byte line,
4 cycles hit time.

BTB/Predictor 1024 entry, 2–way set–associative, hybrid
gshare, bimodal

Memory 128 bit wide, 12 cycles first chunk,
2 cycles interchunk

TLB 64 entry (I), 128 entry (D),
4–way set–associative,  30 cycles miss latency

FUs and Latency
(total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19),
2 Load/Store (2/1), 4 FP Add (2), 1FP Mult (4/1)
/ Div (12/12) / Sqrt (24/24)

Table 1.  Architectural configuration of a
simulated 4–way superscalar processor

Modern datapath implementations use more aggressive
technologies compared to the 0.5 micron process used in this
study.  At small feature sizes, leakage power becomes
significant – our dynamic resource allocation techniques
will also reduce such leakage dissipations.  Furthermore,
with small feature sizes, the relatively higher contribution of
wire capacitances also increases dynamic dissipations
commensurately.  Our dynamic  resource allocation
technique will also work better in this scenario, since the
incremental resource allocation/deallocation mechanisms
directly limit the impact of wire lengths by activating
partitions selectively.  The results reported in this paper are
thus expected to be quite representative of what one would
observe in  implementations that use state–of–the–art
process.

The configuration of a 4–way superscalar processor
studied in this paper is shown in Table 1.  In addition, we also
performed the evaluation of a more aggressive 6–way
machine.  For the processor using a 6–way dispatch, 6–way
issue and 6–way commit, we assumed the IQ and the LSQ of
64 entries, the ROB of 256 entries, I1–cache of 128 Kbytes,
D1–cache of 64 Kbytes and L2 cache of 1 Mbytes.  We also
assumed that 6 integer ADD, 6 floating point ADD, 2 integer
multiply/divide,  2 floating point multiply/divide and 3
Load/Store FUs were present.  The latencies of FUs and the
rest of the simulation parameters were unchanged compared
to  a 4–way machine from Table 1.  For all of the SPEC 95
benchmarks, the results from the simulation of the first 200



million instructions were discarded and the results from the
execution of the following 200 million instructions were
used.  Specified optimization levels and reference inputs
were used for all the simulated benchmarks.

5.  Resizing Datapath Components: the
Requirements

In this section, we discuss the hardware facilities needed
to support incremental resource allocation and deallocation
and the relevant constraints.

5.1.  Multi–Partitioned Resources

The organization of the IQ allowing for incremental
allocation and deallocation is depicted in Figure 3.  The ROB
and the LSQ are partitioned in a similar fashion.  The IQ, the
ROB and the LSQ are each implemented as a number of
independent partitions.  Each partition is a self–standing and
independently usable unit, complete with its own
precharger, sense amps and input/output drivers.  Using
separate prechargers and sense amps for each partition (as
opposed to shared prechargers and sense amps for all of the
partitions) makes it possible to use smaller, simpler and more
energy–efficient sense amps and prechargers.  Partitioning
in this manner alone – independent of dynamic resource
allocation – may result in some energy savings from the use
of smaller and simpler sensing and precharging mechanisms,
but this can be viewed as natural consequence of partitioning
these resources for dynamic allocation.

A number of  partitions can be strung up together to
implement a larger structure.  The connection running across
the entries within a partition (such as bit–lines, forwarding
bus lines etc.) can be connected to a common through line
(shown on the right in Figure 3) through bypass switches.  To
add (i.e., allocate) the partition to the IQ and thus extend the
effective size of the IQ, the bypass switch for a partition is
turned on, and the power supply to the partition is enabled.
Similarly, the partition can be deallocated by turning off the
corresponding bypass switches.  In addition, power to the
bitcells in the shut–off partitions can be turned off to avoid
leakage dissipation.  We had no opportunity to observe the
savings in leakage dissipation coming from dynamic
resource allocation for the technology used in the current
study, where leakage is extremely small.  With smaller
feature sizes and the use of lower supply voltages, leakage
dissipation can be significant.  Dynamic resource allocation,
as introduced here, can reduce leakage dissipation by
powering down unallocated partitions.  Entries can be
allocated in the IQ – across one or more active partitions in
any order; an associative searching mechanism is used to
look up free entries at the time of dispatching.

A subtle difference in shutting off segments of the
bit–lines and the forwarding buses should be noted.  For the
forwarding bus lines, segments in all currently active
partitions should be connected to the through line, as
forwarding can take place to an entry within any one of the
active partitions.  In contrast, only the segment of a bit line
within the partition that contains an entry that is being read
out or written to have to be activated; there is no need to

Figure 3.  The Partitioned IQ
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connect the bit–line segments of all active partitions to the
through line.  This latter technique, called bit–line
segmentation [17], is routinely used within RAMs to reduce
energy dissipation in the course of reads and writes.  We will
assume that bit–line segmentation is in use for the
multi–partitioned  resources.

The partition sizes (i.e., the number of entries within each
partition) for the IQ, the LSQ and the ROB have to be chosen
carefully.  Making the partition sizes smaller allows for finer
grain control for resource allocation and deallocation but
small partition sizes can lead to  higher partitioning overhead
in the form of an increase in the layout area and a decrease
in the energy savings.  Optimal partition sizes thus exist for
each of the resources under consideration.  For the
technology used, the optimal partition sizes are: 8 entries per
partition for the IQ and the LSQ and a partition size of 16
entries for the ROB.

5.2. Resizing Constraints

The actual downsizing of the issue queue may not always
be performed immediately after the resizing decision is
made and is deferred till all instructions are issued from the
IQ partition that is to be deactivated.  The duration between
the time a decision is made to downsize and the time of the
actual deallocation of a partition is called a transition period.
Instruction dispatching is blocked during the transition
periods if the IQ entry allocated for the new instruction
belongs to the partition that will become inactive.
Otherwise, dispatches continue to the active IQ partitions.

The dynamic resizing of the ROB and the LSQ  requires
additional considerations because of the circular FIFO
nature of these structures.  We discuss these considerations
below for the ROB.



The ROB is a circular FIFO structure with two pointers
– the ROB_tail and the ROB_head.  The ROB_tail indicates
the next free entry in the ROB and is used during instruction
dispatching to locate and establish the entries for the
dispatched instructions.  The  ROB_head is used during the
commit stage to update the architectural registers in program
order.  Figure 4 depicts a ROB with four partitions and also
shows the some possible dispositions of the ROB_head and
the ROB_tail pointers at the time the allocation/deallocation
decision is made.  The pointer CS (Current Size) indicates the
current upper bound of the ROB.  The pointer NS (New Size)
specifies the newly established upper bound of the ROB after
potential allocation or deallocation of one partition.  The
partition that is to be allocated/deallocated is shown as a
dashed box.

To preserve the logical integrity of the ROB, in some
situations partitions can be allocated and deallocated only
when the queue extremities coincide with the partition
boundaries.  To deallocate a partition, two conditions have
to be satisfied after the decision to downsize has been made.
First, as in the case of the issue queue, all instructions from
the  partition to be deallocated must commit.   Second, further
dispatches must not be made to the partition being
deallocated.

Deallocation scenarios are illustrated in Figure 4(a).  In
the situation shown in the top part, deallocation is delayed
until the ROB_tail reaches NS and the ROB_head becomes
zero.  Notice, that the ROB_head wraps around  twice before
the deallocation can occur.  This is, of course, an extreme
case, as it is rare for the ROB occupancy to be very high
immediately prior to the instant of reaching a downsizing
decision.  Slight variations of this specific case can also be
considered, where the ROB_tail points to the left of NS.  In
that case, the ROB_head wraps around only once before the
deallocation.   The bottom part of Figure 4(a) is the case,
where the deallocation of the partition marked by the dashed
box can be performed immediately. 

ROB_tail

Allocated free

Figure 4.  ROB resizing scenarios
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To allocate a ROB partition, the value of the ROB_head
pointer must be less than the value of the ROB_tail pointer
to preserve the correct placement of the newly dispatched
instructions into the ROB.  Allocation scenarios are
illustrated in Figure 4(b).  The top part shows the situation

where the allocation is deferred till the value of the
ROB_head pointer reaches the value of zero.  The bottom
part shows the case where the allocation can be performed
immediately.  More details are given in  [20].

6.  Resource Usage in a Superscalar Datapath
We studied the correlations among the occupancies

(number of valid entries) of the IQ, the ROB and the LSQ
using our experimental setup.  Representative results for one
integer (ijpeg) and one floating point (fpppp) benchmark
from the SPEC 95 suite are shown in Figures 5 and 6.  Figures
5(a) and 6(a) show the occupancies of the three resources for
fpppp and ijpeg benchmarks respectively, and Figures 5(b)
and 6(b) show the ratios of these occupancies.
Measurements were taken for 200 million committed
instructions after skipping the first 200 million.  For each
benchmark, we recorded the average occupancies after
every 1 million committed instructions and then graphed the
results.

As seen from these graphs, the occupancies of the three
resources are positively correlated.  This suggests that
resizing only one datapath resource is insufficient – in fact,
if the sizes of other resources are not dynamically adjusted
as well, these resources will remain overcommited most of
the time.  Another observation from Figures 5 and 6 is that
it is difficult, if not impossible, to adjust the sizes of multiple
resources by monitoring one of these resources and rescaling
the number of active partitions within other resources
proportionately.  This is primarily because the ratios of the
resource occupancies also change drastically across a
program’s execution.  For example, for the fpppp
benchmark, the ratio of the ROB occupancy to the IQ
occupancy varies between 4 and 12 in the time interval
shown (Figure 5(b)).  One can consider resizing schemes,
where the actual resource occupancies and their ratios are
periodically sampled for a short duration and the appropriate
prescaling coefficients are then set.  However, this would
increase the complexity of the control logic.  For these
reasons, we decided to  independently monitor individual
occupancies of the IQ, the ROB and the LSQ. The occupancy
information was used to dynamically adjust the size of the IQ,
the ROB and the LSQ independently.  In the next section, we
explain the details of our resizing strategy. 
 
7.  Resource Allocation Strategies

Two resizing strategies are used – one  for downsizing a
resource (turning off a partition) and the other  for upsizing
the resource (adding a partition). Our strategies are described
for the IQ only; the strategies for the ROB and the LSQ are
similar, provided that adequate considerations are made for
the circular nature  of the ROB and the LSQ, as discussed in
Section 5.

7.1.  Downsizing Strategy

The downsizing of the IQ is considered periodically – at
the end of every IQ update period (IQ_update_period).
During this period, the IQ occupancy, as measured by the
number of allocated entries within the active partitions of the
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IQ, is sampled several times at periodic intervals. The value
of the sampling interval  (IQ_sample_period) is an integer
divisor of IQ_update_period .  The average of these samples
is taken as the active IQ size (maintained in the variable
(active_IQ_size) in the current update period.  Both
IQ_update_period  and IQ_sample_period were chosen as
powers of two to let the integer part and the fractional part of
the computed IQ occupancy be isolated easily in the
occupancy counter.  This avoids the use of a full–fledged
division logic.  Figure 7 depicts the relationship between
IQ_update_period  and IQ_sample_period.

At the end of every IQ update period, we compute the
difference, diff=current_IQ_size–active_IQ_size , where
current_IQ_size is the size of the issue queue at that instant.
If diff is less than the IQ partition size (IQ_p_size),  no resizing
is needed.  If, however, diff is greater (or equal) than the IQ
partition size, two scenarios are possible depending on
whether an aggressive or a conservative downsizing strategy
is implemented.  In a conservative scheme, at most one IQ
partition can be deactivated at a time.  In an aggressive
downsizing scheme, the maximum allowable number of

partitions,  max_p, as obtained directly from diff
(max_p=floor(diff/IQ_p_size )), are deallocated.

The variable active_IQ_size provides a reasonable
approximation of the average IQ occupancy within the most
recent IQ update period.  The difference between the current
size of the IQ (current_IQ_size) and active_IQ_size  in the
update period  indicates the degree of overcommited (that is,
underused or unused) IQ partitions.  The IQ  is  scaled down
in size only if the sampling of the IQ occupancy indicates that
the IQ partitions are overcommited. By thus downsizing
resources only when resource partitions are overcommited
we minimize the penalty on performance. 
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Figure 7.  Sample period and update period
used for the IQ downsizing
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At the end of every IQ sample period, we record the IQ
occupancy by using bit–vector counting logic for each active
partition and then adding up these counts.  The fact that this
counting is performed only at the end of the sampling period
(as opposed to maintaining a dynamic count on a
cycle–by–cycle  basis) suggests that the energy dissipated in
estimating the IQ occupancy is tolerably small.  A rough
estimation indicates that the monitoring/counting logic
expends less than 1% of the total power dissipated in the IQ,
the ROB and the LSQ combined.

7.2.  Upsizing Strategy

The  resizing strategy  implemented to scale the IQ size
back up once the application begins to demand more
resources effectively uses the rate at which dispatches block
due to the non–availability of entries within the IQ.   We use
the IQ overflow counter to count the number of cycles for
which dispatch is blocked because  a free entry is not
available in the IQ.  This counter is initialized to 0 at the
beginning of every IQ update period and also immediately
after making additional resource allocations within the IQ.
The reason for resetting the counter in the latter instance is
described in Section 7.3. Once the value of this counter
exceeds a predetermined IQ overflow threshold,
(maintained in the variable IQ_overflow_threshold),  one of
the currently deactivated IQ partitions, if any, is turned on,
effectively upsizing the IQ.  Note, that additional resource
allocations can take place well before the expiration of an IQ
update period, to react quickly to the increased demands of
the program. The upsizing strategy is thus more aggressive
than the downsizing strategy.

7.3. Other Considerations

The main reason for taking multiple samples within a
single update period is to get a better estimate of the average
resource usage within this update period. An upsizing  within
an update interval can distort this average quite drastically
and result in an erroneous downsizing at the end of this update
period.  Such a situation causes instability in the control
mechanism used for our scheme.  It is for this reason that we
abandon the current update period and start a new update
cycle immediately after resizing up.

For similar reasons, during the transition periods
immediately  prior to an actual downsizing, no statistics are
collected  (all counters controlling resizing are frozen at 0).

By varying the values of IQ_overflow_threshold and
IQ_update_period , either of the upsizing or the downsizing
processes can be made more aggressive depending on the
design goals as dictated by power (downsizing) /
performance (upsizing) tradeoffs. 

8.  Results and Discussion

To estimate the power savings effects of the resizing
mechanism proposed in this paper, we evaluated three
configurations of the IQ, the ROB and the LSQ.  These are
as follows:

The base case, B:  Here, each resource is a monolithic
structure, as used in traditional datapath designs.

Base case with bit–line segmentation, S:  Here, the base
case (B) is augmented with the bit–line segmentation [17] –
a well–known power savings technique designed to reduce
the effective bit–line capacitance.  The size of each segment
parallels the partition sizes chosen for dynamic allocation.
We analyzed this configuration because we wanted to isolate
the effects of bit–line segmentation – a natural technique to
be used with the partitioned organization and resizing.  On
the average across all SPEC 95 benchmarks, the organization
S saves 13.2% in power dissipation within the IQ, 37.1%
within the ROB, and 8.7% within the LSQ as compared to the
organization B.

Partitioned organization with resizing, R: Here, the
IQ, the ROB and the LSQ are implemented as shown in
Figure 3 and as described in Section 5.

Our experiments showed that the behavior of our resizing
scheme is most sensitive to the changes in the overflow
thresholds.  Table 2 shows performance degradation caused
by resizing in the form of drops in the IPC.   Also shown in
this table are power savings and average active sizes (number
of entries that are turned on) of the IQ, the ROB and the LSQ
for various values of overflow_threshold, common to all
these components.  Results are averaged over all SPEC95
benchmarks.  For these simulation runs, we fixed the value
of update_period for all three resources at 2K cycles.  This
value has to be chosen in an optimal fashion. Making it too
large would cause variations in the resource usages to go
unnoticed.  Making it too small would result in a prohibitive
resizing overhead.  We also studied the effects of various
update periods on our resizing scheme and results are
presented later in this section. The value of sample_ period
was chosen as 32 cycles, allowing for the acquisition of 64
occupancy samples in one update period.  In this and the
following tables, OT stands for “overflow threshold”, UP
stands for “update period”, PS stands for “power savings”,
and “size” specifies the average active size of the IQ, the
ROB or the LSQ as measured by the number of activated
entries.

OT IPC drop (%) IQ size ROB size LSQ size

 128 0.58 23.0 78.7 22.9

 256 1.89 20.2 67.6 20.2

 512 4.86 17.2 56.8 17.5

1024 9.63 14.2 46.4 14.6

2048 13.97 11.9 37.6 12.3

Table 2.  Average number of active entries within the
IQ, the ROB and the LSQ and performance
degradation for various overflow thresholds

As seen from the data in Table 2, lower values of
overflow_threshold result in virtually no performance loss,
but the average number of turned–on entries and thus, power
savings potential, are limited.  For larger values of
overflow_threshold, the potential power savings can be
significant,  but this comes at a cost of noticeable
performance drop – as high as 14%.  We did not perform any
experiments for the values of overflow_threshold less than



128, because the average performance loss was already well
below 1% in this case.  Decreasing the value of
overflow_threshold further would have an adverse effect on
energy dissipation (more partitions will be on) with no
further performance improvement.  The maximum possible
value of overflow_threshold for a resource is equal to the
value of update_period used for that resource (2048 in our
experiments).   In this case, the resource upsizing is triggered
if, during the update period,  resource overflows are
encountered every cycle.  Thus, we effectively exhausted the
space of all reasonable values of overflow threshold for a
given update period (considering, of course, that these values
are powers of two for implementation reasons, as discussed
above).  Our experiments showed that the overflow threshold
value of 512 gave the optimal power/performance trade–off
for the majority of the simulated benchmarks.  Table 3 shows
the performance of the resizing scheme for individual
benchmarks for OT=512.  Power savings are given as an
improvement of the R configuration over the B
configuration.

Higher power savings are achieved for the integer
benchmarks, because they are generally less
resource–hungry than the floating point benchmarks and
present more opportunities for downsizing.  For the IQ, the
lowest savings are for hydro2d and mgrid benchmarks – these
use the full IQ most of the time.  For the majority of integer
benchmarks, only 2 of the 4 available partitions are
predominantly turned on, resulting in power savings of about
48% on the average.  Notice also, that power savings are not
always proportional to the active size of the resource.

Benchmark IPC
drop%

IQ
size

IQ
PS%

ROB
size

ROB
PS%

LSQ
size

LSQ
PS%

compress +2.5 14.7 45.8 40.6 61.9 8.0 67.2

vortex 8.3 12.1 48.3 33.8 67.1 20.4 42.8
m88ksim 3.6 16.3 42.4 30.8 64.7 14.3 48.4

gcc 3.3 12.1 50.4 25.6 68.5 12.9 52.6
go 4.9 13.4 51.0 27.1 69.4 10.9 52.4
ijpeg 6.5 19.9 43.5 48.1 65.8 16.9 37.4

li 3.8 14.1 47.3 30.6 65.8 14.9 48.8
perl 0.0 13.9 46.8 36.5 63.3 18.2 41.1
turb3d 9.2 20.9 45.9 61.0 63.7 14.8 49.9

fpppp 0.9 11.2 42.5 38.6 61.3 14.4 40.7
apsi 2.6 25.1 32.0 115.4 45.5 28.2 14.9
applu 14.8 16.0 50.5 65.9 64.0 16.2 41.0

hydro2d 2.2 25.0 29.3 123.4 41.0 26.9 12.4
mgrid 0.4 27.0 25.2 122.1 42.2 30.7 12.4

su2cor 8.0 14.0 49.4 29.8 67.2 12.8 51.3
swim 2.0 20.6 36.0 89.1 48.1 27.6 17.0
tomcatv 7.0 14.3 48.2 37.9 67.1 12.4 58.1

wave5 12.6 18.6 47.4 66.9 66.7 14.4 58.5
Int Avg. 3.5 14.6 46.9 34.1 65.8 14.6 48.8
FP Avg. 6.0 19.3 40.6 75.0 56.7 19.8 35.6

Average 4.9 17.2 43.4 56.8 60.7 17.5 41.5

Table 3.  Behavior of SPEC 95 benchmarks for
overflow_threshold=512 and update_period=2048

Sometimes, power savings may be higher for the
benchmarks with more active partitions (applu) than for the
benchmarks with fewer active partitions (fpppp).  This is
because of two reasons.  First, the IPC drop of applu is very
high (in excess of 14% – the highest of all simulated
benchmarks), resulting in a longer execution time and the
reduction of energy dissipated per cycle compared to the base
case.  The same argument can be made for the dispatch and
issue rates.  Second, power savings depend on the number of
comparators that are used during forwarding.  In our power
estimations,  we assumed that only the comparators
associated with the invalid slots within valid IQ entries (in
other words, slots waiting for a result)  are activated during
forwarding.  The average number of such activated
comparators and the percentage of power dissipated in this
process varies for different benchmarks.  Resizing, as used
in the context of segmented bit–lines, saves relatively less
power during forwarding than during non–associative
reads/writes at the times of issue/dispatch.  Thus, the  power
savings achieved within the resizable IQ is not only
dependent on the size of the active portion of the IQ, but also
is a function of the IPC, dispatch rate and and program’s
characteristics.

Similar observations are applicable for the ROB and the
LSQ.  The percentage of power savings is higher for the ROB,
because dissipations due to the associative addressing are
relatively smaller for the ROB than for the IQ and the LSQ.
Note that for all of the benchmarks except for applu and
wave5, performance loss because of dynamic resizing is
below 10%, with the average being less than 5% across the
entire benchmark suite.  We observed a slight performance
improvement for compress95. This is because compress95
has a low branch prediction accuracy and a smaller issue
window reduces the amount of work done along
mispredicted path.  For different configurations, we
observed a similar phenomenon for li and perl.  Notice that
even when resources are used to their full extent, substantial
power savings are still achieved – this is, of course, the result
of bit–line segmentation and the use of multi–partitioned
resources, as discussed in Section 5.1.

Our experiments showed that the best tradeoff between
power and performance is achieved when the ratio of update
period to overflow threshold is 4 for each resource (Table 3
represents one of these cases).  Here, resource upsizing is
triggered when the frequency of overflows is more than 1 in
4 cycles.  We studied the effects of various update periods on
the performance of our resizing mechanism, keeping the
ratio of update period to overflow threshold at 4.  Some of
these results, averaged across all benchmarks,  are
summarized in Table 4.  In all cases, the sample period was
set to allow for the acquisition of 64 samples during one
update period.

Larger update periods result in higher performance loss,
because of the slower reaction of the upsizing phase to the
changes in the application’s demands.  This is, of course, the
consequence of higher overflow thresholds which have to
increase commensurately with the update periods to
maintain the same level of tradeoff between power and
performance.  The advantage of larger update periods is the
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Figure 8.  Power dissipation in the IQ, ROB and LSQ for 4–way and 6–way processors
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reduction of control logic overhead, because resource
monitoring and resizing decisions are made at a coarser
granularity.  The differences in terms of power savings
achieved for update periods studied are quite small, as
indicated in Table 4 by the average active sizes.

To see the effects of our resizing scheme on power
dissipation in more aggressive superscalar designs, we also
simulated a 6–way processor with larger sizes of the ROB,
the IQ, and the LSQ (as discussed in Section 4).  As expected,
the results show a higher percentage of power reduction
because the degree of resource overcommitment is higher for
a 6–way processor. The higher power savings for a 6–way
machine come at the cost of a higher performance drop,
which is also not surprising because the base case IPCs of
programs executed on a 6–way machine are  higher than for
a 4–way machine.  For the common overflow threshold of
512, the average performance loss across all SPEC 95
benchmarks was observed as 7.3% with the average power
savings of 50% in the IQ, 70.5% in the ROB  and 55.7% in
the LSQ. Total power savings across all three components
amounts to 59% on the average.

UP, OT IPC drop % IQ  size ROB size LSQ size

128, 32 4.31 17.3 57.2 17.6

2048, 512 4.86 17.2 56.8 17.5

8192, 2048 5.13 17.1 56.4 17.4

Table 4.  Power savings and performance
degradation for various update periods

Figure 8 summarizes power savings achieved by resizing
technique described in this paper for the 4–way and 6–way

machines.  Results are shown for the overflow threshold
value of 512, update period value of 2048 and sample period
of 32 cycles for all structures.  Power savings are shown for
the B, S and R configurations.  Notice, that for some of the
benchmarks (mgrid and fpppp), configuration S results in
higher power savings within the LSQ than configuration R
for 6–way machine.  This is because the entire LSQ is used
throughout the execution of these benchmarks on the 6–way
processor, and the increase in power consumption stems
mainly from the dissipations associated with the segmented
forwarding buses.

Finally, we studied the use of aggressive downsizing
mode.  The aggressive mode saves less than 8% in the average
ROB size, and less than 2% in the average IQ size.  The
difference is almost invisible for the SPEC95int
benchmarks.  The SPEC95fp benchmarks have some benefit
from the aggressive mode, as discussed in Section 7.1, with
some penalty in the IPC.  The IPC difference between these
two modes is less than 2% in favor of non–aggressive mode.

9.   Concluding Remarks
The “one–size–fits–all” philosophy in allocating

datapath resources results in the resource overcommitment.
Our approach to minimizing the power requirements of the
datapath is to use a dynamic resource allocation strategy that
tries to closely track the actual dynamic resource demand of
the executing program.  We primarily focused on using
simple techniques to resize the IQ, the ROB (integrating
physical registers) and the LSQ independently.  In particular,
these components are partitioned and the number of active
(i.e., powered up) partitions are chosen dynamically to
closely track the actual demands of the program.   The IQ, the



LSQ and the ROB are controlled independently.  Downsizing
is driven by directly using sampled estimates of their
individual occupancies.   Upsizing, on the other hand, is done
more aggressively based effectively on the rate at which
dispatches block due to the lack of these individual
resources.  Our power savings technique is technology
independent and can be used in conjunction with other
orthogonal techniques for saving power.

Our results show that the error arising from the
computations of the average occupancy by sampling the
actual occupancies at discrete points is tolerable since
significant energy savings are achieved using our approach
with very little impact on performance.   For a 4–way
superscalar CPU, an average power savings of 52.6% is
achieved across the SPEC 95 benchmarks for the IQ, LSQ
and ROB combined, with an average performance penalty
of only 4.86%.  For a 6–way dispatch rate, the power savings
on the average are 59.3% across these structures, with an
average performance penalty of 7.3%.  Thus, our technique
can save a significant amount of power with a tolerable
performance loss.

Although the current paper shows the savings on
dynamic/switching  power, dynamic deallocation of
partitions also saves leakage power that would be otherwise
dissipated within the IQ, the ROB and the LSQ.

As an extension of the work described in this paper, we
are currently exploring the control and dynamic allocation
of datapath resources beyond the IQ, the ROB and the LSQ
(such as register files, caches, function units).  Additional
work in progress is looking at the use of compiler–inserted
directives in unused fields of instructions to change resource
allocation dynamically – a natural transition of the
hardware–directed  resource allocation techniques of the
current work into the compiler.
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