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Abstract buffer and a reorder buffer. The later two are
essentially implemented as physical register files

We show by simulating the execution of SPEC 95 with associative addressing and additional logic.

benchmarks on a detailed register—level, cycle by
cycle simulator for a superscalar CPU that aboutWe exploit the presence of bytes containing all
half of the bytes of operands flowing on the zeros, particularly in the higher—order bytes of
datapath, particularly the leading bytes, are all gperand values that are read out from physical
Zeros. Furthermore, aSigniﬁcant number of the bits registers’ issued to function units1 forwarded from
within the non-zero part of the data flowing on the f,nction units or moved into the reorder and
various paths within the processor do not changeyisnatch huffers to save power. Specifically, we
from their prior value. These two facts, attesting to avoid the activation of byte slices that contain all

the lack of a high level of entropy in the data zeros along the interconnections and storage

streams, can be exploited to reduce power £ 1h
dissipation within a typical superscalar datapath. SOMPonents of the processor to conserve power.

Power savings are achieved within all explicit and The simulated execution of the SPEC 95
|mp||C|t Storage Components SUCh as Caches’benChmarkS ShOW that on the average about 50% or

register files, instruction dispatch buffers, re—order more of the bytes of operands are zero.
buffers, as well as interconnections such as bused$-urthermore, within the non—zero bytes, more than
and direct links. Relevant circuit components for 65% of the bits are identical to what was driven
encoding zero bytes within storage components andmmediately before on the data flow path. We can
interconnections and avoiding the driving of bit thus curtail bit-slice activities quite drastically by
lines that do not change in value are also presentedexploiting these two facts and achieve serious
Prellmlnary_ results showing power savings IN power savings. This study focuses on the
representative  datpath components are  quitegypsitation of bit slice inactivities in reducing the
encouraging. power associated with instruction dispatching,
1. Introduction is;uing and forwarding in a superscalar
microprocessor.
Modern superscalar processors incorporate explicit
and implicit components such as on—chip caches
large physical register files, an instruction dispatch

Exploiting the presence of bytes containing all
'zeros is not new. It was suggested and used to
reduce the power dissipation in dispatch buffers in
* supported in part by DARPA through contract number FC [1]. In[2], the same fact is used to reduce energy
306020020525 under the PAC-C program, by the IEEC at dissipations within the caches. In [3], the presence
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integer function unit is exploited to reduce the sequence the input operands of the instruction are
power dissipated by the integer function unit and accessed. These are as follows:

within the interconnections; energy savings
possible within the explicit and implicit storage e
components of the datapath are not considered in
[3]. This study demonstrates that the presence of
bytes with all zeros in data streams — integers,
floating point operands and others — can be
exploited to reduce energy requirements all across
the datapath of contemporary superscalar CPUs,
including explicit and implicit storage components
and interconnections. (For the purpose of this
paper, alata streanis a sequence of operand values
from possibly different sources, that flow on an
interconnection during program execution.) This
study also identifies an additional source for energy
savings in driving data on the flow paths — a
technique that exploits the correlationship among
consecutive data flowing on a datapath bus or
interconnection. Energy savings on buses due to
correlationships among the past and immediate
values of bits have also been explored [4, 5].
However, the energy savings possible from just the
exploitation of such bit correlationships is not very
great. The use of encodings for zero—valued bytes,
together with the use of bit-value invariances, as
presented in this paper offer the potential of more
significant energy savings in the data flow paths.

2. Superscalar Datapath Configurations

Most contemporary microprocessors employ
multiple instruction dispatching and multiple
instruction issuing per cycle for performance.
Instruction dispatching refers to the process of
decoding instructions and resolving data
dependencies, while instruction issuing refers to the
process of committing physical execution resources
for the actual execution of the instruction once all
input operands are available. Instruction
dispatching and issuing are distinct steps in modern
microprocessors. The dispatching step typically
moves an instruction into a dispatch buffer (DB)
irrespective of the availability of input operands
and function units (FUs). As all input operands of
an instruction waiting in the dispatch buffer become
available along with a function unit of the required
type, the instruction is issued to the function unit.
Two variants of a superscalar datapath are in
common use depending on where in the processing

Datapath A (Figure 1 (a)) Here, input registers
that contain valid data are read out while the
instruction is moved into the dispatch buffer
(DB). Asthe register values required as an input
by instructions waiting in the DB (and in the
dispatch stage) are produced, they are forwarded
through forwarding buses that run across the
length of the DB [6]. The dispatch buffer entry
for an instruction has one data field for each
input operand, as well as an associated tag field
that holds the address of the register whose value
is required to fill the data field. When a function
unit completes, it puts out the result produced
along with the address of the destination register
for this result on a forwarding bus. Comparators
associated with each DB entry then match the
tag values stored in the fields (for waited—on
register values) against the destination register
address floated on the forwarding bus [6]. On a
tag match, the result floated on the bus is latched
into the associated input field. Since multiple
function units complete in a cycle, multiple
forwarding buses are used; each input operand
field within a DB entry thus uses a comparator
for each forwarding bus.

Datapath B (Figure 1 (b)): Here, even if input
registers for an instruction contain valid data,
these registers are not read out at the time of
dispatch. Instead, when all the input operands
of an instruction waiting in the DB are valid and
a function unit of the required type is available,
all of the input operands are read out from the
register file (or as they are written to the register
file, using bypassing logic) and the instruction
isissued. Inthis case, the DB buffer entry for an
instruction is considerably narrower compared
tothe DB entries for Datapath A, since entries do
not have to hold input register values. The
dispatch/issue logic can be implemented using
a global scoreboard that keeps track of
instructions and register/FU availability.
Alternatively, an associative logic similar to that
of Datapath A can be used to update the status of
input registers for instructions waiting within
the DB (as shown in Figure 1(b)).
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For both Datapath A and Datapath B, an instruction  and implicit storage artifacts in the datapath
can bypass the DB and can be directly issued to an such as register files, dispatch buffers and the
available FU if the input operands are available. re—order buffer.

4. Avoiding or minimizing energy dissipations
_ within function unit byte or bit slices that do not
There are a variety of reasons that cause bytes contain significant data bits/bytes.

throughout operands to consist of all-zeros. For h loit the lack of ind
integer 32—bit operands, leading bytes may be zerodVe thus exploit the lack of entropy in data streams

due to the use of predominantly (positive) small as exhibiteq by the presence_of Zero bytes and
literal values that have only a few bits of invariance in the values of bits driven for the

significance. These are either literal operands for"0N—2€ro bytes and the encoding bits on a bus from

integer operations or small offsets used in branchON€ transfer to the next. In the next section, we
instructions and load/store instructions. Zero bytesOlescrlbe our methodology for identifying the lack
are also introduced in results when byte packing and®f €Ntropy in data streams and present relevant
unpacking operations are used or when bit or byte€XPerimental resuits.
masks are used to isolate bits or bytes. For floating
point operands in the IEEE format, small (or lower
precision) floating point values may also contain Our methodology for identifying the lack of
zeros — but not necessarily in the leading part.entropy in the data streams and the energy savings
Negative integer results with small absolute valuesachieved using the techniques described above is
can also have leading ones. Our results, howevershown in Figure 2. The widely—used Simplescalar
show that the percentage of leading zero bytes or théimulator was significantly modified to implement
percentage of zero bytes throughout 32—bit andtrue hardware level, cycle-by—cyckEimulation
64—bit operands overwhelm the number of bytes models for such datapath components as dispatch
with all ones. To simplify circuit requirements, we buffers (for both types of datapaths), re—order
exp|0it 0n|y the bytes with all zeros. Byte_|ve| buffers, forwarding interconnections, dedicated
encoding is preferred for two main reasons: it keepstransfer links and caches. (The cycle-by—cycle
encoding overhead (and decoding delays) to anSimplescalar simulator simulates cycle level events
acceptable level; it is also consistent with without modeling specific implementation details
byte—addressing schemes. of these components; the implementation details
: are crucial to the accurate estimation of energy
Irrespectlve of the type of daf[ap_ath_ used, adissipations.) Instrumentation to keep track of data
ponaderable amount of .energy_dlssmanon OCCUISyalyes and transition counts were also put into
in the process of instruction dispatching, ,5ce The data acquired from the instrumentation

regulé/sta;(tus ;o_rwardlng, Instruction |ssur|]ng, re?“'; was buffered and fed into a separate thread, where
writeback and instruction retirement. The goal of it \a< analyzed for the lack of entropy within

this work is to exploit the lack of entropy in data gy nificant byte slices and all byte slices within a
streams alongll data flow paths (and data stored ai5 item as well across consecutive data items

within storage devices) to save energy by: within a data stream. The use of a separate analyzer
1. Only driving byte slices that do not contain all thread allowed the overall simulation speed to be
ZEros. kept at an acceptable level. With a single thread
implementing all of the simulation,
instrumentation and analysis, the overall
simulation speed was reduced by as much as 40%
compared to the original Simplescalar simulation
ithout any modification and instrumentation.
With both threads in place as shown, and with the
use of inter—thread buffers of an optimized size, the
overall simulation time achieved was often
3. Avoiding the reading and writing of byte slices significantly better on a SMP compared to the
that contain bytes with all zeros from/to explicit single—threaded implementation. The performance

3. Exploiting the Lack of Data Stream Entropy

4. Experimental Methodology

2. Avoiding the driving of bit lines in transfer paths
containing significant data (non—zero bytes) that
were driven with the same value when the prior
transfer was made on the transfer path. We hav
used the terrbit invarianceto allude to the fact
that a bit line to be driven was driven with the
same value when it was last used.



of the dual-threaded version was also about theFigure 3 shows several representative results for
same as that of the original Simplescalar simulatorDatapath A. In Figure 3 (a), the percentage of
without any of the enhancements and the leading zero bytes and zero bytes throughout the
instrumentation. The transition counts gleaned operand, weighted and averaged over 32-bit and
from the simulator are finally used along with 64-bit operands, are shown for individual SPEC 95
capacitive coefficients obtained from SPICE benchmarks. For the integer benchmarks, which
simulations of actual VLSI layouts to evaluate the are dominated by mostly 32-bit integer data
energy savings. Our current measurements arestreams, roughly 47% of the leading bytes are all
based on layouts of register files, dispatch buffers, zeros, while about 49% of the bytes contain all zeros
re—order buffers and cachesin a 0.5 micron 4—metalincluding all zero bytes in the leading bit
layer CMOS process. This allows for a 300 MHz. positions). For the floating point benchmarks,
clock, as determined by the access time of the L1which consist of 32—bit integers, 32-bit floats and
cache tag/data arrays. We are in the process o64-bit doubles, the weighted average shows that
migrating these layouts to a 0.18 micron process toroughly 32% of the leading bytes are all zeros while
bring our measurements to the realm of current37% of the bytes in the data streams contain all
practices. The results for the 0.5 micron layouts are,zeros. The floating point numbers account for the
however, quite representative even if the layoutshigher difference between the number of leading
used use a coarser feature size. zero bytes and the number of zero bytes throughout
the operands. Figures 3(b) and 3(c) show the
distribution of zero bytes throughout the operands
for some specific data flow paths (the dispatch,
issue, result and the commit buses.) Considerable

The configuration of the system studied were as
follows. The L1 I-cache and L1 D—cache were both
32 KBytes in capacity with a line size of 32 Bytes,

\{)V;?] gt]he Z)_rvr\;]aeyr besl‘r;?_ggggtc—i;r:i?lgped arxj thf_l\zg;r energy savings will be achieved within all datapath

set—associative, integrated L2 cache with acapacitycpmpomi‘ntS such as caches, register f|Ies,_ the
of 128 KBytes and a line size of 64 Bytes was d|s_paf[ch buffer, the re—ord_er buffer ar_1d function

assumed. The size of the dispatch buffer and theunlts if the presence of leading bytes with all zeros

re—order .buffer were kept at 64 entries and 100and bytes_ containing zeros throughout the operands
entries respectively. The function unit assumed for € exploited.

the two datapaths (Datapath A, Datapath B) were agp, Figures 3 (d) and 3(e), we show what happens
follows: 4 integer units, one integer multiply/divide \yhen the zero valued bytes are not driven on
unit, 4 floating point multiply—add units, one {ansfer paths and, in addition, bit values within the
floating point multiply/divide units and one load on—zero valued bytes that do not change from their
and a load/store unit. For Datapath B, the physicalprior—driven values on the interconnection (driven
register files were assumed to have the requisitefrom the same source or a different sources) are also
number of ports to permit concurrent register file ot griven. The combined amount of bit slices that
accesses by function units. The latencies were agjo not have to be driven in this case is in the range
used in the original Simplescalar simulator, with of 6504 to 81% on the aforesaid buses. This result
the exception of the floating point multiply—add g,ggests that a considerable amount of power can
unit, which was assumed to have a latency of 4pe saved in transferring data on these

cycles. All function units with a multi cycle latency interconnections, particularly as wire capacitances
were assumed to be pipelined. A 4-way dispatch,pegin to dominate in implementations that have
a 4-way issue and a 4-way commitment Wasgmaller feature sizes.

assumed. For all of the SPEC 95 benchmarks, the

results from the simulation of the first 200 million The results for Datapath B are similar to that for

instructions were discarded and the results from theDatapath A and are shown in Figure 4. Here again,
execution of the following 800 million instructions by exploiting bit—slice invariance and the presence
were used. Specified optimization levels and of bytes with all zeros, considerable energy savings
reference inputs were used for all the simulatedwill be achieved in all datapath components, buses
benchmarks. and dedicated links (in—between function units and
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register files, in—between cache levels, and betweerdata to be driven on the same line is Dataj. The
load/store function units and the L1 caches). driver is enabled only when Dataj is not a bit within
a byte field with all zeros (as indicated by a
low—active ZI) and when the data bit to be driven is
not the same as the prior driven value (as indicated
We now present the circuit components necessanyy the output of the ex—or) and when the data has to
for encoding and exploiting all zero valued bytes pe transferred (drive = 1). Keeper devices (not
and for exploiting invariance of bit—slice values. shown) are used to retain the past—driven value of
These are depicted in Figure 5. bit lines till they are re—driven; such keeper devices
are not shown in Figure 5(c). The power savings
realized in this case is offset by the extra energy
needed by the latches that hold the prior values and

5. Circuit Components

The encoding of bytes containing all zeros can be
kept simple by associating a single bit (called the

zero indicator, ZI) with every byte. This allows some of the associated logic. Additionally, power
bytes with all zeros to be identified quickly with an is expended in driving any ZI bits that have to be

acceptable storage overhead. Figure 5 (a) depicté . ; . i )
the circuitry needed to derive the ZI for a byte; such driven (i.e., that are d'ﬁerent fr_om the_|r past d“"e.”
an encoder can be implemented within function "?"“e.s_)- Note that the circuit of F_|gure 5(0) is
units or within output latches/drivers. Encoded s!mp!med fpr the purpose of exposition — clever
data values can be transferred by transferring the zfcireult designs (not shown here) are used to

bits foreverybyte within the data value, along with optimize delay_s introdqced in _the signal path that
the bytes that do not contain all zeros. Bytes that(?nables th? driver, particularly in the case_when the
contain all zeros are not transmitted.  Values lines are driven from the same source (as in the case

encoded as described can be written directly to aIIOf it dedllc?ted :mks, Stl.JCh ?SD ;[he trl]‘uEr’wctlon
storage components such as the register file, pgUNit-register port connections of Latapa )-

entries (for all operands for Datapath A and literal
values for Datapath B), re—order buffers etc. All ZI For the 0.5 micron layouts usegyeliminary

bits are written, along with bytes that are not all computations of the enerav savinas for some of the
zeros. The energy savings thus comes from not P gy 9

transferring or writing bytes that contain all zeros. cSIz;)tE[():ast)hs t?grrzzﬁ?r:]aerrlltsséraevsegg\?vendino'l\'/;k;IeaI” \(/)\;e t;z
To avoid reading out bytes that consist of all zeros, '

the physical words within register files and cache in the process of computing energy savings for the

tag/data RAMs employ additional logic that uses acaf[;hest gmd' thle |nttrt]=:rconnect|ons (based on the
byte’s associated ZI bit to disable the readout of estimated wire lengths).

6. Preliminary Results and Conclusions

bytes with all-zero, as shown in Figure 5 (b). The

Dispatch Register | Re-order
sense amps used with the resulting RAMs and Buffer File Buffer
register files are also designed not to react to Datapath A 43.8% 3% 38.4 %
disabled columns by increasing the extent of the
input dead zone.  The power savings realized byl DaiapathB | 30.4% 29.6% 38.4%

not reading, writing or transferring bytes that Tapje 1 Preliminary estimates of energy savings

contain all zeros come at a cost: additional bits  5chieved with proposed techniques for some
(namely the ZI bits) have to be driven, read and datapath components

written. The ZI bits, by themselves, increase the
area of the register files and tag/data RAMs by
about 12%.

The results from Table | suggests that the proposed
techniques achieve highggrcentagef savings for
dispatch buffers and register files for Datapath B
Figure 5 (c) shows a simplified equivalent circuit than for Datapath A. There are several reasons for
for driving only the bits within the non—zero bytes this: first, the dispatch buffer entries for Datapath B
and ZI bits that have not changed from the prior are narrower compared to the width of entries for
value. The circuitry shown in Figure 5(c) is Datapath A. Thus, for Datapath B, energy savings
replicated for each bit that can be driven onto thein the dispatch buffer result only in driving the
bus/link. The latch PVj holds the prior value of the non—zero bytes of literal operands and only those
data on bit #j of the bus/link; the value of the current bits that are different from the prior value on the
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corresponding bit line, on the narrow literal bus. References

For Datapath A, significant energy reductions are 1
achieved within the dispatch buffer by not driving
zero bytes of operands and bits in the non-zero
bytes that remain unchanged for the literals, valid
register operands (at the time of dispatch) and
results (which are forwarded to waiting DB entries). 2.
For Datapath B, the energy savings in the register
file is smaller compared to that for Datapath A for

a completely different reason: the large number of 3.
ports required on the register file for Datapath B
introduce an overhead that scales
disproportionately with the number of bits driven
(because of sizing requirements for pre—chargers
and sense amps of heavily loaded bit lines). The
re—order buffer structures for both Datapaths are
identical, and so are the energy savings. The results
given in Table | are only preliminary: additional
guantification is needed for the other datapath
components and the interconnections to gauge the
overall energy savings possible from the
exploitation of the lack of entropy in data streams. 6.
Nevertheless, the results of Table | do suggest that
serious power reductions are possible through the
use of the technigues proposed in this paper.

Ghose, K., “Reducing Energy Requirements for
Instruction Issue and Dispatch in Superscalar
Microprocessors”, in Proc. ISLPED 2000 (July
2000), pp.231-234.

Villa, L., Zhang, M. and Asanovic, K.,
“Dynamic Zero Compression for Cache Energy
Reduction”, to appear in Micro—33, Dec. 2000.

Brooks, D. and Martonosi, M., “Dynamically
Exploiting Narrow Width Operands to Improve
Processor Power and Performance”, Proc.
HPCA, 1999.

4. Stan, M. and Burleson, W.P., “Bus—Invert

Coding for Low—Power 1/O”, IEEE Trans. on
VLSI, 3(1), 1995, pp. 49-58.

5. Su, C.L., Tsui, C.Y. and Despain, A.M., “Saving

Power in the Control Path of Embedded
Processors”, |IEEE Design and Test of
Computers, 11(4), 1994, pp. 24-30.

Palacharla, S., Jouppi, N. P. and Smith, J.E.,
“Quantifying the complexity of superscalar
processors”, Technical report CS-TR-96-1308,
Dept. of CS, Univ. of Wisconsin, 1996.



