
ENERGY–EFFICIENT INSTRUCTION DISPATCH BUFFER
DESIGN FOR SUPERSCALAR PROCESSORS*

Gurhan Kucuk, Kanad Ghose,
Dmitry V. Ponomarev

Peter M. Kogge

Department of Computer Science and Engineering
 University of Notre Dame, Notre Dame, IN 46556
 kogge@cse.nd.edu

Department of Computer Science
 State University of New York
 Binghamton, NY 13902–6000
ghose@cs.binghamton.edu

ABSTRACT
The instruction dispatch buffer (DB) used in modern superscalar pro-
cessors is a considerable source of energy dissipation. We consider de-
sign alternatives that result in significant reductions in the power dis-
sipation of the DB (by as much as 60%) through the use of: (a) fast
comparators that dissipate energy mainly on a tag match, (b) zero byte
encoding of operands to imply the presence of bytes with all zeros
and, (c) bitline segmentation. Our results are validated by the execu-
tion of SPEC 95 benchmarks on true hardware level, cycle–by–cycle
simulator for a superscalar processor and SPICE measurements for
actual layouts of the DB and its variants in a 0.5 micron CMOS pro-
cess.

Keywords
Low–power comparator, bitline segmentation, low power datapath

1. INTRODUCTION AND BACKGROUND
Modern superscalar datapaths include a number of components for
supporting out–of–order execution. In a K–way superscalar proces-
sor, instructions are fetched in program order and up to K instructions
are dispatched to a dispatch buffer (DB) irrespective of the availability
of the input operands. As results of prior instructions are computed,
they are forwarded to waiting instructions in the DB. As soon as an
instruction waiting in the DB has all of its input operands available,
it becomes ready for execution. As soon as an execution unit (“func-
tion unit”, FU) is available for a ready instruction, its operands are
read out from the DB into the input latches of the selected FU – a pro-
cess called instruction issuing – and execution commences.

As an instruction is dispatched, input registers that contain valid data
are read out while the instruction is moved into the allocated DB entry.
As the register values required as an input by instructions waiting in
the DB (and in the dispatch stage) are produced, they are forwarded
through forwarding buses that run across the length of the DB [8]. To
balance the overall flow in the pipeline, at least K sets of forwarding
paths are provided to allow K different results from FUs to be for-
warded to instructions waiting in the DB. We consider a datapath
where the DB entry for an instruction has one data field for each input
operand, as well as an associated tag field that holds the address of the
register whose value is required to fill the data field. When a function
unit completes, it puts out the result produced, along with the address
of the destination register for this result on a forwarding bus.

Comparators associated with invalid operand slots of valid DB entries
then match the tag values stored in the fields (for waited–on register
values) against the destination register address floated on the forward-
ing bus [8]. On a tag match, the result floated on the bus is latched into
the associated input field. Since multiple function units complete in
a cycle, multiple forwarding buses are used; each input operand field
within a DB entry thus uses a comparator for each forwarding bus.
Examples of processors using this datapath style are the Intel Pentium
Pro, Pentium II, IBM Power PC 604, 620 and the HAL SPARC 64.
Figure 1 depicts the black box view of a DB as described above. This
is essentially a multi–ported register file with additional logic for
associative data forwarding from the forwarding buses and associa-
tive addressing logic that locates free entries and entries ready for is-
sue. We assume a 4–way superscalar processor for our studies. The
DB is assumed to have 4 read ports, 4 writes ports and 4 forwarding
buses. The 4 write ports are used to establish the entry for up to 4
instructions simultaneously in the DB at the time of dispatching. The
four read ports are used to select up to 4 ready instructions for issue
and move them out of the DB to the FUs. The main sources of energy
dissipation in the DB are as follows:
a) Energy dissipated in the DB in the process of establishing DB en-
tries for dispatched instructions: in locating a free entry associatively
and in writing into the selected entry.
b) Energy dissipated in the DB when FUs complete and forward the
results and/or status information to the DB entries. A significant frac-
tion of this energy dissipation is due to the tag comparators used for
associative matching to pick up forwarded data.
c) Dissipations in the DB at the time of issuing instructions to the
FUs: in arbitrating for the FUs, enabling winning instructions for is-
sue and in reading the selected instructions and their operands from
the DB.
The energy dissipation within the DB is a significant power dissipa-
tion component for modern superscalar CPUs. In this paper we ex-
amine the use of several techniques for reducing these dissipations
without compromising the cycle time of the CPU. For this purpose,
power measures are obtained using detailed cycle–by–cycle, true
hardware level simulations of the SPEC 95 benchmarks and the use
of SPICE measurements of actual 0.5 micron layouts of the DB – an
approach that is as good as it gets short of an implementation. Our
goal was to maintain a 3.3 nS cycle time for the processor despite the
proposed microarchitectural and circuit changes for reducing the DB
power. This cycle time was dictated by the delays of cache layouts in
the same technology, as used in some earlier studies. Irrespective of
the technology used, we believe our approach is fairly universal in re-
ducing dynamic dissipations in the DB.

* supported in part by DARPA through contract number FC
306020020525 under the PAC–C program, by the IEEC at SUNY–
Binghamton and the NSF through award no. MIP 9504767

In an earlier paper [4], we examined a technique for splitting up a DB
into distributed DBs tailored for specific instruction types and the sup-
pression of leading zeros in operands to save power. As wire delays

From Decode/Dispatch Stage

From function units (forwarding)
To function units (issue)

Figure 1. Black box view of the Dispatch Buffer

become significant, such a distribution may impact the cycle time ad-
versely. We focus this paper on techniques that avoid such a distribu-
tion and maintain the centralized structure of the DB, with minimal
impact on the circuit design and layouts. We examine the impact of
three main techniques, used singly or in conjunction, in this respect.
The techniques used are also applicable to other superscalar datapath
structures like the reorder buffer as well as multiported register files;
the relevant results for these other structures are not reported here.

2. REDUCING DISPATCH BUFFER
POWER: 3 APPROACHES
We examine the use of three relatively independent techniques for re-
ducing the DB power dissipations. To set the right context, it is useful
to examine the major power dissipation components within the DB.
Figure 2 shows these components, measured using our technique, av-
eraged over the SPEC 95 integer and floating point benchmarks for
the base case DB, which is a traditional design using comparators that
dissipate energy on a tag mismatch. For integer benchmarks, issue
power is the dominant component, while for the floating point bench-
marks data forwarding contributes as much power dissipation as the
issue portion, because of the higher latency of floating point opera-
tions which increases the average number of DB operand slots wait-
ing for the results. Simulation of SPEC 95 benchmarks within our ex-
perimental framework shows that on the average about 21 slots are
waiting for the results during the execution of integer benchmarks and
25 slots are waiting during the execution of floating point bench-
marks. All such slots employ the traditional pulldown comparators
(that dissipate energy on tag mismatches) in current implementations
of DBs [8].

Figure 2. Energy dissipation components of the traditional
 DB (% of total)

ÉÉ
ÉÉ
ÉÉ

ÉÉ
ÉÉ
ÉÉ

É
É

��������	�
��
 �

��
����	�
��
 �����	�
��

50.1
24.2

25.7

17.3
53.8

28.9

�������	��
������	��

We thus explore the use of fast comparators for tag matching that dis-
sipate energy mainly on a tag match as the technique that directly re-
duces the energy spent in data forwarding. We then explore the use
of zero byte encoding [1, 3, 4, 10] to reduce the number of bit lines
activated during dispatching, forwarding and issuing. Finally, we add
bit–line segmentation to reduce energy dissipations in the bit lines that
are driven. The overall energy saving realized for the DB by using all
of these techniques in combination is about 60% and this is realized
without any increase in the cycle time of the processor but with an ac-
ceptable increase in the silicon real estate for the DB.

2.1 Using Energy–Efficient Comparators in
the DB
The typical comparator circuitry used for these associative matching
in a DB is a dynamic pulldown comparator or a 8–transistor associa-
tive bitcell. Such comparators have a fast response time to allow
matching and the resulting updates to be completed within the cycle
time of the processor. All of these comparators dissipate energy on a
mismatch in any bit position. A significant amount of energy is thus
wasted in comparisons that do not locate matching entries, while little
energy (in the form of precharging) is spent in locating matching en-
tries. Typically, comparisons are enabled only for the DB entry slots
that are waiting for a result; in a cycle only a small percentage of these
slots actually match the destination address of the forwarded data. As
an example, the data collected for the simulated execution of SPEC
95 benchmarks on our system indicate that about 23 operand slots out
of the 128 that we have in our 64–entry dispatch buffer are actually
waiting for results (i.e., the comparators for these slot are enabled for
comparison). Out of these, only 2 to 4 comparators produce a match
per cycle on the average. This is clearly an energy–inefficient situa-
tion, as more energy is dissipated due to mismatches (compared to the
number of matches) with the use of traditional comparators that dissi-
pate energy on a mismatch. Similar observations are valid for re–or-
der buffers which double as physical registers (as used in the X86 im-
plementations, for example), where associative matching is used to
locate the most recently established entries for instruction destina-
tions. We propose to remedy this by designing and using fast
comparators that (predominantly) dissipate energy on a match.

Figure 3. The proposed comparator

Vdd Vdd Vdd

Vs

P

N

eval & comp

Q2

Q0
pre

A0 A0

B0 B0

A1 A1

B1 B1

A3 A3

B3 B3

A2 A2

B2 B2

pre

A5 A5

B5 B5

A4 A4

B4 B4

A7 A7

B7 B7

A6 A6

B6 B6

OUT

Q1

In theory, one can design CMOS comparators to dissipate energy dy-
namically only on a full match but these designs require a large num-
ber of transistors and/or switch slowly. Instead of choosing such a de-
sign, we opted for a comparator design that dissipates minimum
energy on (infrequent) partial mismatches in the comparand values
and dissipates an acceptable amount of energy on a full match. This
comparator consciously takes into account the characteristics of the
distribution of the physical register addresses that are compared in a
typical dispatch buffer to minimize energy dissipations for partial
matches.

Table 1 shows how comparand values are distributed and the extent
of partial matches in the values of two adjacent bits in the comparands,
averaged over the simulated execution of SPEC 95 integer and float-
ing point benchmarks, as well as the average over both the integer and
floating point benchmarks. The lower order 4 bits of both
comparands are equal in roughly 10.3% of the case, while the lower
order 6 bits match 5.54% of the time. A full match occurs 4.93% of
the time on the average. Equivalently, a mismatch occurs in the lower
order 4 bits of the comparator 89.7% of the time (=100 – 10.3). The
behavior depicted in Table 1 is a consequence of the localization of
dependencies in typical source code. This causes physical registers
from localized regions to be allocated as the destination of instructions
involved in the dependency. (The addresses of these physical regis-
ters are compared within the DB to satisfy data dependencies.) Conse-
quently, the likelihood of a match of the higher order bits of the regis-
ter addresses (i.e., the comparands) is higher. Our comparator design
directly exploits this fact by limiting dynamic energy dissipation due
to partial matches only to less than 10.3% of cases so when the lower
order 4 and 6 bits match; no energy dissipation occurs in the more fre-
quent cases of the higher order bits matching. The overall energy dis-
sipation due to partial mismatches is thus greatly reduced. Energy dis-
sipation occurs, of course, on a full match but this dissipation is
smaller than that of a comparable traditional comparators (that pull
down a precharged line only a mismatch in one or more bit positions).

Figure 3 depicts our proposed comparator for comparing two 8–bit
comparands, A7A6..A0 and B7B6..B0, where 0 is the least signifi-
cant bit. The basic circuit is a three stage domino logic, where the first
stage detects a match of the lower 4 bits of the comparands. The fol-
lowing two stages do not dissipate any energy when the lower order
4 bits do not match. The precharging signal is cut off during the evalu-
ation phase (when eval is active) and an evaluation signal is applied
to each stage of the domino logic only when the comparison is en-
abled (comp is high). The series structure P composed of 8 p–transis-
tors pass on a high voltage level (Vs, where Vs is < Vdd but higher
than lower threshold for a logic 1 level) to the gate of the n–transistor
Q1 only when the two lower order bits of the comparands match. The
series structure N turns on when the next pair of lower order bits of the
comparands (A3A2 and B3B2) match. When comparison is enabled,
the output of the first stage (driving an inverter) goes low during the
evaluation phase only when all lower order 4 bits of the comparands
match. Till such a match occurs, no dynamic energy is dissipated in
the other stages of the comparator. Transistor Q2 is needed to prevent
Q1 from turning on due to the presence of charge left over on its gate
from a prior partial match of the two lower order bits. The charge
moved from the gate of Q1 by Q2 is dissipated to ground only when
there is a subsequent match in bits 3 and 2 (which turns the structure
N on). This effectively reduces dissipations in the case when only the
two lower order bits match; this dissipation is further minimized by
keeping Vs slightly lower than Vdd. As in any series structure of n–
transistors that pull down a precharged line, the W/L ratios of the n–
devices go up progressively from the top to the bottom (ground). The
p–transistors in the structure P, the precharging transistors and the in-
verters are sized to get an acceptable response time on a match. This
comparator can respond quickly enough to let the match proceed and
allow the matching data be latched into the appropriate field of the DB
entry within the targeted cycle time of 3.3 nsec. for our 0.5 micron lay-
outs.

Table 1. Dispatch Buffer Comparator Statistics

Number of bits
matching ––> 2 LSBs 4 LSBs 6 LSBs All 8 bits
Avg, SPECint 95

Avg, SPECfp 95

Avg, all SPEC 95

% of total cases

27.2

33.1

30.5

9.8

10.7

10.3

5.7

5.4

5.6

5.6

4.4

4.9

LSB = least significant bits

The comparator of Figure 3 actually has a lower dissipation on a
match and faster response time compared to traditional parallel pull-
down comparators that discharge a precharged line on a mismatch in
any bit position. This is because the effective output loading of tradi-
tional (mismatch) comparators is high, amounting to the diffusion ca-
pacitances of 2*C n–transistors (C is the number of bits compared =
8).

2.2 Using Zero Byte Encoding
A study of data streams within superscalar datapaths as reported in [5]
shows that significant number of bytes are all zeros within operands
on most of the flow paths (dispatch stage to DB, DB to function units,
functions units to destinations and forwarding buses etc.). On the av-
erage, in the course of simulated execution of the SPEC 95 bench-
marks on cycle accurate and true register level simulators, about half
of the byte fields within operands are all zeros. This is really a conse-
quence of using small literal values, either as operands or as address
offsets, byte–level operations, operations that use masks to isolate bits
etc. Considerable energy savings are possible when bytes containing
zero are not transferred, stored or operated on explicitly. Other work
in the past for caches [10], function units [1] and scalar pipelines have
made the same observation. We extend these past work to superscalar
datapaths, where additional datapath artifacts to support out–of–order
execution can benefit from the presence of zero–valued bytes. The
DB is an example of just such an artifact.
By not writing zero bytes into the DB at the time of dispatch, energy
savings result as fewer bitlines need to be driven. Similarly, further
savings are achieved during issue by not reading out implied zero val-
ued bytes. This can be done by storing an additional bit with each byte
that indicates if the associated byte contains all zeros or not. The con-
tents of this zero indicator bit can be used to disable the word select
strobe from going to the gates of the pass transistors. By controlling
the sensitivity of the sense amps, we can also ensure that sense amp
transitions are not made when the voltage difference on differential bit
lines is below a threshold (as would be the case for the precharged bit-
line pairs associated with the bitcells whose readouts are disabled as
described above. Relevant circuit details are beyond the scope of this
paper; some circuitry is described in [5] Zero–valued bytes do not
have to be driven on the forwarding buses that run through the DB –
this is another source of energy savings that result from zero byte en-
coding.
The price paid for energy savings within the DB through the use of
zero byte encoding is in the form of an increase in the area of the DB
by about 11%. There is a very slight increase in the DB access times,
but it still allows the target cycle time of 3.3 nS for the entire datapath
to be maintained.

2.3 Using Bitline Segmentation in the DB
As mentioned earlier, the DB is essentially a register file with addi-
tional associative logic for data forwarding. The DB is written to us-
ing the normal logic for a register file at the time of dispatch, to set up
the DB entry for dispatched instructions. For each instruction dis-
patched in a cycle, a write port is needed. The only difference from
a normal register file is that the word being written to from each write
port is selected associatively (an associative search is needed to locate
free entries, i.e., words within the DB), instead of being selected
through an explicit address. At the time of instruction issue, instruc-
tions ready for execution are read out from the DB through indepen-
dent read ports. Other than the use of the wakeup and arbitration logic
to select ready entries, this readout is identical to what happens when
a normal register file is read out. Sense amps, similar to what are used
in RAMs are needed to sense the data being read out as the bit lines
are fairly long. As in a multiported RAM or register file, the bit lines
in the DB are a significant source of energy dissipation in the course
of instruction dispatching (writes) and instruction issuing (reads).
The bitlines associated with each read and write port present a high ca-
pacitive load, which consists of a component that varies linearly with
the number of rows in the DB. This component is due to the wire ca-

pacitance of the bitlines and the diffusion capacitance of the pass tran-
sistors that connect bitcells to the bit lines.

The capacitive loading presented by the bitlines in the DB can be re-
duced through the use of bitline segmentation. The entire DB is
viewed as a linear array of segments for this purpose, with consecutive
bitcell rows making up a segment. Figure 4 (a) is useful in under-
standing how bitline segmentation reduces the capacitive loading en-
countered during reads and writes from the bit line. As an example,
consider a DB with 64 rows which has been restructured into 4 seg-
ments. Each segment will then consist of 16 consecutive rows. The
original bit line, shown in the left of Figure 4 (a) is loaded by the diffu-
sion capacitance of 64 pass devices, the diffusion capacitances of the
precharging and equibrator devices, sense amp input gate capaci-
tances and the diffusion capacitances of tri–stated devices used to
drive the bit lines (during a write). In addition, there is the wire capaci-
tances of the bit line itself. In the segmented version, the bit line is split
into four segments; each segment of the bit line covers a column of the
bitcells of the rows within a segment. As a result, the capacitive load-
ing on each segment is lowered: each segment is connected to only 16
pass devices and the wire length of the bit line segment is one fourth
of the original bit line.

(b) Segmented DB

Figure 4. Bitline segmented DB

segment 0

segment 1

segment 2

segment 3

OR logic

row of segment
enable switches

one segmented
bit line

���
�
����
��

�	�
���

���	�����
���

������
	
�����	���

�������
��� ��
������

 ��	����
�

	
��	
�������

(a) Original (left) and
segmented (right) bit line

�����
�
����
��

�	�
���

“thru”
line

To read a bitcell within a segment, the bitline for that segment has to
be connected to the precharger and sense amp; for a write, the bitline
segment has to be connected to the tri–state enable devices for the bit
line driver. This is accomplished by running a “through” wire across
all of the segments (typically in a different metal layer, right over the
segmented bit lines), which is connected to the prechargers, sense amp
and tri–state drivers as in the non–segmented design. A switch is then
used to connect the segment in question to this “through” line. For the
DB, the segment switch is turned on by OR–ing the associative read
or write enable flags for the port (associated with the bitline) for all the
rows in that segment. As the effective capacitive loading on the
through line and the connected bitline segment is smaller than the ca-
pacitive loading of the unsegmented bit line, lower energy dissipation
occurs during reads or writes. The savings are further enhanced due
to the use of smaller devices for precharging, sensing and driving. On
the down side, additional energy dissipation occurs in the logic
associated with the control logic for the segment enable switch, the en-
ergy needed to drives the switches for all of the columns and the load-
ing imposed on the through line by the diffusion capacitances of the
complementary segment enabling switches. By carefully choosing

the size of a segment, the overall energy dissipations can be mini-
mized – making the size of a segment too small can actually increase
the overall energy consumption, while making the size too large de-
feats the purpose of segmentation. An optimal segment size of 8 rows
was discovered for the 64–entry DB described here.

Figure 4(b) depicts a segmented DB and shows that there is some in-
crease in the overall area of the DB due to the use of a row of segment
enable switches with each segment. For the 0.5 micron CMOS lay-
outs used here, the overall growth of the layout area of the 64–entry
DB when it was segmented into 8 segments (8 rows per segment) was
only about 5%.

3. EVALUATION METHODOLOGY AND
RESULTS
We rely on true hardware level cycle by cycle simulations to measure
the actual number of energy dissipating transitions in various parts of
the datapath. The well–known Simplescalar simulator [2] was exten-
sively modified (only 20% of the original source code is retained!) for
this purpose and the execution of the SPEC 95 benchmarks were sim-
ulated (each benchmark was run for 200 million instructions after a
200 million instructions startup phase). Detailed accounting for de-
tecting zero bytes in operands and lower level transition counting was
implemented by a separate thread. Transition counts for reads, writes,
associative addressing, FU arbitration, tag matching, data latching
and other notable events were recorded separately. Transition counts
and other data gleaned from the simulator were then fed into a power
estimation program that used dissipation energies measured using
SPICE for actual 0.5 micron layouts of key datapath components.
(The process used was a 0.5 micron 4 metal layer CMOS process,
HPCMOS–14TB; we are in the process of migrating our designs to
0.18 micron process.) Our power estimation program generated pow-
er measures in milliwatts for major energy dissipating events within
the DB for each benchmark in the SPEC 95 suite individually as well
as for the averages of the integer and floating point benchmarks and
total averages.

The configuration of the system studied was as follows. The L1 I–
cache and L1 D–cache were both 32 KBytes in capacity with a line
size of 32 Bytes, with the former being direct–mapped and the latter
being 4–way set–associative. A 4–way set–associative, integrated L2
cache with a capacity of 512 KBytes and a line size of 64 Bytes was
assumed. The size of the dispatch buffer and the re–order buffer were
kept at 64 entries and 100 entries respectively. The physical register
file for integers and floats were 128 in number each. The function
units are as follows: 4 integer units, one integer multiply/divide unit,
4 floating point multiply–add units, one floating point multiply/di-
vide unit one load unit and one store unit. The latencies were as used
in the original Simplescalar simulator. A 4–way dispatch, a and a
4–way commitment were assumed. We assumed that when a function
unit produces a 32–bit result, it will drive at most 32 bits even if wider
connections are available. We assume this to be true for the base cases
as well to make our comparisons fair.

Figure 5 summarizes the main results. Figure 5 (a) shows the effects
of the new comparator on the power dissipated during the process of
instruction forwarding and tag matching. Energy reduction is as high
as 45% in this case. However, the total DB power is reduced by only
about 12% because the comparator does not have any effect on the en-
ergy dissipated during instruction dispatch and issue (Figure 5 (b)).
Zero–byte encoding and bitline segmentation address the power re-
duction in exactly these components. Figures 5 (c) and 5 (d) show the
power dissipated during the dispatch and issue respectively and the
corresponding savings achieved by zero–byte encoding, bitline seg-
mentation and the combination of these two techniques. During dis-
patch, bitline segmentation leads to about 53% of power savings,
zero–byte encoding results in about 23% reduction, and combined
savings are more than 60%. At issue, segmentation savings are 41%,
zero–byte encoding savings are 35% and the combined power reduc-
tion is 60%. In addition, zero–byte encoding achieves extra 13% re-

duction in power dissipation during forwarding on top of what is real-
ized by deploying the new comparator. Figure 5 (e) summarizes the
results and shows the total power dissipation within the dispatch buff-
er and energy savings realizable using some combinations of the
aforementioned mechanisms. Bitline segmentation is a powerful
technique on its own, resulting in about 32% energy reduction in the
DB. Savings attributed to the use of zero–byte encoding are about
26% (this is not shown in the graph). Segmentation and zero–byte en-
coding in concert reduce the energy by more than 46%. Notice that the
total savings achieved by the two techniques is not the sum of their
individual respective savings. This is because bitline segmentation re-
duces the lengths of the bitlines which somewhat reduces the savings
achieved by zero–byte encoding. The combination of all three tech-
niques – bitline segmentation, zero–byte encoding and the use of fast,
power–efficient comparators achieve a remarkable 60% reduction in
power dissipated by the instruction dispatch buffer of a superscalar
CPU. Again, there is some correlation between the power savings
here. Since zero–byte encoding reduces the power dissipation during
forwarding by about 15%, the effects of the new comparator on pow-
er savings are a little smaller than 14% (reported above) if the new
comparator is applied to segmented DB with zero–byte encoding
mechanism.

The power reductions are achieved without compromising the cycle
time and only through a modest growth in the area of the DB (about
12%, including the new comparators, ZI logic and segmentation). Al-
though not shown in this paper, similar energy savings are realized
in alternative DB designs.

4. CONCLUSIONS
We studied three relatively independent techniques to reduce the ener-
gy dissipation in the instruction dispatch buffers of modern supersca-
lar processors. First, we proposed the use of fast comparators in for-
warding/tag matching logic that dissipate the energy mainly on the tag
matches. Second, we considered the use of zero–byte encoding to re-
duce the number of bitlines that have to be driven during instruction
dispatch and issue as well as during forwarding of the results to the
waiting instructions in the DB. Third, we evaluated power reduction
achieved by the segmentation of the bitlines within the DB. Com-

bined, these three mechanisms reduce the power dissipated by the
instruction dispatch buffer in superscalar processors by more than
60% on the average across all SPEC 95 benchmarks.

5. REFERENCES
[1] Brooks, D. and Martonosi, M., “Dynamically Exploiting

Narrow Width Operands to Improve Processor Power and
Performance”, Proc. HPCA, 1999.

[2] Burger, D., and Austin, T. M., “The SimpleScalar tool set:
Version 2.0”, Tech. Report, Dept. of CS, Univ. of
Wisconsin–Madison, June 1997 and documentation for all
Simplescalar releases (through version 3.0).

[3] Canal R., Gonzales A., and Smith J., “Very Low Power
Pipelines using Significance Compression”, Micro33, Dec.
2000.

[4] Ghose, K., “Reducing Energy Requirements for Instruction
Issue and Dispatch in Superscalar Microprocessors,” Proc.
ISLPED, 2000, July 2000, pp.231–234.

[5] Ghose K., Ponomarev D., Kucuk G., Flinders A., Kogge P.,
and Toomarian N.,”Exploiting Bit–slice Inactivities for
Reducing Energy Requirements of Superscalar Processors,” in
Proc. of Kool Chips Workshop, Micro–33, 2000.

[6] Gonzalez, R., and Horowitz, M., “Energy dissipation in
general purpose microprocessors”, IEEE Journal of Solid
State Circuits, 31(9): September 1996, pp 1277–1284.

[7] Microprocessor Report, various issues, 1996–1999.
[8] Palacharla, S., Jouppi, N. P. and Smith, J.E., “Quantifying the

complexity of superscalar processors”, Technical report
CS–TR–96–1308, Dept. of CS, Univ. of Wisconsin, 1996.

[9] Tiwari, V. et al, “Reducing power in high–performance
microprocessors”, in 35th Design Automation Conference,
1998.

[10] Villa, L., Zhang, M. and Asanovic, K., “Dynamic Zero
Compression for Cache Energy Reduction”, Micro–33, Dec.
2000.

[11] Buyuktosunoglu, A et al, “An Adaptive Issue Queue for
Reduced Power at High Performance”, Proc. PACS
workshop, held in conjunction with the 9–th ASPLOS, 2000.

ÍÍ
ÍÍ
ÍÍÍÍÍ

Í
Í
Í
Í
ÍÍ
ÍÍ ÍÍÍÍÍÍÍ

Í
ÍÍ
Í
ÍÍÍÍ ÍÍÍ!

�!

"!!

"�!

!

"!!

#!!

$!!

%!!

Figure 5. Power Savings Achieved in the Dispatch Buffer

����	���� ����������
�

�

�
�

��
�

�

�
�&

�
''

(�
��

��
� �

�)�
�� ��

�

���
�

��

$�

��
��

�

��
��

��
��
�

�*
�

#

�

��
��

��
#�

�
�

��

�

�
��
��

�
��
��

��
�	+
�

�

�
�
	+
�

�

+
��

�
��

�,

-�

Í
Í
Í
Í
ÍÍ
ÍÍ
ÍÍ
ÍÍ

Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ

Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ
ÍÍ
ÍÍ

Í
Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ

Í
Í

Í
Í
Í
Í
ÍÍ
ÍÍ

!

"!!

#!!

$!!

%!!

�!!

.!!

	/�0	1
���	�
��
	���������
�	������	��	�����	 ������	����������
�2	�
��
	���������	�
���
��

�	���	3�

	���
����

����	���� ����������
�

Í
Í
Í
Í
ÍÍ
ÍÍ
ÍÍ
ÍÍ

Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ

Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ
ÍÍ
ÍÍ

Í
Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ

Í
Í

Í
Í
Í
Í
ÍÍ
ÍÍ

!

#!!

%!!

.!!

'!!

"!!!

�

�
�

��
�

�

�
�&

�
''

(�
��

��
�

�

�)�
��

��

� ���
�

��

$�

��
��

�

��
��

��
��
�

�*
�

#

�

��
��

��
#�

�
�

��

�

�
��
��

�
��
��

��
�	+
�

�

�
�
	+
�

�

+
��

�
��

�,

����������
�4-� Í ����������
�	4	-�	4	���	�
���
��

	/�0	�
��
	���������
�	������	���	��	��
���	����
����
�	�������

�

�
�

��
�

�

�
�&

�
''

(�
��

��
� �

�)�
�� ��

�

���
�

��

$�

��
��

�
��

��
��

��
�

�*
�

#

�

��
��

��
#�

�
�

��

�

�
��
��

�
��
��

��
�	+
�

�

�
�
	+
�

�

+
��

�
��

/�0	�
��
	���������
�	������	���	��	��
���	�

��
����

�
�����
���	 �
���
��

 ���	�
���
��

�,

Í ����������
�4-�

����	���� ����������
�

�

�
�

��
�

�

�
�&

�
''

(�
��

��
� �

�)�
�� ��

�

���
�

��

$�

��
��

�

��
��

��
��
�

�*
�

#

�

��
��

��
#�

�
�

��

�

�
��
��

�
��
��

��
�	+
�

�

�
�
	+
�

�

+
��

�
��

�,

-�

	/�0	�
��
	���������
�	������	���	��	��
���	����
����
�	�����������

����������
�4-�ÍÍ

�,

!

#!!

%!!

.!!

'!!

"!!!

�

�
�

��
�

�

�
�&

�
''

(�
��

��
�

�

�)�
�� ��

�

���
�

��

$�

��
��

�
��

��
��

��
�

�*
�

#

�

��
��

��
#�

�
�

��

�

�
��
��

�
��
��

��
�	+
�

�

�
�
	+
�

�

+
��

�
��

���	�
���
��

/ 0	1
���	�
��
	���������
�	������	���	��

�
�����
���	 �
���
��

