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Abstract—One of the benefits of multiprogramming in con-
ventional systems is to allow effective use of resources. For ex-
ample, when one application blocks for I/O, another can use the
available CPU time, improving throughput and performance.
In a multithreaded environment, contention for resources
can lead to substantial interference between applications: an
application with dependencies can suffer if a thread holding
a critical dependency is not scheduled in time. In the HPC
community, this problem is often addressed by reservation-
based schedulers such as Gang scheduling. However, such
schedulers cannot reap the benefits of resource multiplexing
leading to underutilization of the resources and lower overall
throughput of the system. In this paper, we explore the
tradeoff between contention and reservation in multithreaded
application scheduling on multicore systems. We show that
neither approach is optimal under all conditions. We propose
Controlled Contention (CC) — a scheduling algorithm that
allows controlled contention for resources, allowing the benefits
of contention while supporting limited reservation to reduce
interference. CC provides around 25% improvement in relative
speedup over the Completely Fair Scheduler (CFS). We also
show that CC can significantly benefit from application-level
interference management while providing fairness that is not
possible to achieve with application-level adaptation alone.
The combined approach (CC with application-level adaptation)
provides an average of 21% improvement in throughput, 35%
improvement in relative speedup and 36% reduction in energy
for the application mixes we consider.

Keywords-PDES, Multicore Application scheduling, Energy-
efficient

I. INTRODUCTION

With the end of Dennard’s scaling, microprocessor man-
ufacturers have resorted to multicore designs to effectively
use the available transistor budgets. Today, commodity pro-
cessing nodes at both the high-end (e.g., High Performance
Computing and Data Center nodes) and the low-end (e.g.,
smart phones and tablets) use multicore CPUs. It is projected
that the number of cores available on a chip will continue
to increase, resulting in manycore architectures [2]. In fact,
manycore chips are already being offered commercially for
special purpose applications [29] and accelerators [24].

A. Reservation vs Contention Scheduling for Multicore Sys-
tems

As the number of cores continues to increase, multi-
core systems are becoming similar to full-fledged parallel

computing machines with tight memory integration. At the
same time, the Operating System (OS) on these machines is
based on traditional Linux or Windows kernels. These OSes
were not originally designed for such high performance
environments. In particular, they use scheduling policies
that allow unrestricted contention by applications for the
available resources. This approach is inherited from single-
threaded environments where it can significantly improve
resource utilization. However, since multicores have an
increasing proportion of multithreaded workloads, uncon-
strained contention can cause substantial interference when
some application threads are not scheduled [20], [32], [26],
[21]. The performance slowdowns resulting from interfer-
ence vary depending on the characteristics of the application.
However, they can far exceed the proportional slowdown
typically seen with sequential applications. In particular,
for tightly coupled applications with high dependencies, the
slowdown due to interference can be dramatic [28].

The impact of interference on application performance
is known in the parallel processing community. A typical
solution to interference in HPC environments is to control
application scheduling and resource allocation by coarse-
grained resource reservation. In particular, one popular
technique to control interference is gang-scheduling [11],
which ensures that all the threads belonging to an ap-
plication are co-scheduled together, without interference.
Gang scheduling effectively provides time-multiplexing of
the available resources among the competing applications,
rather than among individual threads. Although interference
is controlled, the coarse granularity of the resource allocation
makes it impossible to dynamically multiplex the resources
in situations where this multiplexing is beneficial. For
example, an I/O-bound application can efficiently execute
by running concurrently with a compute-bound application
using the same resources. Conversely, providing the I/O
bound application with an exclusive scheduling slice can
lead to inefficiencies, as most of the cores would remain
idle for the duration of the slice.

B. Proposed Approach: Controlled Contention

Effective scheduling for multicore platforms must balance
two conflicting requirements: reservation to control interfer-



ence and contention to allow effective resource multiplexing.
In this paper, we propose Controlled Contention (CC) — a
scheduling algorithm that balances contention and reserva-
tion. Specifically, it allows multiple applications to be co-
scheduled when they can tolerate interference. However, CC
controls the degree of co-scheduling to limit interference and
at the same time allow a healthy degree of competition for
resources to improve utilization and application throughput.

A critical aspect of CC is the ability to learn the applica-
tion behavior in order to determine which applications can be
co-scheduled. Thus, a component of the framework monitors
application behavior to estimate its resource demand profile.
CC then takes the set of active applications and determines
which ones can be co-scheduled together without causing
destructive interference. Only subsets of applications that fit
this profile are allowed to execute in each time slice. We
describe the proposed approach in Section III.

C. Augmenting CC with Application-Level Adaptation

Recently, we proposed application-level adaptation for
managing interference in environments with commodity OS
schedulers that use contention. In particular, the application
itself monitors interference, and if detected, remaps itself
to use fewer threads while maintaining data locality [28]
using a policy we call Locality-Aware Dynamic Mapping
(LADM). For example, if interference is detected at two
cores, the application deactivates two threads and remaps
the work assigned to them to the other threads. The ap-
proach also detects the availability of extra resources and
takes advantage of them when they become available. We
demonstrated that LADM leads to effective management of
interference when integrated with a Parallel Discrete Event
Simulation (PDES) kernel [14]. While we used it for a
specific application, the LADM pattern is general and can
be applied to other applications, with different application-
specific remapping policies.

LADM allows applications to adapt in the presence of
uncontrolled interference. However, on its own, application-
level scheduling can lead to significant unfairness, as adap-
tive applications relinquish the resources and non-adaptive
ones continue to use them. In such situations, it is necessary
to involve the OS to allow fair scheduling of the available
resources. We also explore the combination of application-
level scheduling with CC to further improve efficiency. The
presence of some adaptive applications allows the scheduler
to more aggressively schedule applications. In periods where
interference arises, adaptive applications can locally reduce
their resource demands and reach an effective schedule.

Conceptually, CC attempts to create separation in time
such that at a given time, only a compatible set of applica-
tions are scheduled. In contrast, application-level adaptation
creates separation in space (across resources) when un-
healthy contention arises; adaptive applications reduce their
resource footprint to avoid interference. It also allows CC to
more aggressively increase contention relying on LADM to

recover when the degree of contention proves unhealthy. We
show that the presence of even a small number of adaptive
applications can significantly improve performance of CC.

In summary, the contributions of this paper are:
1) We propose CC — a scheduling algorithm that bal-

ances contention and reservation. CC improves re-
source utilization by allowing contention, but keeps
this contention at a productive level by using reser-
vation. CC identifies applications that can be co-
scheduled and allows only such subgroups to be
scheduled together in an OS time slice.

2) We compare the performance of CC to the Linux
Completely Fair Scheduler (CFS), Gang Scheduling
and CFS with application-level adaptation. Combining
CC with LADM achieves an average of 35% im-
provement in relative speedup and 21% improvement
in throughput compared to CFS, while improving
fairness.

3) We evaluate the impact of CC and CC with LADM on
the energy efficiency of the system and demonstrate an
improvement of up to 36% for the application mixes
we considered.

The rest of the paper is organized as follows. Section II
discusses the limitations of CFS and Gang scheduling in
terms of managing the interference. Section III presents the
details of our approaches. In Section IV, we provide metrics
to measure the performance of our scheduling schemes. Sec-
tion V overviews the experimental setup, while Section VI
presents experimental results. Finally, Section VII describes
the related work, and Section VIII offers our concluding
remarks.

II. MOTIVATION

To illustrate the tradeoff between reservation and con-
tention, Figure 1 shows the performance of the Parallel Dis-
crete Event Simulation (PDES) application in the presence of
interference from external loads. PDES is an important ap-
plication with a fine-grained and dynamic dependency struc-
ture; as such it represents an example of application most
sensitive to interference. In each experiment, we started a 48-
way multithreaded simulation on an 48-core AMD Magny-
Cours machine1. The simulation was executed concurrently
with a different number of compute-bound external loads
(Figure 1(a)), and I/O-bound external loads (Figure 1(b))
respectively. In particular, the compute-bound external load
performs computation within a tight loop, while the I/O-
bound external load repeatedly writes a string to a file. We
experimented with both gang scheduling and CFS using
SCHED NORMAL scheduling policy. For gang scheduling,

1The AMD Magny-Cours consists of four AMD Opteron processors,
with each having two six-core dies for a total of 48 cores. The processors
are connected with custom AMD Hyper-Transport links. They experience
NUMA delays both at the level of the caches (cores sharing the same die
share a nearby tile of the cache) as well as the memory.



(a) Compute Bound External Loads (b) I/O Bound External Loads

Figure 1. PDES Performance Under Interference

we used the Simple Linux Utility Resource Management
(SLURM) [31] implementation.

As can be seen in Figure 1(a), when the interference
caused by compute-bound external loads is limited (e.g. 1
external load), CFS achieves better performance than gang
scheduling. This is because gang scheduling keeps some
cores idle when the external loads are scheduled, leading
to low CPU utilization. On the other hand, CFS attempts to
maximize throughput by co-scheduling applications. When
the contention on CPUs becomes high, however, it is more
efficient to separate applications using gang scheduling.
On the other hand, CFS can effectively co-schedule the
PDES simulation with I/O-bound external loads, as shown
in Figure 1(b).

III. CONTROLLED CONTENTION SCHEDULING

We have seen that reservation pessimistically separates
applications even when they can effectively interleave the
use of the resources. Under those circumstances, reservation
slows down performance, reduces throughput and harms
energy-efficiency. In contrast, contention can lead to signif-
icant interference, thus substantially harming performance.
The goal of the proposed scheduler is to find the balance
between contention and reservation in allocating resources
in a multicore environment.

Starting from a contention-based scheduler such as the
Linux CFS, CC scheduling introduces reservation in a
way similar to that used by Gang Scheduling. Like Gang
Scheduling, CC co-schedules all the threads of the appli-
cation together. However, rather than scheduling one appli-
cation in each slice, CC allows multiple applications to be
co-scheduled when it determines that they can effectively
co-exist. Thus, CC represents a hybrid approach, combining
the strengths of reservation and contention.

Within this general philosophy, there are two primary
components of CC: (1) Application characterization; (2)
Scheduling decisions. We discuss these two components in
the remainder of this section.

A. Determining Application Resource Demands

The degree of interference that is tolerated by an appli-
cation depends on its nature. A highly-parallel application
is generally resilient to interference, while an application
with fine-grained dependencies can suffer from interference
significantly. This is because critical dependencies could be
held by threads that are context switched due to the lack
of an available hardware execution context, preventing the
whole application from making progress. The problem is
exacerbated if applications use busy waiting synchronization
primitives such as spin-locks or fuzzy barriers.

Rather than attempting to discern the internal behavior
of an application to determine tolerance to interference,
we focus on the application resource demand. Although
resources include CPU time, memory, I/O bandwidth, and
others, in this paper we focus on contention for processing
time. The approach can generalize to other resources or
combinations of resources. The scheduling decision can then
examine the resource demands of the different applications
to decide whether they can be co-scheduled in the same time
slice.

We elected to monitor and characterize resource demands
of applications during run-time, rather than through static
analysis of off-line profiling. The resource usage of an
application may change over time as it goes through different
phases of its execution. Thus, it is important to continue
monitoring to build an accurate estimate of resource usage.
We use a background process for this purpose. The con-
tention on CPUs can be reduced by separating applications
with high CPU usages. To improve the system throughput,
I/O-bound applications with low CPU usage can be co-
scheduled with CPU-intensive applications.

To gauge the nature of an application from the standpoint
of scheduling decisions, we define the weight of an applica-
tion as the number of the application’s threads (or processes)
with high CPU demand. For example, if an application
consists of 48 threads, but only 30 threads have high CPU
usage, then the weight of this application is estimated as 30.



As a result, a CPU-intensive application is normally assigned
a high weight, while another application with the same
thread count but with an I/O bound behavior is assigned
a low weight.

We use a simple policy to estimate the number of CPU-
bound threads in an application. A thread is considered
to have high CPU usage when its CPU usage exceeds a
predefined threshold. We used the value of 20% based on
our experimental observations. In other words, a thread that
requires 20% or more of the CPU time is considered CPU-
bound, whereas a thread with a CPU requirement of less than
20% is considered to be I/O-bound. To control the degree
of contention, we allow the scheduler to decide the number
of compute-bound threads it will tolerate using a threshold
we call the Degree of Contention (or DC threshold), as
explained below.

We note that this approach generalizes to other resources
or combinations of resources. We also note that more
accurate characterization of resource demands (e.g., using
a more continuous classification of resource requirements)
is possible and could lead to finer-grain control of the
scheduling.

B. Making CC Scheduling Decisions

Given the estimates of the resource usage (CPU usage
for our implementation), we now discuss how the scheduling
decisions are made. The combined resource demand for a set
of applications is obtained by summing the estimate of the
demands of each individual application. Applications may be
co-scheduled in the same time slice as long as their com-
bined number of CPU-bound threads is below DC threshold
which can be set to balance contention and reservation. If
the DC value is low, contention is not accepted, and CC
behaves similar to Gang scheduling. On the other hand, if
DC is set very high, all applications can be co-scheduled
and CC behaves similar to CFS. In the middle of these two
extremes, a family of schedulers exist varying in the balance
between contention and reservation.

For a given DC value, at each time slice, the scheduler
selects a group of applications to run, where the sum of
selected applications’ weights is not greater than the value of
DC. The selected applications are then assigned a time slice,
and are co-scheduled. The behavior of the co-scheduled
applications is monitored to update the estimate of their
resource demand.

If some application completes before the assigned time
slice expires, the scheduler looks for a candidate application
from the list of suspended applications, with the purpose of
maximizing the resource utilization. The sum of weights be-
tween the candidate application and all running applications
is calculated. If the sum is below the value of DC, then the
candidate application is scheduled for the rest of the time
slice.

In addition, to prevent starvation, the scheduler main-
tains a counter for each application. The counter records

the number of time slices that have been assigned to the
corresponding application. When the scheduler searches for
applications to schedule, the lookup starts from the applica-
tion whose counter has the lowest value. The counter value is
periodically aged to ensure that longer running applications
are not unfairly treated when new applications arrive.

App 
1

Lowest Counter 
Value

Time Slice 1
Running

Suspend

Highest Counter 
Value

App 
2

App 
3

App 
4

App 
2

Lowest Counter 
Value

Time Slice 2

Highest Counter 
Value

App 
1

App 
4

App 
3

Applications are re-ordered based on the 
updated counter values

Figure 2. Example of Scheduling Four Applications

Figure 2 illustrates how CC schedules four applications.
Recall that the background process periodically monitors
the CPU usage of each application, and updates each ap-
plication’s weight. Suppose that the weights of the first, the
second, the third and the fourth applications are 20, 43, 20,
and 5 respectively. In addition, we assume that the value of
DC is set as 48, and the counter of each application is set as
0 before the start of the first time slice. In this example, the
first, the third and the fourth applications are co-executed
during the first time slice. At the end of the first time slice,
the counter of each of these three applications increases by
1. For the next slice, the second application has a higher
priority to get scheduled and is scheduled with the fourth
application in the next time-slice.

IV. PERFORMANCE METRICS

In this section, we describe metrics that we use to evaluate
the performance of the proposed schedulers. Specifically,
we define three performance metrics: Fairness, System
Throughput, and Relative Speedup.

A. Fairness

In OS schedulers, fairness in resource allocation among
applications is a key design goal. Under fair operation and
assuming flat priority, each application receives the amount
of resources approximately proportional to its resource de-
mands. As such, starvation can be prevented [18], ensuring
that all co-located applications experience similar perfor-
mance slowdown [10], [13]. On the other hand, low fairness
leads to unfair resource allocation among applications. As
a result, some applications experience worse performance
slowdown than others.

We quantify the fairness by first calculating the relative
slowdown of each application. An application j’s relative
slowdown Sj is obtained by dividing the execution time of



application j under scheduling by the execution time when
it runs alone without interference. The fairness among n
applications running concurrently is computed as the Jain’s
fairness index [15] (shown in Equation 1) applied to the
relative slowdown. The value of the fairness ranges between
0 and 1, and higher value is better.

Fairness =
(
∑n

j=1 Sj)
2

n×
∑n

j=1 S
2
j

(1)

B. System Throughput

Fairness is not sufficient to measure the overall per-
formance of co-located applications. As an example, gang
scheduling can achieve high fairness among applications, but
it results in low resource utilization [30] and higher slow-
down. In this subsection, we define the second performance
metric, called System Throughput (ST).

ST is defined as the number of completed applications
per time unit. Thus, the higher values of ST mean that
the applications are scheduled more efficiently. We derive
ST from a difinition proposed by Eyerman et al. [10].
Equation 2 shows ST for the situation with n applications
running concurrently. Let Tinter,j be the runtime of the
application j under interference, and Tsolo,j be the runtime
of the application executing solo j without interference.
Tsolo,j

Tinter,j
refers to the application j’s fraction completed in

solo runtime in the presence of interference. Effectively, this
metric normalizes the progress of the application j under
interference. ST is obtained by summing the normalized
progress of each application.

ST =

n∑
j=1

Tsolo,j

Tinter,j
(2)

C. Relative Speedup

Finally, to better compare the performance of different
approaches, we propose another metric, called Relative
Speedup (RS), to compare different scheduling approaches.
RS is derived from the Fair Speedup metric proposed
by Chang et al. [7]. As shown in Equation 3, the RS
of one scheduling approach against another (the baseline
scheme) is obtained by calculating the harmonic mean of
each application’s speedup (n applications in total). Higher
RS values represent more efficient schedulers.

RS(approach) =
n∑n

j=1
Tinter,j(approach)
Tinter,j(baseline)

(3)

V. EXPERIMENTAL FRAMEWORK

Most experiments reported here were conducted on the
48-core AMD Magny-Cours machine described in the pre-
vious section. The remaining experiments were performed
on a 16-core Intel SandyBridge machine to enable measure-
ment of energy consumption. For the SandyBridge machine
with Hyper-Threading enabled, each core can execute two

simultaneous threads. In our experiments, we used ten
applications with different characteristics. Eight of these
benchmarks were chosen from PARSEC 3.0 benchmark
suite [4]. PARSEC contains several multithreaded programs
that have different computational profiles selected from
various application domains. In addition, we use two flavors
of PDES simulator: (1) FM: a baseline version which uses
Fixed Mapping (FM) of the work to threads, and is highly
susceptible to interference; and (2) LADM: a version that
implements the Locality Aware Dynamic Mapping (LADM)
policy that reduces resource demands when interference is
detected.

For each application, we first identified its optimal thread
configuration that achieved the best performance in the
absence of interference on the Magny-Cours machine (as
shown in Table I) and the Intel SandyBridge platform
(as shown in Table II) respectively. We then used these
configurations in our experiments.

VI. PERFORMANCE EVALUATION

A. Evaluation of CC Scheduling

We first evaluate the performance of the CC scheduler on
the Magny-Cours with different values of the DC threshold,
which controls the degree of contention as described in
Section III. In this first experiment, we ran 9 applications
concurrently: FM and eight PARSEC benchmarks. We used
these workloads to measure the relative speedup of CC
against CFS. As shown in Figure 3, DC values of 48 and 29
achieve the best performance on the AMD Magny-Cours and
the Intel SandyBridge platforms respectively. Thus, we used
these respective thresholds in the remaining experiments.

In the next experiment, we evaluate the performance of
CC on the AMD Magny-Cours, as shown in Figure 4. In this
experiment, we co-executed 2, 4, 6, 8, and 10 applications
respectively. For the cases of 2, 4, 6, and 8 applications,
each experiment consisted of 10 runs, with each having
different group of applications. The applications in each run
were randomly selected from PARSEC suite. Figure 4(a)
shows the average system throughput for each approach,
while Figure 4(b) shows the corresponding average fairness.
Figure 4(c) shows the relative speedup of each approach
against CFS. Gang scheduling exhibits the best fairness, but
leads to poor system throughput. On the other hand, CC
achieves 25% average improvement in relative speedup (and
around 10% improvement in throughput) compared to CFS,
with better fairness.

B. Effect of Application-Level Adaptation

Recall that application-level adaptation is an interference
management approach which adjusts the number of active
threads to the available cores and remaps the work ac-
cordingtly [28]. LADM does not need scheduling support,
but has two drawbacks: (1) applications that implement
LADM suffer unfairness as they adapt their demands down,
while non-adaptive applications do not; (2) applications need



(a) AMD Magny-Cours (b) Intel SandyBridge Platform

Figure 3. Impact of DC

Table I
OPTIMAL THREAD COUNT AND CORRESPONDING RUNTIME WITHOUT

INTERFERENCE ON THE MAGNY-COURS

Application Optimal Thread Count Runtime (seconds)
FM 48 33

LADM 48 33
Blackscholes 48 47

Bodytrack 48 35
Canneal 32 109
Dedup 8 8

Fluidanimate 32 58
Streamcluster 8 192

Swaptions 48 18
x264 32 13

Table II
OPTIMAL THREAD COUNT AND CORRESPONDING RUNTIME WITHOUT

INTERFERENCE ON THE 16-CORE MACHINE

Application Optimal Thread Count Runtime (seconds)
FM 32 34

LADM 32 33
Blackscholes 24 74

Bodytrack 24 59
Canneal 24 159
Dedup 8 17

Fluidanimate 32 67
Streamcluster 24 90

Swaptions 32 38
x264 24 22

to be individually modified to use the LADM pattern. In
contrast, an OS scheduling approach can accommodate all
applications and does not rely on application cooperation.
Thus, it is interesting to see if a scheduling approach can
benefit from the support of application-level adaptation to
provide better performance.

In the next experiment, we compare the performance
of application-level adaptation (LADM) with that of CC.
Note that in all the experiments that use LADM, only one
application uses it (PDES); the other applications were not

modified. The CC-only experiments use the baseline PDES
simulator without LADM, and kept other applications un-
changed. Finally, we evaluate the performance of combining
LADM with CC (we call this joint adaptation) to reap the
benefits of both approaches.

As shown in Figure 5, LADM performs better than CC
in the presence of low interference (e.g. two co-located
applications), but becomes worse under high interference
(e.g. eight co-located applications). In addition, the joint
solution achieves the best performance for the case of 4,
6, 8, and 10 co-located applications. However, it performs
slightly worse than LADM for the case of two co-located
applications. The conclusion from these results is that under
the limited interference it is sufficient to rely on application-
level adaptation, while for higher degrees of interference the
joint approach provides significant benefits. The joint ap-
proach provides an average of 35% improvement in relative
speedup (across all workloads) and 21% improvement in
throughput compared to CFS.

Figure 6(a), Figure 6(b), Figure 6(c) and Figure 6(d) show
fairness and system throughput of each application group
for the scenarios of 2, 4, 6, and 8 co-located applications
respectively. In particular, we compare the performance
of joint adaptation against using LADM alone and gang
scheduling. The average fairness and system throughput are
also plotted in each figure. Gang scheduling achieves the best
fairness, but leads to poor system throughput. In addition,
the performance gain of the joint approach increases with
the degree of interference. For example, for the case of
8 co-located applications, the joint approach achieves 10%
improvement in performance compared to LADM alone.

C. Impact on Energy Consumption

Finally, we evaluate the energy impact of each scheduling
approach on the 16-core Intel SandyBridge platform, as
shown in Figure 7. The platform provides an interface, called
the Running Average Power Limit (RAPL), allowing the user
to configure and read energy consumption of processors and
memory. In particular, we used a package called likwid-



(a) Average System Throughput (b) Average Fairness (c) Average Relative Speedup

Figure 4. Performance of CC on the AMD Magny-Cours

(a) Average System Throughput (b) Average Fairness (c) Average Relative Speedup

Figure 5. Performance of Joint Adaptation on the AMD Magny-Cours

powermeter [25] to measure the energy consumption of the
CPU cores and DRAMs during the execution of applications.
In this experiment, we measured the energy consumption of
each approach for the case of 2, 4, 6, 8, and 10 co-located
applications respectively.

As shown in Figure 7, the joint approach provides up to
36% reduction in energy compared to CFS. CFS attempts
to maximize the resource utilization without managing the
interference. As a result, CFS causes longer execution time
of applications, resulting in more energy consumption as
well. Figure 7 also shows that gang scheduling consumes
more energy than the joint approach. This is because gang
scheduling leaves some cores idle while these idle cores also
consume energy.

VII. RELATED WORK

Shared memory parallel applications typically have de-
pendencies between executing threads [28], [23]. Thus, when
interference occurs, active threads have to wait for context
switched ones before continuing to execute. The pace of
execution can be substantially limited by critical path depen-
dencies on suspended threads. As a result, the performance
of these applications can be substantially harmed [20], [26],

Figure 7. Energy Consumption on the Intel SandyBridge Platform

[21]. Although we focus on CPU interference, it is possible
to consider interference on other resources such as I/O [9]
or network bandwidth [6] simultaneously.

Two application-level approaches are widely used to bal-
ance workloads of threads at run-time: work-sharing and
work-stealing. In work-sharing, when a thread completes its
task, it grabs a new one from a central work pool shared
across all threads [1]. In contrast, in work-stealing scheme,



(a) 2 Applications (b) 4 Applications

(c) 6 Applications (d) 8 Applications

Figure 6. Performance of Each Application Group on the AMD Magny-Cours

once a thread finishes its tasks, it steals other threads’
tasks [12]. For example, Ribic et al. [22] proposed an energy-
efficient work-stealing framework capable of adjusting the
speed of each thread through Dynamic Voltage and Fre-
quency Scaling (DVFS). As a result, a significant energy sav-
ing can be achieved with minimal performance loss. Though
some applications benefit from work-stealing, it does not
generalize to all applications; for example, for large PDES
simulation, work stealing increases the critical path length
of the simulation [27]. Work-sharing and work-stealing are
load balancing approaches, thus neither approach can solve
the interference problem unless a context switched thread
does not hold any dependencies on partially executed tasks.

A. Scheduling Level Approaches

Some OS scheduling approaches have been proposed to
manage interference. Gang scheduling [11] can mitigate the
effect of interference by co-scheduling threads belonging to
an application together. Conventional gang scheduling [11]
separates applications in time to eliminate interference,
however, this approach reduces system throughput and leads
to poor performance of I/O-bound applications [17]. To
increase system throughput, Wiseman et al. [30] proposed a
paired gang scheduling approach where the threads of two
jobs can be scheduled in the same gang as long as there

are sufficient cores; Slurm implements this version of gang
scheduling by allowing multiple applications as long as there
are sufficient cores to accommodate all their threads without
interference.

Zhuravlev et al. [32] proposed a scheduling algorithm to
reduce the contention among applications on the shared last
level of cache (LLC). The LLC miss rate of each application
was monitored during its lifetime. The scheduler distributed
applications across cores, ensuring that each shared cache
has similar miss rate.

In the context of data centers, Delimitrou et al. [8]
proposed an interference-aware scheduling algorithm for
heterogeneous datacenters. After a short period of profiling,
each incoming application was classified in terms of similar-
ities with previously scheduled applications. A classification
algorithm predicted the optimal server configuration capable
of maximizing the performance of application. After classi-
fication, the applications were scheduled across servers, with
the purpose of minimizing interference and increasing server
utilization.

Kishore et al. [16] proposed a framework, called ADAPT,
to co-schedule multi-threaded applications on multi-core
platforms. The framework consisted of two allocators: core
allocator and policy allocator. At run time, the resource
usage of each program was periodically monitored by a



background process. The core allocator first predicts the
performance loss of each program in the presence of inter-
ference under different core configurations with respect to
memory access latencies, and then selected an appropriate
thread-to-core assignment. After the core allocation, the
policy allocator selected appropriate memory allocation and
scheduling policies for each program. The framework is fo-
cused on memory locality rather than managing interference.
We believe that this approach is complementary to CC and
can be combined with it for additional performance benefits.

Bu et al. [5] developed a model to predict the performance
of a MapReduce task under the contention of the CPU
and I/O resources. In terms of this model, a MapReduce
scheduling algorithm was developed to reduce the impact
of interference among applications and to preserve task data
locality. Bhadauria et al. [3] proposed a resource-aware co-
scheduling algorithm that was capable of improving overall
performance of applications and reducing power consump-
tion. The key idea of this algorithm was to co-schedule
applications having high resource consumption with ones
having low resource consumption.

Mars et al. [19] proposed a co-scheduling algorithm on
multi-core platforms. An application’s sensitivity to interfer-
ence was first characterized offline in terms of the difference
between the application’s IPC without interference and its
IPC under interference. An application with high sensitivity
was co-scheduled with the one having low sensitivity. In
contrast, our approach is completely online. The work bears
similarity in its attempt to allow compatible workloads to
be co-scheduled. However, our approach in determining
application compatibility and selecting co-scheduled appli-
cations is simultaneously more accurate and more flexible.
Moreover, our work considers the possibility of combining
application level adaptation with OS scheduling.

VIII. CONCLUDING REMARKS

In this paper, we examined the problem of scheduling
for multi-core environments. Conventional schedulers such
as the Linux CFS allow unlimited contention between active
applications. In contrast, HPC schedulers use coarse-grained
scheduling policies based on reservation to ensure that little
contention for resources arises and no interference occurs.
The basic tenet of our work is that controlled contention
offers a more effective balance between improving resource
utilization (through contention) and avoiding destructive
interference (through reservation). We showed that this
hybrid approach can outperform both pure contention and
reservation, and can also provide higher energy-efficiency.

We also considered how CC interacts with a recently pro-
posed application-level interference management approach
(LADM) where applications reduce their resource demand
when interference is detected. We discovered that even with
one application out of ten supporting LADM, the combi-
nation of CC and LADM provides additional performance

advantages while avoiding the weakness of using LADM
alone.
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