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Abstract

We show by simulating the execution of SPEC 95
benchmarks on a detailed register–level, cycle by
cycle simulator for a superscalar CPU that about
half of the bytes of operands flowing on the
datapath, particularly the leading bytes, are all
zeros.  Furthermore, a significant number of the bits
within the non–zero part of the data flowing on the
various paths within the processor do not change
from their prior value.  These two facts, attesting to
the lack of a high level of entropy in the data
streams, can be exploited to reduce power
dissipation within a typical superscalar datapath.
Power savings are achieved within all explicit and
implicit storage components such as caches,
register files, instruction dispatch buffers, re–order
buffers, as well as interconnections such as buses
and direct links.  Relevant circuit components for
encoding zero bytes within storage components and
interconnections and avoiding the driving of bit
lines that do not change in value are also presented.
Preliminary results showing power savings in
representative datpath components are quite
encouraging.

1. Introduction

Modern superscalar processors incorporate explicit
and implicit components such as on–chip caches,
large physical register files, an instruction dispatch
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buffer and a reorder buffer.  The later two are
essentially implemented as physical register files
with associative addressing and additional logic.

We exploit the presence of bytes containing all
zeros, particularly in the higher–order bytes of
operand values that are read out from physical
registers, issued to function units, forwarded from
function units or moved into the reorder and
dispatch buffers to save power.  Specifically, we
avoid the activation of byte slices that contain all
zeros along the interconnections and storage
components of the processor to conserve power.
The simulated execution of the SPEC 95
benchmarks show that on the average about 50% or
more of the bytes of operands are zero.
Furthermore, within the non–zero bytes, more than
65% of the bits are identical to what was driven
immediately before on the data flow path.  We can
thus curtail bit–slice activities quite drastically by
exploiting these two facts and achieve serious
power savings.  This study focuses on the
exploitation of bit slice inactivities in reducing the
power associated with instruction dispatching,
issuing and forwarding in a superscalar
microprocessor.

Exploiting the presence of bytes containing all
zeros is not new.  It was suggested and used to
reduce the power dissipation in dispatch buffers in
[1].  In [2], the same fact is used to reduce energy
dissipations within the caches.  In [3], the presence
of leading zero bytes in a result produced by an



integer function unit is exploited to reduce the
power dissipated by the integer function unit and
within the interconnections; energy savings
possible within the explicit and implicit storage
components of the datapath are not considered in
[3].  This study demonstrates that the presence of
bytes with all zeros in data streams – integers,
floating point operands and others – can be
exploited to reduce energy requirements all across
the datapath of contemporary superscalar CPUs,
including explicit and implicit storage components
and interconnections.  (For the purpose of this
paper, a data stream is a sequence of operand values
from possibly different sources, that flow on an
interconnection during program execution.)  This
study also identifies an additional source for energy
savings in driving data on the flow paths – a
technique that exploits the correlationship among
consecutive data flowing on a datapath bus or
interconnection.  Energy savings on buses due to
correlationships among the past and immediate
values of bits have also been explored [4, 5].
However, the energy savings possible from just the
exploitation of such bit correlationships is not very
great.  The use of encodings for zero–valued bytes,
together with the use of bit–value invariances, as
presented in this paper offer the potential of more
significant energy savings in the data flow paths.

2. Superscalar Datapath Configurations

Most contemporary microprocessors employ
multiple instruction dispatching and multiple
instruction issuing per cycle for performance.
Instruction dispatching refers to the process of
decoding instructions and resolving data
dependencies, while instruction issuing refers to the
process of committing physical execution resources
for the actual execution of the instruction once all
input operands are available.  Instruction
dispatching and issuing are distinct steps in modern
microprocessors.  The dispatching step typically
moves an instruction into a dispatch buffer  (DB)
irrespective of the availability of input operands
and function units (FUs).  As all input operands of
an instruction waiting in the dispatch buffer become
available along with a function unit of the required
type, the instruction is issued to the function unit.
Two variants of a superscalar datapath are in
common use depending on where in the processing

sequence the input operands of the instruction are
accessed.  These are as follows:

• Datapath A (Figure 1 (a)): Here, input registers
that contain valid data are read out while the
instruction is moved into the dispatch buffer
(DB).  As the register values required as an input
by instructions waiting in the DB (and in the
dispatch stage) are produced, they are forwarded
through forwarding buses that run across the
length of the DB [6].  The dispatch buffer entry
for an instruction has one data field for each
input operand, as well as an associated tag field
that holds the address of the register whose value
is required to fill the data field.  When a function
unit completes, it puts out the result produced
along with the address of the destination register
for this result on a forwarding bus.  Comparators
associated with each DB entry then match the
tag values stored in the fields (for waited–on
register values) against the destination register
address floated on the forwarding bus [6].  On a
tag match, the result floated on the bus is latched
into the associated input field.  Since multiple
function units complete in a cycle, multiple
forwarding buses are used; each input operand
field within a DB entry thus uses a comparator
for each forwarding bus.

• Datapath B (Figure 1 (b)): Here, even if input
registers for an instruction contain valid data,
these registers are not read out at the time of
dispatch.  Instead, when all the input operands
of an instruction waiting in the DB are valid and
a function unit of the required type is available,
all of the input operands are read out from the
register file (or as they are written to the register
file, using bypassing logic) and the instruction
is issued.  In this case, the DB buffer entry for an
instruction is considerably narrower compared
to the DB entries for Datapath A, since entries do
not have to hold input register values.  The
dispatch/issue logic can be implemented using
a global scoreboard that keeps track of
instructions and register/FU availability.
Alternatively, an associative logic similar to that
of Datapath A can be used to update the status of
input registers for instructions waiting within
the DB (as shown in Figure 1(b)).
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For both Datapath A and Datapath B, an instruction
can bypass the DB and can be directly issued to an
available FU if the input operands are available.

3. Exploiting the Lack of Data Stream Entropy

There are a variety of reasons that cause bytes
throughout operands to consist of all–zeros.  For
integer 32–bit operands, leading bytes may be zeros
due to the use of predominantly (positive) small
literal values that have only a few bits of
significance.  These are either literal operands for
integer operations or small offsets used in branch
instructions and load/store instructions.  Zero bytes
are also introduced in results when byte packing and
unpacking operations are used or when bit or byte
masks are used to isolate bits or bytes.  For floating
point operands in the IEEE format, small (or lower
precision) floating point values may also contain
zeros – but not necessarily in the leading part.
Negative integer results with small absolute values
can also have leading ones.  Our results, however,
show that the percentage of leading zero bytes or the
percentage of zero bytes throughout 32–bit and
64–bit operands overwhelm the number of bytes
with all ones.  To simplify circuit requirements, we
exploit only the bytes with all zeros.  Byte–lvel
encoding is preferred for two main reasons: it keeps
encoding overhead (and decoding delays) to an
acceptable level; it is also consistent with
byte–addressing schemes.

Irrespective of the type of datapath used, a
considerable amount of energy dissipation occurs
in the process of instruction dispatching,
result/status forwarding, instruction issuing, result
writeback and instruction retirement.  The goal of
this work is to exploit the lack of entropy in data
streams along all data flow paths (and data stored
within storage devices) to save energy by:

1. Only driving  byte slices that do not contain all
zeros.

2. Avoiding the driving of bit lines in transfer paths
containing significant data (non–zero bytes) that
were driven with the same value when the prior
transfer was made on the transfer path.  We have
used the term bit invariance to allude to the fact
that a bit line to be driven was driven with the
same value when it was last used.

3. Avoiding the reading and writing of byte slices
that contain bytes with all zeros from/to explicit

and implicit storage artifacts in the datapath
such as register files, dispatch buffers and the
re–order buffer.

4. Avoiding or minimizing energy dissipations
within function unit byte or bit slices that do not
contain significant data bits/bytes.

We thus exploit the lack of entropy in data streams
as exhibited by the presence of zero bytes and
invariance in the values of bits driven for the
non–zero bytes and the encoding bits on a bus from
one transfer to the next.  In the next section, we
describe our methodology for identifying the lack
of entropy in data streams and present relevant
experimental results.

4.  Experimental Methodology

Our methodology for identifying the lack of
entropy in the data streams and the energy savings
achieved using the techniques described above is
shown in Figure 2.  The widely–used Simplescalar
simulator was significantly modified to implement
true hardware level, cycle–by–cycle simulation
models for such datapath components as dispatch
buffers (for both types of datapaths), re–order
buffers, forwarding interconnections, dedicated
transfer links and caches.  (The cycle–by–cycle
Simplescalar simulator simulates cycle level events
without modeling specific implementation details
of these components; the implementation details
are crucial to the accurate estimation of energy
dissipations.)  Instrumentation to keep track of data
values and transition counts were also put into
place.  The data acquired from the instrumentation
was buffered and fed into a separate thread, where
it was analyzed for the lack of entropy within
significant byte slices and all byte slices within a
data item as well across consecutive data items
within a data stream.  The use of a separate analyzer
thread allowed the overall simulation speed to be
kept at an acceptable level.  With a single thread
implementing all of the simulation,
instrumentation and analysis, the overall
simulation speed was reduced by as much as 40%
compared to the original Simplescalar simulation
without any modification and instrumentation.
With both threads in place as shown, and with the
use of inter–thread buffers of an optimized size, the
overall simulation time achieved was often
significantly better on a SMP compared to the
single–threaded implementation.  The performance



of the dual–threaded version was also about the
same as that of the original Simplescalar simulator
without any of the enhancements and the
instrumentation.  The transition counts gleaned
from the simulator are finally used along with
capacitive coefficients obtained from SPICE
simulations of actual VLSI layouts to evaluate the
energy savings.  Our current measurements are
based on layouts of register files, dispatch buffers,
re–order buffers and caches in a 0.5 micron 4–metal
layer CMOS process.  This allows for a 300 MHz.
clock, as determined by the access time of the L1
cache tag/data arrays.  We are in the process of
migrating these layouts to a 0.18 micron process to
bring our measurements to the realm of current
practices.  The results for the 0.5 micron layouts are,
however, quite  representative even if the layouts
used use a coarser feature size.

The configuration of the system studied were as
follows.  The L1 I–cache and L1 D–cache were both
32 KBytes in capacity with a line size of 32 Bytes,
with the former being direct–mapped and the latter
being 4–way set–associative.  A 4–way
set–associative, integrated L2 cache with a capacity
of 128 KBytes and a line size of 64 Bytes was
assumed.  The size of the dispatch buffer and the
re–order buffer were kept at 64 entries and 100
entries respectively.  The function unit assumed for
the two datapaths (Datapath A, Datapath B) were as
follows: 4 integer units, one integer multiply/divide
unit, 4 floating point multiply–add units, one
floating point multiply/divide units and one load
and a load/store unit.  For Datapath B, the physical
register files were assumed to have the requisite
number of ports to permit concurrent register file
accesses by function units.  The latencies were as
used in the original Simplescalar simulator, with
the exception of the floating point multiply–add
unit, which was assumed to have a latency of 4
cycles.  All function units with a multi cycle latency
were assumed to be pipelined.  A 4–way dispatch,
a 4–way issue and a 4–way commitment was
assumed.  For all of the SPEC 95 benchmarks, the
results from the simulation of the first 200 million
instructions were discarded and the results from the
execution of the following 800 million instructions
were used.  Specified optimization levels and
reference inputs were used for all the simulated
benchmarks.

Figure 3 shows several representative results for
Datapath A.  In Figure 3 (a), the percentage of
leading zero bytes and zero bytes throughout the
operand, weighted and averaged over 32–bit and
64–bit operands, are shown for individual SPEC 95
benchmarks.  For the integer benchmarks, which
are dominated by mostly 32–bit integer data
streams, roughly 47% of the leading bytes are all
zeros, while about 49% of the bytes contain all zeros
(including all zero bytes in the leading bit
positions).  For the floating point benchmarks,
which consist of 32–bit integers, 32–bit floats and
64–bit doubles, the weighted average shows that
roughly 32% of the leading bytes are all zeros while
37% of the bytes in the data streams contain all
zeros.  The floating point numbers account for the
higher difference between the number of leading
zero bytes and the number of zero bytes throughout
the operands.  Figures 3(b) and 3(c) show the
distribution of zero bytes throughout the operands
for some specific data flow paths (the dispatch,
issue,  result and the commit buses.)   Considerable
energy savings will be achieved within all datapath
components such as caches, register files, the
dispatch buffer, the re–order buffer and function
units if the presence of leading bytes with all zeros
and bytes containing zeros throughout the operands
are exploited.

In Figures 3 (d) and 3(e), we show what happens
when the zero valued bytes are not driven on
transfer paths and, in addition, bit values within the
non–zero valued bytes that do not change from their
prior–driven values on the interconnection (driven
from the same source or a different sources) are also
not driven.  The combined amount of bit slices that
do not have to be driven in this case is in the range
of 65% to 81% on the aforesaid buses.  This result
suggests that a considerable amount of power can
be saved in transferring data on these
interconnections, particularly as wire capacitances
begin to dominate in implementations that have
smaller feature sizes.

The results for Datapath B are similar to that for
Datapath A and are shown in Figure 4.  Here again,
by exploiting bit–slice invariance and the presence
of bytes with all zeros, considerable energy savings
will be achieved in all datapath components, buses
and dedicated links (in–between function units and
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register files, in–between cache levels, and between
load/store function units and the L1 caches).

5. Circuit Components

We now present the circuit components necessary
for encoding and exploiting all zero valued bytes
and for exploiting invariance of bit–slice values.
These are depicted in Figure 5.

The encoding of bytes containing all zeros can be
kept simple by associating a single bit (called the
zero indicator, ZI) with every byte.  This allows
bytes with all zeros to be identified quickly with an
acceptable storage overhead. Figure 5 (a) depicts
the circuitry needed to derive the ZI for a byte; such
an encoder can be implemented within function
units or within output latches/drivers.  Encoded
data values can be transferred by transferring the ZI
bits for every byte within the data value, along with
the bytes that do not contain all zeros.  Bytes that
contain all zeros are not transmitted.  Values
encoded as described can be written directly to all
storage components such as the register file, DB
entries (for all operands for Datapath A and literal
values for Datapath B), re–order buffers etc.  All ZI
bits are written, along with bytes that are not all
zeros.  The energy savings thus comes from not
transferring or writing bytes that contain all zeros.
To avoid reading out bytes that consist of all zeros,
the physical words within register files and cache
tag/data RAMs employ additional logic that uses a
byte’s associated ZI bit to disable the readout of
bytes with all–zero, as shown in Figure 5 (b).  The
sense amps used with the resulting RAMs and
register files are also designed not to react to
disabled columns by increasing the extent of the
input dead zone.    The power savings realized by
not reading, writing or transferring bytes that
contain all zeros come at a cost: additional bits
(namely the ZI bits) have to be driven, read and
written.  The ZI bits, by themselves, increase the
area of the register files and tag/data RAMs by
about 12%.

Figure 5 (c) shows a simplified equivalent circuit
for driving only the bits within the non–zero bytes
and ZI bits that have not changed from the prior
value.  The circuitry shown in Figure 5(c) is
replicated for each bit that can be driven onto the
bus/link.  The latch PVj holds the prior value of the
data on bit #j of the bus/link; the value of the current

data to be driven on the same line is Dataj.  The
driver is enabled only when Dataj is not a bit within
a byte field with all zeros (as indicated by a
low–active ZI) and when the data bit to be driven is
not the same as the prior driven value (as indicated
by the output of the ex–or) and when the data has to
be transferred (drive = 1).  Keeper devices (not
shown) are used to retain the past–driven value of
bit lines till they are re–driven; such keeper devices
are not shown in Figure 5(c).  The power savings
realized in this case is offset by the extra energy
needed by the latches that hold the prior values and
some of the associated logic.  Additionally, power
is expended in driving any ZI bits that have to be
driven (i.e., that are different from their past driven
values).  Note that the circuit of Figure 5(c) is
simplified for the purpose of exposition – clever
circuit designs (not shown here) are used to
optimize delays introduced in the signal path that
enables the driver, particularly in the case when the
lines are driven from the same source (as in the case
of dedicated links, such as the function
unit–register port connections of Datapath B).

6. Preliminary Results and Conclusions

For the 0.5 micron layouts used, preliminary
computations of the energy savings for some of the
datapath components, averaged over all of the
SPEC 95 benchmarks are shown in Table I.  We are
in the process of computing energy savings for the
caches and the interconnections (based on the
estimated wire lengths).

Dispatch
 Buffer

Register
File

Re–order
Buffer

Datapath A 43.8% 37% 38.4 %

Datapath B 30.4% 29.6% 38.4%

Table 1.  Preliminary estimates of energy savings
achieved with proposed techniques for some

datapath components

The results from Table I suggests that the proposed
techniques achieve higher percentage of savings for
dispatch buffers and register files for Datapath B
than for Datapath A.  There are several reasons for
this: first, the dispatch buffer entries for Datapath B
are narrower compared to the width of entries for
Datapath A.  Thus, for Datapath B, energy savings
in the dispatch buffer result only in driving the
non–zero bytes of literal operands and only those
bits that are different from the prior value on the
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Figure 5 .  Examples of circuit components for exploiting the presence of bytes
with all zeros and bit–slice invariance within the non–zero bytes

bit #7bit #6bit #5bit #4 bit #3bit #2bit #1bit #0
Vdd

ZI

To bus drivers

Vdd

Vddprechg

(a) Encoding logic for all zero bytes

GND

Vdd

bit bit word select line

Q3

Q4

read enable

bitcell #4 bitcell #3

One set common to all bitcells within byte

read

bitcell # 7 6 5 4 3 2 1 0

ZI bit for byte (incorporates Q3 and Q4)

GND

Vdd

bit bit

(b) Bit–storage enhancements for avoiding the reading of all–zero bytes

PVj

EX–OR

ANDZI
Dataj

drive

Bus/link

(c) Circuit (equivalent) for driving only the bit lines that changed since the last transfer.  Keeper transistors not shown

driver

latch holding prior value of bit j on bus/link
ZI: low active



corresponding bit line, on the narrow literal bus.
For Datapath A, significant energy reductions are
achieved within the dispatch buffer by not driving
zero bytes of operands and bits in the non–zero
bytes that remain unchanged for the literals, valid
register operands (at the time of dispatch) and
results (which are forwarded to waiting DB entries).
For Datapath B, the energy savings in the register
file is smaller compared to that for Datapath A for
a completely different reason: the large number of
ports required on the register file for Datapath B
introduce an overhead that scales
disproportionately with the number of bits driven
(because of sizing requirements for pre–chargers
and sense amps of heavily loaded bit lines).  The
re–order buffer structures for both Datapaths are
identical, and so are the energy savings.  The results
given in Table I are only preliminary: additional
quantification is needed for the other datapath
components and the interconnections to gauge the
overall energy savings possible from the
exploitation of the lack of entropy in data streams.
Nevertheless, the results of Table I do suggest that
serious power reductions are possible through the
use of the techniques proposed in this paper.
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