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Abstract

The “one-sizefits-all” philosophy used for
permanently allocating datapath resources in today's
superscalar CPUsto maximize performance acrossawide
range of applications results in the overcommitment of
resources in general. To reduce power dissipation in the
datapath, the resource allocations can be dynamically
adjusted based on the demands of applications. e propose
a mechanism to dynamically, simultaneously and
independently adjust the sizes of the issue queue (1Q), the
reorder buffer (ROB) and theload/store queue (LSQ) based
on the periodic sampling of their occupancies to achieve
significant power savings with minimal impact on
performance. Resource upsizing isdone more aggressively
(compared to downsizing) using the rel ative rate of blocked
dispatchesto limit the performance penalty. Our resultsare
validated by the execution of SPEC 95 benchmark suite on
a substantially modified version of Smplescalar simulator,
where the |Q, the ROB, the LSQ and the register files are
implemented as separatestructures, asisthe casewith most
practical implementations. For the SPEC 95 benchmarks,
the use of our technique in a 4—way superscalar processor
resultsinapower savingsin excessof 70% withinindividual
componentsandanaveragepower savingsof 53%for thel Q,
LSQ and ROB combined for the entire benchmark suitewith
an average performance penalty of only 5%.

Keywords: superscalar processor, energy—efficient
datapath, power reduction, dynamic instruction scheduling.

1. Introduction

Contemporary superscalar datapath designs attempt to
push the performance envelope by employing aggressive
out—of—order instruction execution mechanisms. These
processorsarealso designedfollowing a“ one-size-fits—all”
philosophy resulting inthe permanent all ocation of datapath
resources to maximize performance across a wide range of
applications. Earlier studies haveindicated that the overall
performance, as measured by the number of instructions
committed per cycle(IPC), varieswidely acrossapplications
[19]. ThelPCalsochangesquitedramatically withinasingle
application, being afunction of the program characteristics
(natural instruction-evel parallelism —ILP) and that of the
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datapath and the memory system. Asthenatural ILPvaries
in a program, the usage of datapath resources also changes
significantly.

It iswell-documented that the major power/energy sinks
in a modern superscalar datapath are in the dynamic
instruction scheduling components (consisting of the issue
queue (1Q), the reorder buffer (ROB), the load/store queue
(LSQ) andthephysical registers) andtheon—chip caches. As
indicated in [23], as much as 55% of the total power
dissipation occurs in the dynamic instruction scheduling
logic, while 20% to 35% (and sometimeshigher) of thetotal
power isdissipated within the on—chip cache hierarchy. Itis
therefore not surprising to see a fair amount of recent
research being directed towards the reduction of the energy
dissipation within these components.

In this paper we introduce a technique for reducing the
power dissipation within the I1Q, the LSQ and theROB ina
coordinated fashion. The basic approach is a technology
independent solution at the microarchitectural level that
divides each of the IQ, the LSQ and the ROB into
incrementally allocable partitions. Such partitioning
effectively permitsthe active size of each of theseresources
(asdetermined by the number of currently active partitions)
to be varied dynamically to track the actual demands of the
application, and forms the basis of the power savings
technique presented here. We also show how simple
circuitdevel implementation techniques can be naturally
augmented into our multi—partitioned resource allocation
scheme to achieve substantial power savings without any
compromise of the CPU cycletime. Our basic approach for
reducing the power dissipation within the 1Q, the LSQ and
the ROB is orthogonal to the approach taken by the more
traditional techniques that use voltage and frequency
scaling; suchtechniquescanbedeployedinconjunctionwith
our scheme.

The technique proposed here uses sampled estimates of
the occupancies of the 1 Q, the L SQ and the ROB to turn off
unused (i.e. unall ocated) partitionswithin theseresourcesto
conserve power. Astheresourcedemandsof theapplication
go up, deactivated partitionsareturned back onto avoid any
undue impact on performance. The proposed approach is
thus effectively a feedback control system that attemptsto
closely track the dynamic demands of an application and
allocates* just theright amount of resourcesat theright time”
to conserve power.

Recent approachesfor power energy reduction based on
the broad notion of feedback control, asdiscussed in Section



2, are based on the use performance metrics like the IPC,
commit rates from newly allocated regions of aresource or
sensed temperatures as well as continuous measures of the
occupancy of asingleresource (hamely thel Q). Rather than
use IPCs and other measures of performance such as cache
hit rates, misprediction rates or physical parameters like
sensed temperature to drive dynamic resource allocations
and deallocations, we use the immediate history of actual
usages of the IQ, the LSQ and the ROB to control their
effective sizesindependently. Theactual resourceusagesare
not monitored continuously but sampled periodically,
keeping hardware requirements simple. Resources are
downsized, if need be, at theend of periodic updateintervals
by deall ocating one or more partitions and turning them off.
Additionally, resource allocations are increased before the
end of an update period if theresourcesarefully utilizedand
cause instruction dispatching to be blocked for a
predetermined number of cycles. Thisrelatively aggressive
strategy for increasing resource alocation alows us to
severely limit the performance loss and yet achieve
significant power savings.

Therest of the paper is organized asfollows. Section 2
describes related work and the motivations for the present
work. Section 3 describesthe superscal ar datapath assumed
for this study and identifies sources of power dissipationin
themajor componentsof thedatapath suchasthel Q,theROB
and the LSQ. Our simulation methodology is described in
Section 4. Section 5 explainsthe complicationsinvolvedin
resizing of datapath componentsingeneral. In Section6, we
study the correlations among the occupancies of thelQ, the
ROB, and the LSQ. Our resizing strategy is described in
Section 7. In Section 8 we discuss the simulation results,
followed by our conclusionsin Section 9.

2. Related Work and Motivations

Thetechnique presented in this paper for reducing power
dissipation in the instruction scheduling logic hinges on the
estimation of resource occupancies. The resource usages
and the dynamic behavior of the SPEC 95 benchmarkswere
reported in [21] using the well-used Simplescalar simulator
[8], where the reorder buffer, the physical registers and the
issuequeueareintegratedintoanunified structure, calledthe
Register Update Unit (RUU). The correlations among the
IPC, RUU occupancy, cache misses, branch prediction,
value prediction and address prediction were also
documented in [21]. We extend the study of [21] to
architectures wheretheissuequeueandthereorder bufferare
implemented as distinct resources, as in most practical
implementations of superscalar datapaths. Weal sostudy the
correl ationsamong theusageof theseresources. Our studies
show why a distributed, dynamic allocation of these
resources is needed for reducing the power/energy
dissipation (Section 6).

Dynamic resource allocations within a single datapath
component (thelQ) for conserving power was studied in[9,
10, 12]. Specifically, in [9, 10], the authors explored the
design of an adaptive issue queue, where the queue entries
were grouped into independent modules. The number of

modules allocated was varied dynamically to track the ILP;
power savingswas achieved by turning off unused modules.
In[9, 10], the activity of an issue queue entry wasindicated
by its ready bit (which indicates that the corresponding
instruction isready for issueto afunction unit). Thenumber
of activeissue queue entries, measured on acycle-by—cycle
basi s, wasused asadirect indication of theresourcedemands
of the application. We believe that resource occupancies
provide amoreaccurate measure of theresourceneedsof the
program rather than the number of ready entries within the
active modules of the IQ. Our simulations show that the
number of ready entries is considerably lower than the
number of allocated entries in the IQ on the average.
Consequently, downsizing the 1Q based on the ready bitsis
very aggressive and the performance drop for some
applications may befairly significant, ascanbeseenfromthe
resultsshownin[10]. Inaddition, thenotion of ready entries
isonly applicable to the Q. Dynamic allocation withinthe
ROB and the LSQ requires the consideration of alternative
strategies.

The performance drop reported in[9, 10] waslimited by
monitoring thel PC and ramping uptheissuequeuesizeif the
measured | PC was lower than the IPC obtained by previous
measurement by a constant factor. This works under the
assumption that the only cause of the IPC drop isthe lack of
datapath resources. Inreality, thel PC drop may beattributed
to a variety of other factors, including the higher branch
misprediction rate and the higher I-cache missrate. Figure
1 demonstrates the behavior of two SPEC 95 floating point
benchmarks, where the IPC drop is caused by different
reasons. Measurementsof thel PCs, theaveragel Qand ROB
occupancies and the |-cache miss rates were taken every 1
million cycles. Each of these measurements reflect the
benchmark’ s behavior within the most recent window of 1
milion cycles. Results are shown for the execution of 200
million instructions after skipping the first 200 million for
two benchmarks. The configuration of thesimulated system
used was as given in Section 4. The resource upsizing
strategy proposedin[9, 10] isanadequateresponsetothel PC
drop for the hydro2d benchmark (Figure 1 (b)), where the
drop is caused by the transition from a period of high-ILP
execution to alow—ILP one. Here, the datapath resource
usage increases due to the data dependencies over the
instructions with long latencies and the allocation of new
resources is justified. In contrast, the IPC drop during the
execution of fpppp benchmark is mostly caused by the
increased percentage of the 11—cache misses (Figure 1(a)).
The resources remain underutilized and ramping up the
resource sizes in such situation results in higher power
dissipation without any impact on performance. Similarly,
when the branch misprediction rate increases, more
instructions are flushed from the I Q, the ROB and the L SQ,
again resulting in the underutilization of these resources.

To summarize, the IPC drop alone (asused in[9, 10]) is
not asufficient driver for the resizing decision. Inthe very
least, it must be used in combination with the I—cache miss
rate and the branch misprediction rate statisticsand possibly
other metrics. In this paper, we monitor the resource
undercommitment by recording the number of cycleswhen
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Figure 1. Dynamic behavior of two SPEC95 floating point benchmarks

dispatch blocks because of the non-availability of free
entrieswithinthel Q, theROB ortheL SQ. Thisinformation,
directly indicating the increased resource demands, is then
used to drive the upsizing decision.

In[12], Folegnani and Gonzal ez introduced aFIFO issue
gueue that permitted out—of—order issue but avoided the
compaction of vacated entrieswithin the valid region of the
gueuetosavepower. Thequeuewasdividedintoregionsand
the number of instructions committed from the
most—recently allocated issue queue region in FIFO order
(called the “youngest region”) was used to determine the
number of regions within the circular buffer that was
allocated for the actual extent of the issue queue. To avoid
a performance hit, the number of regions allocated was
incremented by one periodically; in-between, also at
periodic intervals, a region was deactivated to save
energy/power if the number of commits from the current
youngest regionwasbel ow athreshol d. Theenergy overhead
of thecontrol logicfor doingthisresizingwasnot madecl ear.
Additional energy savings were documented by not
activating forwarding comparators within entries that are
ready for issue or entries that are unallocated. In[17], we
have introduced an issue queue design that achieves
significant energy savings using a variety of techniques,
including the use of zero—byte encoding, comparators that
dissipate energy onamatch and aformof dynamicactivation
of the accessed regions of the issue queue using bit-line
segmentation.  Many of the techniquesusedin [17] can be
employed in conjunction with the scheme proposed in this
paper to achieve a higher level of power savings.

In redlity, the usage of multiple resources within a
datapath is highly correlated, as seen from the results
presented inthispaper (andinsomeof thework cited below).
The alocation of multiple datapath resources to conserve
power/energy was first studied in the context of a
multi—clustered datapath (with non—replicated register files)
in [25], where dispatch rates and their relationship to the
number of active clusterswerewell-documented. A similar
but amoreexplicit study wasrecently reportedin [5], for the
multi—clustered Compaq 21264 processor with replicated
register files. Thedispatch ratewasvaried between 4, 6 and
8 to alow an unused cluster of function units to be shut off
completely. Thedispatchratechangesweretriggered by the
crossing of thresholds associated with thefloating point and
overall IPC, requiring dispatch monitoring on a
cycle-by—cycle basis. Fixed threshold valuesasusedin[5]
were chosen from the empirical data that was generated
experimentally.  Significant power savings within the
dynamic scheduling components were achieved with a
minimum reduction of the IPC. The dynamic allocation of
thereorder buffer —amajor power sink —wasleft compl etely
unexplored in this study.

In [15], the dispatch/issue/commit rate (“effective
pipelinewidth”) and thenumber of reorder buffer entries(the
unified RUU size of the Simplescalar simulator) was
dynamicaly adjusted to minimize the power/energy
characteristics of hot spotsin programs. Thiswas done by
dynamically profiling the power consumption of each
program hot spot on all viable ROB size and pipelinewidth
combinations. The configuration that resultedinthelowest
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Figure 2. Superscalar datapath where ROB slots serve as physical registers

power with minimum performance loss was chosen for
subsequent executions of the same hotspot. A 25%dropin
the energy/instruction was reportedly achieved with this
technique, as seen in the apparently preliminary results of
[15]. Critical implementation details, including the
overhead of hardware profiling and the manner in which
optimum configurations are stored and reused were not
discussed. Thetechniquepresentedinthispaper, incontrast,
does not use dynamic profiling and instead adapts the
datapath resources to match the demands of the program.

In[13], resourceusagesare controlledindirectly through
pipeline gating and dispatch mode variations by letting the
Operating System dictate the IPC requirements of the
application. Anindustry standard, Advanced Configuration
and Power Interface (ACPI) defining an open interface used
by the OS to control power/energy consumption is also
emerging[1]. Alongsimilarlines, wearecurrently exploring
a compiler—directed approach for dynamically alocating
datapath resources based on the | PC requirements, using the
basic infrastructure described in this paper.

In [4], a dynamic thermal management scheme was
investigated to throttle power dissipation in the system by
using several response mechanisms during the periods of
thermal trauma. These included voltage and frequency
scaling, decode throttling, speculation control and I—cache
toggling. Some of thesetechniquesindirectly controlledthe
resource usages but did nothing to vary the individual
resource allocations. Consequently, they are of limited use
in reducing leakage dissipations directly. Although not
reported here, the technique proposed in this paper reduces
suchleakagedissipations, asit shutsdownunused partsof the
|Q, the LSQ and the ROB.

The reconfiguration of cachesand thememory hierarchy
inreducing theenergy dissipationwereexploredin[2, 6] and
represent approaches for reducing energy dissipation by
matching the characteristics of some or all of the memory
hierarchy totrack theapplication’ susage. Dynamicresource
allocation within cacheswere studied in [6], [16] and [24].
More general forms of dynamically allocating cache and
storage resources were proposed in [14]. As we focus on
dynamic resource allocation directly connected with the
instruction scheduling logic, we omit discussions on these

techniques in this paper.

3. Superscalar Datapath and Sour ces of
Energy Dissipation

Figure 2 depicts the superscalar datapath that we
considered for thisstudy. Here, the ROB entry set up for an
instruction at thetimeof dispatch containsafield toholdthe
result produced by theinstruction —thisservesastheanalog
of aphysical register. We assumethat each ROB entry may
hold only a32-hit result, thusrequiring the all ocation of two
ROB entriesfor aninstruction producing adouble—precision
value. A dispatched instruction attempts to read operand
values either from the Architectural Register File (ARF)
directly (if the operand value was committed) or
associatively from the ROB (from the most recently
established entry for an architectural register), in case the
operand value was generated but not committed. Source
registersthat contain valid dataareread out intothelQ entry
for theinstruction. If asource operand isnot available at the
time of dispatch in the ARF or the ROB, the address of the
physical register (i.e., ROB dot) is saved in the tag field
associated with the source register in the 1Q entry for the
instruction.

When a function unit completes, it puts out the result
produced a ong with the address of the destination ROB slot
for this result on a forwarding bus which runs across the
length of the IQ and the LSQ [19]. An associative tag
matching processisthen used to steer theresult to matching
entrieswithinthel Q. Sincemultiplefunction unitscomplete
in a cycle, multiple forwarding buses are used; each input
operand field within an 1Q entry thus uses a comparator for
each forwarding bus. Examples of processors using this
datapath stylearethelntel Pentium Il and Pentium [11. [18].

For every instruction accessing memory, anentry isalso
reserved in the LSQ at the time of instruction dispatch. As
the addressused by aload or astoreinstructioniscal cul ated,
thisinstruction isremoved fromthe 1Q, even if the value to
be stored (for store instructions) has not yet been computed
at that point. Insuch situations, thisvalueisforwardedtothe
appropriate L SQ entry assoon asit isgenerated by afunction
unit. All memory accesses are performed from the LSQ in
program order with the exception that | oad instructions may



bypass previously dispatched stores, if their addressesdo not
match. If the address of a load instruction matches the
address of one of the earlier storesin the L SQ, the required
value can be read out directly from the appropriate LSQ
entry.

The 1Q, the ROB and the LSQ are essentialy
implemented as large register files with associative
addressing capabilities. Energy dissipationtakesplaceinthe
issue queue in the course of: () establishing the |Q entries
for dispatched instructions; (b) forwarding results from the
FUstothematching 1Q entries, (c) issuinginstructionstothe
FUsand, (d) flushingthel Q entriesfor instructionsalong the
mispredicted paths.

Energy dissipations take place within the ROB during
reads and writesto theregister filethat implementsthe ROB
or when associative addressing is used. Specifically, these
dissipations occur inthe course of: (a) establishingthe ROB
entries, (b) reading out part of aROB entry (when memory
instructions are moved to the LSQ or when the valid data
value for the most recent entry for an architectural register
isread out), (c) reading out all of aROB entry (at thetime of
committing an instruction), (d) writing results from FUs to
the ROB entries and, (€) flushing the ROB entries on
mispredictions or interrupts.

Energy dissipations occur within the LSQ in the course
of: (a) establishing a LSQ entry, (b) writing computed
effective addressesintoal SQentry, (c) forwardingtheresult
of apending storeinthe LSQ to alater load, (d) forwarding
the datain aregister to be stored to a matching entry in the
LSQ and (e) initiating D—cache accesses from the LSQ.

4. Simulation M ethodology

The widely—used Simplescalar simulator [8] was
significantly modified to implement true hardware level,
cycle-by—cycle simulation models for such datapath
components as the 1Q, the ROB, the LSQ, register files,
forwarding interconnections and dedicated transfer links.
The Simplescalar simulator lumps the ROB, physica
register files (PRFs) and the1Q together into RUUSs, making
it impossible to directly assess switching activities within
these components and to make independent resizing
decisions for each structure. Quite unlike the
implementation usedin Simplescal ar (and power estimation
tools like Wattch [3] and the onein [11], which are based on
Simplescalar), the number of 1Q entries and ROB entries—
aswell asthe number of portsto these structures— are quite
disparate in modern microprocessors, making it imperative
to use distinct implementations of at least the ROB and the
IQ in the simulator for accurately estimating the total chip
power as well as the power dissipated by the individual
components.

For estimating the energy/power for the key datapath
components, the event counts gleaned from the simulator
were used, along with the energy dissipations for each type
of event described in Section 3, asmeasured from the actual
VLSI layouts using SPICE. CMOS layouts for the 1Q, the
ROB and the LSQ in a 0.5 micron 4 metal layer CMOS

process (HPCM OS-14TB) wereusedto get an accurateidea
of the energy dissipations for each type of transition. The
register files that implement the ROB, the 1Q, and the LSQ
were carefully designed to optimize the dimensions and
allow for the use of a300 MHz clock. A Vdd of 3.3 valtsis
assumed for all the measurements.

Parameter Configuration

Machinewidth 4—wide fetch, 4-wide issue, 4-wide commit

Window size 32 entry issue queue, 128 entry reorder buffer,
32 entry load/store queue

L1 I-cache 32 KB, 2-way set—associative, 32 byteline,

(I1—cache) 2 cycleshit time

L1 D-cache 32 KB, 4-way set-associative, 32 byte line,

(D1-cache) 2 cycleshit time

L2 Cache 512 KB, 4-way set—associative, 64 byte line,

unified 4 cycles hit time.

BTB/Predictor 1024 entry, 2—-way set—associative, hybrid

gshare, bimodal

128 bit wide, 12 cycles first chunk,
2 cycles interchunk

TLB 64 entry (1), 128 entry (D),
4-way set—associative, 30 cycles miss latency

FUsand Latency | 4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19),
(total/issue) 2 Load/Store (2/1), 4 FP Add (2), 1FP Mult (4/1)
/ Div (12/12) | Sqrt (24/24)

Memory

Table 1. Architectural configuration of a
simulated 4—way superscalar processor

Modern datapath implementations use more aggressive
technol ogies compared to the 0.5 micron processused inthis
study. At small feature sizes, leakage power becomes
significant — our dynamic resource allocation techniques
will also reduce such leakage dissipations. Furthermore,
with small feature sizes, therelatively higher contribution of
wire capacitances also increases dynamic dissipations
commensurately.  Our dynamic  resource allocation
technique will also work better in this scenario, since the
incremental resource allocation/deallocation mechanisms
directly limit the impact of wire lengths by activating
partitions selectively. Theresultsreported in this paper are
thus expected to be quite representative of what one would
observe in implementations that use state-of—the-art
process.

The configuration of a 4—-way superscalar processor
studied inthispaper isshownin Tablel. Inaddition, wealso
performed the evaluation of a more aggressive 6-way
machine. For the processor using a6-way dispatch, 6-way
issue and 6—-way commit, we assumed the | Q and the L SQ of
64 entries, the ROB of 256 entries, | 1-cache of 128 Kbytes,
D1—cache of 64 Kbytesand L 2 cache of 1 Mbytes. Wealso
assumed that 6integer ADD, 6floating point ADD, 2integer
multiply/divide, 2 floating point multiply/divide and 3
L oad/Store FUswere present. Thelatenciesof FUsand the
rest of the simul ation parameterswere unchanged compared
to a4—way machine from Table 1. For all of the SPEC 95
benchmarks, the results from the simulation of thefirst 200



million instructions were discarded and the results from the
execution of the following 200 million instructions were
used. Specified optimization levels and reference inputs
were used for all the ssmulated benchmarks.

5. Resizing Datapath Components:. the
Requirements

Inthissection, wediscussthe hardwarefacilities needed
to support incremental resource allocation and deallocation
and the relevant constraints.

5.1. Multi—Partitioned Resources

The organization of the 1Q alowing for incremental
allocation and deallocationisdepictedin Figure3. TheROB
andtheL SQ arepartitionedinasimilar fashion. ThelQ, the
ROB and the LSQ are each implemented as a number of
independent partitions. Each partitionisaself—standing and
independently usable unit, complete with its own
precharger, sense amps and input/output drivers. Using
separate prechargers and sense amps for each partition (as
opposed to shared prechargers and sense ampsfor all of the
partitions) makesit possibleto usesmaller, simpler and more
energy—efficient sense amps and prechargers. Partitioning
in this manner alone — independent of dynamic resource
allocation —may result in some energy savingsfrom the use
of smaller and simpl er sensingand precharging mechanisms,
but thiscan beviewed asnatural consequenceof partitioning
these resources for dynamic allocation.

A number of partitions can be strung up together to
implement alarger structure. Theconnection running across
the entries within a partition (such as bit-ines, forwarding
bus lines etc.) can be connected to a common through line
(shownontherightin Figure 3) through bypassswitches. To
add (i.e., alocate) the partitionto the1Q and thus extend the
effective size of the 1Q, the bypass switch for a partitionis
turned on, and the power supply to the partition is enabled.
Similarly, the partition can be deall ocated by turning off the
corresponding bypass switches. In addition, power to the
bitcells in the shut—off partitions can be turned off to avoid
leakage dissipation. We had no opportunity to observe the
savings in leakage dissipation coming from dynamic
resource alocation for the technology used in the current
study, where leakage is extremely small. With smaller
feature sizes and the use of lower supply voltages, leakage
dissipation can besignificant. Dynamicresourceallocation,
as introduced here, can reduce leakage dissipation by
powering down unalocated partitions. Entries can be
allocated in the |Q — across one or more active partitionsin
any order; an associative searching mechanism is used to
look up free entries at the time of dispatching.

A subtle difference in shutting off segments of the
bit-ines and the forwarding buses should be noted. For the
forwarding bus lines, segments in all currently active
partitions should be connected to the through line, as
forwarding can take place to an entry within any one of the
active partitions. In contrast, only the segment of abit line
within the partition that contains an entry that is being read
out or written to have to be activated; there is no need to

_—— Throughlines  —_
precharger array
Partition 0 ASBF());::]'[IVB Non-associative part
i -
bypass switch array
\
precharger array bypass
it switch
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Figure 3. The Partitioned I1Q

connect the bit-ine segments of all active partitions to the
through line.  This latter technique, called bit-ine
segmentation [17], isroutinely used within RAMsto reduce
energy dissipationinthe course of readsand writes. Wewill
assume that bit-line segmentation is in use for the
multi—partitioned resources.

Thepartitionsizes(i.e., thenumber of entrieswithineach
partition) for thel Q, the L SQ and theROB haveto bechosen
carefully. Makingthepartitionsizessmaller allowsfor finer
grain control for resource allocation and deallocation but
small partitionsizescanleadto higher partitioning overhead
in the form of an increase in the layout area and a decrease
in the energy savings. Optimal partition sizes thus exist for
each of the resources under consideration. For the
technology used, theoptimal partition sizesare: 8 entriesper
partition for the 1Q and the LSQ and a partition size of 16
entries for the ROB.

5.2. Resizing Constraints

Theactual downsizing of theissue queuemay not always
be performed immediately after the resizing decision is
made and is deferred till all instructions areissued from the
|Q partition that isto be deactivated. The duration between
the time a decision is made to downsize and the time of the
actual deallocation of apartitioniscalled atransition period.
Instruction dispatching is blocked during the transition
periods if the 1Q entry allocated for the new instruction
belongs to the partition that will become inactive.
Otherwise, dispatches continue to the active IQ partitions.

The dynamic resizing of the ROB and the LSQ requires
additional considerations because of the circular FIFO
nature of these structures. We discuss these considerations
below for the ROB.



The ROB isacircular FIFO structure with two pointers
—theROB_tail andthe ROB_head. TheROB_tail indicates
thenext freeentry inthe ROB and isused during instruction
dispatching to locate and establish the entries for the
dispatched instructions. The ROB_head is used during the
commit stageto updatethearchitectural registersinprogram
order. Figure 4 depictsa ROB with four partitions and also
shows the some possible dispositions of the ROB_head and
theROB _tail pointersat thetimethe allocation/deall ocation
decisionismade. Thepointer CS(Current Size) indicatesthe
current upper bound of theROB. Thepointer NS(New Size)
specifiesthenewly established upper bound of theROB after
potential alocation or deallocation of one partition. The
partition that is to be allocated/deallocated is shown as a
dashed box.

To preserve the logical integrity of the ROB, in some
situations partitions can be allocated and deallocated only
when the queue extremities coincide with the partition
boundaries. To deallocate a partition, two conditions have
to be satisfied after the decision to downsize has been made.
First, asin the case of theissue queue, all instructions from
the partitionto bedeallocated must commit. Second, further
dispatches must not be made to the partition being
deallocated.

Deallocation scenarios areillustrated in Figure 4(a). In
the situation shown in the top part, deallocation is delayed
until the ROB _tail reachesNS and the ROB_head becomes
zero. Notice, that theROB_head wrapsaround twicebefore
the deallocation can occur. Thisis, of course, an extreme
case, asit is rare for the ROB occupancy to be very high
immediately prior to the instant of reaching a downsizing
decision. Slight variations of this specific case can also be
considered, wherethe ROB _tail pointsto theleft of NS. In
that case, the ROB_head wraps around only once beforethe
deallocation. The bottom part of Figure 4(a) is the case,
wherethe deall ocation of the partition marked by the dashed
box can be performed immediately.

NS CS CS ;S
| |
J —_d
0 0 ‘

ROB_tail ROB_head ROB_tail ROB_head

NS js iS

l._.lq_zw

R | J—
0 0
ROB_head ROB._tail ROB_head ROB_tail
(a) Deallocation (b) Allocation
Ol anocated [ free

Figure 4. ROB resizing scenarios

To allocate aROB partition, the value of the ROB_head
pointer must be less than the value of the ROB _tail pointer
to preserve the correct placement of the newly dispatched
instructions into the ROB. Allocation scenarios are
illustrated in Figure 4(b). The top part shows the situation

where the alocation is deferred till the value of the
ROB_head pointer reaches the value of zero. The bottom
part shows the case where the allocation can be performed
immediately. Moredetailsaregivenin [20].

6. Resource Usagein a Superscalar Datapath

We studied the correlations among the occupancies
(number of valid entries) of the 1Q, the ROB and the LSQ
using our experimental setup. Representativeresultsforone
integer (ijpeg) and one floating point (fpppp) benchmark
fromthe SPEC 95 suiteareshowninFigures5and 6. Figures
5(a) and 6(a) show the occupanciesof thethreeresourcesfor
fpppp and ijpeg benchmarks respectively, and Figures 5(b)
and 6(b) show the ratios of these occupancies.
Measurements were taken for 200 million committed
instructions after skipping the first 200 million. For each
benchmark, we recorded the average occupancies after
every 1 million committed instructionsand then graphed the
results.

As seen from these graphs, the occupancies of the three
resources are positively correlated. This suggests that
resizing only one datapath resourceisinsufficient —in fact,
if the sizes of other resources are not dynamically adjusted
aswell, these resources will remain overcommited most of
thetime. Another observation from Figures’5 and 6 isthat
itisdifficult, if notimpossible, to adjust thesizesof multiple
resources by monitoring oneof theseresourcesandrescaling
the number of active partitions within other resources
proportionately. Thisis primarily because the ratios of the
resource occupancies also change drastically across a
program’s execution.  For example, for the fpppp
benchmark, the ratio of the ROB occupancy to the 1Q
occupancy varies between 4 and 12 in the time interval
shown (Figure 5(b)). One can consider resizing schemes,
where the actual resource occupancies and their ratios are
periodically sampledfor ashort durationandtheappropriate
prescaling coefficients are then set. However, this would
increase the complexity of the control logic. For these
reasons, we decided to independently monitor individual
occupancies of thel Q, theROB andtheL SQ. Theoccupancy
information wasusedtodynamically adjust thesizeof thel Q,
the ROB and theL SQ independently. Inthenext section, we
explain the details of our resizing strategy.

7. Resource Allocation Strategies

Two resizing strategies are used —one for downsizing a
resource (turning off apartition) and the other for upsizing
theresource(addingapartition). Our strategiesaredescribed
for the 1Q only; the strategies for the ROB and the LSQ are
similar, provided that adequate considerations are made for
thecircular nature of the ROB and the LSQ, asdiscussedin
Section 5.

7.1. Downsizing Strategy

Thedownsizing of the Q isconsidered periodically —at
the end of every 1Q update period (IQ_update period).
During this period, the 1Q occupancy, as measured by the
number of allocated entrieswithintheactive partitionsof the
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Figure 6b. Ratios between the occupancies of different datapath resources (ijpeg)

1Q, issampled several timesat periodicintervals. Thevalue
of the sampling interval (IQ_sample period) isan integer
divisor of IQ_update period. Theaverageof these samples
is taken as the active 1Q size (maintained in the variable
(active 1Q size) in the current update period. Both
IQ_update period and 1Q_sample period were chosen as
powersof twotolet theinteger part and thefractional part of
the computed 1Q occupancy be isolated easily in the
occupancy counter. This avoids the use of a full-fledged
division logic. Figure 7 depicts the relationship between
IQ_update period and 1Q_sample period.

At the end of every 1Q update period, we compute the
difference, diff=current 1Q _size-active 1Q size, where
current_|Q_sizeisthe size of theissue queue at that instant.
If diff islessthanthel Qpartitionsize(1Q_p_size), noresizing
isneeded. If, however, diff isgreater (or equal) than the1Q
partition size, two scenarios are possible depending on
whether an aggressiveor aconservativedownsizing strategy
is implemented. In aconservative scheme, at most one 1Q
partition can be deactivated at a time. In an aggressive
downsizing scheme, the maximum allowable number of

partitions, max_p, as obtained directly from diff
(max_p=floor (diff/IQ_p_size)), are deallocated.

The variable active 1Q _size provides a reasonable
approximation of the average | Q occupancy withinthemost
recent |Q update period. Thedifference between the current
size of the 1Q (current_IQ_size) and active 1Q _size in the
update period indicatesthe degree of overcommited (that is,
underused or unused) IQ partitions. ThelQ is scaled down
insizeonly if thesampling of thel Q occupancy indicatesthat
the 1Q partitions are overcommited. By thus downsizing
resources only when resource partitions are overcommited
we minimize the penalty on performance.

| IQ_SAMPLE_PERIOD |

. R R

Llllll’l

IQ_UPDATE_PERIOD

cycles

Figure 7. Sample period and update period
used for the 1Q downsizing



At the end of every 1Q sample period, we record the 1Q
occupancy by using bit—vector countinglogicfor eachactive
partition and then adding up these counts. The fact that this
counting isperformed only at the end of the sampling period
(as opposed to maintaining a dynamic count on a
cycle-by—cycle basis) suggeststhat the energy dissipatedin
estimating the IQ occupancy is tolerably small. A rough
estimation indicates that the monitoring/counting logic
expends lessthan 1% of thetotal power dissipatedinthelQ,
the ROB and the L SQ combined.

7.2. Upsizing Strategy

The resizing strategy implemented to scalethe |Q size
back up once the application begins to demand more
resources effectively usestherate at which dispatches block
duetothe non—availability of entrieswithinthe Q. Weuse
the 1Q overflow counter to count the number of cycles for
which dispatch is blocked because a free entry is not
available in the IQ. This counter is initialized to 0 at the
beginning of every IQ update period and also immediately
after making additional resource allocations within the 1Q.
The reason for resetting the counter in the latter instanceis
described in Section 7.3. Once the value of this counter
exceeds a predetermined 1Q overflow threshold,
(maintained inthevariable 1Q_overflow_threshold), oneof
the currently deactivated |Q partitions, if any, isturned on,
effectively upsizing the 1Q. Note, that additional resource
allocations cantake placewell beforetheexpiration of an1Q
update period, to react quickly to the increased demands of
the program. The upsizing strategy is thus more aggressive
than the downsizing strategy.

7.3. Other Considerations

The main reason for taking multiple samples within a
single update period isto get abetter estimate of theaverage
resource usagewithinthisupdateperiod. Anupsizing within
an update interval can distort this average quite drastically
andresultinanerroneousdownsizing at theend of thisupdate
period. Such a situation causes instability in the control
mechanism used for our scheme. Itisfor thisreasonthat we
abandon the current update period and start a new update
cycle immediately after resizing up.

For similar reasons, during the transition periods
immediately prior to an actual downsizing, no statistics are
collected (all counters controlling resizing arefrozen at 0).

By varying the values of 1Q_overflow_threshold and
IQ_update period, either of the upsizing or the downsizing
processes can be made more aggressive depending on the
design goals as dictated by power (downsizing) /
performance (upsizing) tradeoffs.

8. Results and Discussion

To estimate the power savings effects of the resizing
mechanism proposed in this paper, we evaluated three
configurations of the 1Q, the ROB and the LSQ. These are
asfollows:

The base case, B: Here, each resource is a monolithic
structure, asused in traditional datapath designs.

Basecasewith bit-inesegmentation, S: Here, thebase
case (B) isaugmented with the bit-ine segmentation [17] —
awell-known power savings technique designed to reduce
the effective bit-ine capacitance. The size of each segment
parallels the partition sizes chosen for dynamic allocation.
Weanalyzed thisconfiguration becausewewanted toisol ate
the effects of bit-ine segmentation —anatural techniqueto
be used with the partitioned organization and resizing. On
the averageacrossall SPEC 95 benchmarks, theorganization
S saves 13.2% in power dissipation within the 1Q, 37.1%
withintheROB, and 8.7% withintheL SQascomparedtothe
organization B.

Partitioned organization with resizing, R: Here, the
IQ, the ROB and the LSQ are implemented as shown in
Figure 3 and as described in Section 5.

Our experimentsshowed that thebehavior of our resizing
scheme is most sensitive to the changes in the overflow
thresholds. Table 2 shows performance degradation caused
by resizing in the form of dropsin the|PC. Also shownin
thistablearepower savingsand averageactivesizes(humber
of entriesthat areturned on) of thel Q, theROB and the L SQ
for various values of overflow_threshold, common to all
these components. Results are averaged over all SPEC95
benchmarks. For these simulation runs, we fixed the value
of update period for all threeresourcesat 2K cycles. This
value hasto be chosen in an optimal fashion. Making it too
large would cause variations in the resource usages to go
unnoticed. Making it too small would resultinaprohibitive
resizing overhead. We also studied the effects of various
update periods on our resizing scheme and results are
presented later in this section. The value of sample_ period
was chosen as 32 cycles, allowing for the acquisition of 64
occupancy samples in one update period. In this and the
following tables, OT stands for “overflow threshold”, UP
stands for “update period”, PS stands for “ power savings’,
and “size” specifies the average active size of the IQ, the
ROB or the LSQ as measured by the number of activated
entries.

oT IPC drop (%) 1Q size ROB size LSQ size
128 0.58 23.0 78.7 22.9
256 1.89 20.2 67.6 20.2
512 4.86 17.2 56.8 17.5
1024 9.63 14.2 46.4 14.6
2048 13.97 119 37.6 12.3

Table 2. Averagenumber of activeentrieswithinthe
IQ, the ROB and the LSQ and performance
degradation for various overflow thresholds

As seen from the data in Table 2, lower values of
overflow_threshold result in virtually no performance loss,
but the average number of turned—on entriesand thus, power
savings potential, are limited. For larger values of
overflow_threshold, the potential power savings can be
significant, but this comes at a cost of noticeable
performance drop—ashigh as14%. Wedid not perform any
experiments for the values of overflow_threshold less than



128, because the average performancelosswasalready well
below 1% in this case. Decreasing the vaue of
overflow_threshold further would have an adverse effect on
energy dissipation (more partitions will be on) with no
further performance improvement. The maximum possible
value of overflow_threshold for a resource is equal to the
value of update period used for that resource (2048 in our
experiments). Inthiscase, theresourceupsizingistriggered
if, during the update period, resource overflows are
encountered every cycle. Thus, weeffectively exhausted the
space of all reasonable values of overflow threshold for a
given updateperiod (considering, of course, that thesevalues
are powers of two for implementation reasons, as discussed
above). Our experimentsshowedthat theoverflowthreshold
value of 512 gavethe optimal power/performance trade—off
for themajority of the simulated benchmarks. Table3shows
the performance of the resizing scheme for individual
benchmarks for OT=512. Power savings are given as an
improvement of the R configuration over the B
configuration.

Higher power savings are achieved for the integer
benchmarks, because they are (generaly less
resource-hungry than the floating point benchmarks and
present more opportunitiesfor downsizing. For thelQ, the
lowest savingsarefor hydro2dandmgrid benchmarks—these
usethe full 1Q most of thetime. For the majority of integer
benchmarks, only 2 of the 4 available partitions are
predominantly turnedon, resultingin power savingsof about
48% onthe average. Noticealso, that power savingsare not
always proportional to the active size of the resource.

Benchmark | IPC 1Q 1Q ROB |ROB [LSQ [LSQ
dropw |size [PS% |[size PS% |size |PS%

compress | +2.5 147 (458 |406 |619 |80 67.2

vortex 83 121 |483 | 338 |67.1 |204 |428
m8sksm | 3.6 163 |424 | 308 |647 |143 |484
gce 33 121 |504 |256 |685 [120 |526
) 19 134 |510 |27.1 | 694 |109 |524
peg 65 199 |435 |481 |658 |1690 |374
i 38 141 |473 | 306 |658 |149 |488
perl 0.0 139 |468 | 365 |633 |182 |4L11
turbad 92 209 |459 |6L0 |637 |148 |499
ppPP 0.9 112 |425 |386 |613 |144 |40.7
aps 26 251 |320 | 1164 |455 |282 |149
applu 148 |160 |505 |650 |640 |162 |4L0
hydrozd | 2.2 250 |293 | 1234 |410 |260 |124
mgrid 04 | 270 |252 |1221 |422 |307 |124
SuZcor 8.0 140 |494 |298 |672 |128 |513
Swim 20 206 |360 |891 |481 |276 |17.0
tomcatv | 7.0 143 |482 |379 |671 |124 |581
waves 126 |186 |474 |660 |66.7 |144 |585

Int Avg. 35 146 (469 |341 |658 |146 |488
FP Avg. 6.0 193 (406 |750 |56.7 |19.8 |356
Average 4.9 172 (434 |568 |60.7 |175 |415

Table 3. Behavior of SPEC 95 benchmarks for
overflow_threshold=512 and update_period=2048

Sometimes, power savings may be higher for the
benchmarks with more active partitions (applu) than for the
benchmarks with fewer active partitions (fpppp). Thisis
because of two reasons. First, the IPC drop of applu isvery
high (in excess of 14% — the highest of al simulated
benchmarks), resulting in a longer execution time and the
reduction of energy dissipated per cyclecomparedtothebase
case. The same argument can be made for the dispatch and
issuerates. Second, power savingsdepend on the number of
comparators that are used during forwarding. Inour power
estimations, we assumed that only the comparators
associated with the invalid slotswithin valid 1Q entries (in
other words, slotswaiting for aresult) are activated during
forwarding. The average number of such activated
comparators and the percentage of power dissipated in this
process varies for different benchmarks. Resizing, as used
in the context of segmented bit-ines, saves relatively less
power during forwarding than during non—associative
reads/writes at the timesof issue/dispatch. Thus, the power
savings achieved within the resizable 1Q is not only
dependent onthe size of the active portion of thelQ, but also
is a function of the IPC, dispatch rate and and program’s
characteristics.

Similar observations are applicablefor the ROB and the
L SQ. Thepercentageof power savingsishigher fortheROB,
because dissipations due to the associative addressing are
relatively smaller for the ROB than for the |Q and the L SQ.
Note that for all of the benchmarks except for applu and
waveb, performance loss because of dynamic resizing is
below 10%, with the average being less than 5% acrossthe
entire benchmark suite. We observed a slight performance
improvement for compress95. Thisis because compress95
has a low branch prediction accuracy and a smaller issue
window reduces the amount of work done aong
mispredicted path. For different configurations, we
observed a similar phenomenon for li and perl. Notice that
even when resourcesareused to their full extent, substantial
power savingsarestill achieved—thisis, of course, theresult
of bit-ine segmentation and the use of multi—partitioned
resources, asdiscussed in Section 5.1.

Our experiments showed that the best tradeoff between
power and performanceisachieved whentheratio of update
period to overflow threshold is 4 for each resource (Table 3
represents one of these cases). Here, resource upsizing is
triggered when the frequency of overflowsismorethan1in
4 cycles. We studied theeffectsof variousupdate periodson
the performance of our resizing mechanism, keeping the
ratio of update period to overflow threshold at 4. Some of
these results, averaged across al benchmarks, are
summarized in Table 4. In all cases, the sample period was
set to allow for the acquisition of 64 samples during one
update period.

Larger update periodsresult in higher performanceloss,
because of the slower reaction of the upsizing phase to the
changesinthe application’ sdemands. Thisis, of course, the
conseguence of higher overflow thresholds which have to
increase commensurately with the update periods to
maintain the same level of tradeoff between power and
performance. The advantage of larger update periodsisthe
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Figure 8. Power dissipation in the 1Q, ROB and LSQ for 4—way and 6—way processors

reduction of control logic overhead, because resource
monitoring and resizing decisions are made at a coarser
granularity. The differences in terms of power savings
achieved for update periods studied are quite small, as
indicated in Table 4 by the average active sizes.

To see the effects of our resizing scheme on power
dissipation in more aggressive superscalar designs, wealso
simulated a 6-way processor with larger sizes of the ROB,
thelQ, andtheL SQ (asdiscussedin Section4). Asexpected,
the results show a higher percentage of power reduction
because thedegreeof resourceovercommitmentishigher for
a 6—way processor. The higher power savings for a 6—way
machine come at the cost of a higher performance drop,
which is also not surprising because the base case | PCs of
programs executed on a6-way machine are higher than for
a 4-way machine. For the common overflow threshold of
512, the average performance loss across al SPEC 95
benchmarks was observed as 7.3% with the average power
savings of 50% in the IQ, 70.5% inthe ROB and 55.7%in
the LSQ. Total power savings across all three components
amounts to 59% on the average.

UP,OT IPCdrop% | 1Q size ROB size | LSQsize

128, 32 431 17.3 57.2 17.6
2048, 512 4.86 17.2 56.8 17.5
8192, 2048 5.13 17.1 56.4 17.4

Table 4. Power savings and performance
degradation for various update periods

Figure 8 summarizespower savingsachieved by resizing
technique described in this paper for the 4-way and 6—way

machines. Results are shown for the overflow threshold
value of 512, update period val ue of 2048 and sampleperiod
of 32 cyclesfor al structures. Power savings are shown for
the B, Sand R configurations. Notice, that for some of the
benchmarks (mgrid and fpppp), configuration S results in
higher power savings within the L SQ than configuration R
for 6-way machine. ThisisbecausetheentireLSQ isused
throughout the execution of these benchmarksonthe 6—way
processor, and the increase in power consumption stems
mainly from the dissipations associated with the segmented
forwarding buses.

Finally, we studied the use of aggressive downsizing
mode. Theaggressivemodesaves|essthan8%intheaverage
ROB size, and less than 2% in the average IQ size. The
difference is amost invisble for the SPEC95int
benchmarks. The SPEC95fp benchmarkshave somebenefit
from the aggressive mode, as discussed in Section 7.1, with
some penalty inthe IPC. The I PC difference between these
two modesislessthan 2% infavor of non—aggressive mode.

9. Concluding Remarks

The *“one-size-fits—all” philosophy in alocating
datapath resourcesresultsin the resource overcommitment.
Our approach to minimizing the power requirements of the
datapath isto useadynamic resourceall ocation strategy that
triesto closely track the actual dynamic resource demand of
the executing program. We primarily focused on using
simple techniques to resize the 1Q, the ROB (integrating
physical registers) andtheL SQindependently. Inparticular,
these components are partitioned and the number of active
(i.e., powered up) partitions are chosen dynamically to
closely track theactual demandsof theprogram. ThelQ,the



L SQandtheROB arecontrolledindependently. Downsizing
is driven by directly using sampled estimates of their
individual occupancies. Upsizing, ontheother hand, isdone
more aggressively based effectively on the rate at which
dispatches block due to the lack of these individual
resources. Our power savings technique is technology
independent and can be used in conjunction with other
orthogonal techniquesfor saving power.

Our results show that the error arising from the
computations of the average occupancy by sampling the
actual occupancies at discrete points is tolerable since
significant energy savings are achieved using our approach
with very little impact on performance. For a 4-way
superscalar CPU, an average power savings of 52.6% is
achieved across the SPEC 95 benchmarks for the 1Q, LSQ
and ROB combined, with an average performance penalty
of only 4.86%. For a6—way dispatchrate, the power savings
on the average are 59.3% across these structures, with an
average performance penalty of 7.3%. Thus, our technique
can save a significant amount of power with a tolerable
performance loss.

Although the current paper shows the savings on
dynamic/switching power, dynamic deallocation of
partitions al so saves|eakage power that would be otherwise
dissipated within the |Q, the ROB and the L SQ.

Asan extension of the work described in this paper, we
are currently exploring the control and dynamic allocation
of datapath resources beyond the 1Q, the ROB and the LSQ
(such as register files, caches, function units). Additional
work in progressislooking at the use of compiler—inserted
directives inunused fieldsof instructionsto changeresource
alocation dynamically — a natura transition of the
hardware—directed resource alocation techniques of the
current work into the compiler.
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