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Abstract

We consider two approaches for reducing the
complexity and power dissipation in processors that use
separate register file to maintain committed register values.
The first approach relies on a distributed implementation of
the Reorder Buffer (ROB) that spreads the centralized ROB
structure across the function units (FUs), with each
distributed component sized to match the FU workload and
with one write port and two read ports on each component.
The second approach combines the use of the previously
proposed retention latches and a distributed ROB
implementation that uses minimally–ported distributed
components.  Such a combination avoids any read and write
port conflicts on the distributed ROB components (with the
exception of possible port conflicts in the course of
commitment) and does not incur the associated performance
degradation.  Our designs are evaluated using the simulation
of the SPEC 2000 benchmarks and  SPICE simulations of the
actual ROB layouts in 0.18 micron process. The ROB power
savings of up to 49% can be realized with only 1.7%
performance loss on the average.

1.  Introduction

Power dissipation was traditionally considered a major
constraint in the domain of mobile and embedded devices,
including notebook computers, PDAs, cellular phones, and
pagers where the portability requirements place severe
restrictions on the size, weight and especially the battery life.
In contrast to the embedded devices, high performance
systems and desktop environments in general enjoy
unlimited power supply from the external sources and power
dissipation only affects system reliability and the design of
cooling artifacts because the energy consumed by a
microprocessor is converted into heat, which must be
removed from the surface of a processor die.  Up until
recently this has not been a significant concern because large
packages, fans, and heat sinks were capable of dissipating
the generated heat.  However, as smaller and thinner
enclosures are used for packaging, and density and size of the
chips continue to increase due to the use of smaller
transistors and never–ending architectural innovations, it is
becoming increasingly difficult to design cooling facilities
without incurring significant costs.  For high–performance

processors, the costs of cooling solutions are rising at $1–$3
or more per watt of dissipated power [18].  The exponential
rise in the power density means that the cooling costs are also
rising exponentially, threatening to become a major
impediment to the deployment of new systems.

Furthermore, the areal energy density distribution
across a typical chip is highly skewed, being lower over the
on–chip caches and significantly higher in components of
the dynamic instruction scheduling logic and within the
register renaming units, resulting in the creation of the hot
spots on the processor die. High operating temperatures,
especially within the hot spots, significantly reduce lifetime
and reliability of the integrated circuits because several
silicon failure mechanisms, such as electromigration,
junction fatigue, and gate dielectric breakdown are
exacerbated at high temperatures [19]. Consequently, power
and temperature management is becoming one of the most
important design constraints even for high–performance
systems.

Most of today’s high–performance processors are
implemented using dynamic out–of–order superscalar
designs with heavy reliance on aggressive branch prediction
and the use of large instruction windows to maximize the
exploitation of the instruction–level parallelism in the
sequential programs.  A reorder buffer (ROB) is one of the
key datapath structures in such datapath designs.
Conventionally, the ROB is used to reconstruct a precise
state – a state corresponding to the sequential program
semantics that requires the processor state to be updated
strictly in program order – when interrupts, exceptions or
branch mispredictions occur.  While the physical registers
are updated as and when instructions complete, possibly out
of program order, the ROB maintains results and updates the
precise state strictly in program order.  When a branch
misprediction occurs, the instructions on the mispredicted
path are squashed from the ROB, preventing the update of
the architectural registers and maintaining the precise state
[16].

In some microarchitectures, among them the Intel P6,
the physical registers are implemented as slots within the
ROB entries and the separate architectural register file
(ARF) is used to implement the ISA registers that embody
the precise state.  An example of a processor that uses this
specific datapath is depicted in Figure 1.  Bold lines shown
in this and subsequent datapath diagrams correspond to



buses (or multiple sets of connections).  At the time of
writeback, the results produced by functional units (FUs) are
written into the ROB slots and simultaneously forwarded to
dispatched instructions waiting in the Issue Queue (IQ).  The
result values are committed to the ARF at the time of
instruction retirement.  If a source operand is available at the
time of instruction dispatch, the value of the source register
is read out from the most recently established entry of the
corresponding architectural register.  This entry may be
either an ROB slot or the architectural register itself.  If the
result is not available, appropriate forwarding paths are set
up.  To support the back–to–back execution of dependent
instruction, the result tags are broadcast prior to the actual
data.
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Figure 1.  Superscalar datapath where ROB slots
serve as physical registers.
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The typical implementation of a ROB is in the form of
a multi–ported register file (RF).  In a W–way superscalar
machine where the physical registers are integrated within
the ROB, the ROB has the following ports:

1) At least 2*W read ports for reading the source
operands for each of the W instructions dispatched/issued
per cycle, assuming that each instruction can have up to 2
source operands.

2) At least W write ports to allow up to W FUs to write
their result into the ROB slots acting as physical registers in
one cycle.

3) At least W read ports to allow up to W results to be
retired into the ARF per cycle.

4) At least W write ports for establishing the ROB
entries for co–dispatched instructions.

The large number of ports on the ROB results in two
forms of penalties that are of significance in modern designs.
The first penalty is in the form of the large access delay that
can place the ROB access on the critical path; the second is
in the form of higher energy/power dissipations within the
heavily multi–ported RFs implementing the ROB.  Since the
ROB in a P6–style design can contribute a significant
percentage to the overall chip power dissipation [6], it is
particularly important to consider the strategies for reducing
the ROB power requirements without sacrificing processor’s
performance.

This paper proposes a number of alternative ways of
simplifying the ROB structure and reducing its power
dissipation through:

1) Implementing the ROB in a distributed manner that
allows much smaller, distributed components to be used.

2) Reducing the number of ports on each distributed
component.

Our earlier study [11] exploited the observation that in
a typical superscalar datapath, almost all of the source
operand values are obtained either through data forwarding
of the recently generated results or from the reads of the
committed register values.  Only a small percentage of the
operands need to be read from the ROB; delaying such reads
have little  impact on the overall performance.  This allowed
the 2*W ports for reading the source operands at the time of
dispatch to be completely eliminated with small
performance loss [11].

In this study, we extend the approach of [11] to further
reduce the overall complexity, power and the access delay of
the ROB by implementing a centralized ROB as a distributed
structure.  Each distributed component of the ROB, assigned
to a single FU, has a single write port for committing the
result as opposed to W ports that are needed in a centralized
implementation.  Unlike recently proposed approaches that
simplify a multi–ported RF by decomposing it into identical
components, our ROB components are not homogeneous in
size.  The advantages of our scheme are as follows:

1) The size of each component can be tailored to the FU
to which it is assigned.

2) Since a FU can only write at most a single result per
cycle, a single write port on each component will suffice.

3) A single read port can be used on each component to
commit result from the ROB component to the ARF.  A
simple round–robin style instruction allocation within an
identical set of FUs (such as a pool of integer units) can be
used to maximize the probability that the instructions from
different ROB components retire in a common cycle.

4) If the distribution of the ROB is used in conjunction
with the scheme of [11], no read ports for reading the source
operands values from the ROB need to be retained.  This
avoids the use of port arbitration logic, which is inherent in
the multi–banked schemes with reduced number of ports in
each bank.

The rest of the paper is organized as follows.  In Section
2 we describe the details of the proposed techniques for
reducing the complexity and power dissipation of the ROB.
Our evaluation methodology is presented in Section 3
followed by the discussion of the experimental results in
Section 4. Section 5 describes the related work and we
conclude in Section 6.

2. Reduced complexity ROB alternatives

In this section, we show a number of alternative designs
that progressively reduce the ROB complexity.

2.1. Fully distributed ROB

Figure 2 depicts a datapath that implements a
centralized ROB in a distributed manner with one ROB
component assigned to each FU.  The only portion of the
ROB that remains centralized is a FIFO structure that
maintains pointers to the entries within the distributed
components.  This centralized structure has W write ports for
establishing the entries in dispatch (program) order and W



read ports for reading the pointers to the entries established
in the distributed ROB components (ROBCs).  An
alternative is to implement this structure as a (wider) register
file with a single read port and a single write port, with each
entry capable of holding W pointers into the ROBCs.  Each
ROBC can be implemented as a register file, where a FIFO
list is maintained.  The pointer in the centralized ROB entry
is thus a pair of numbers: a FU id and an offset within the
associated ROBC.  The ROBCs associated with FUs 1
through n in Figure 2 are shown as register files RF1 through
RFn.
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Figure 2.  Superscalar datapath with fully
distributed ROB.
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The implementation of the speculative register storage
in a structure separate from the centralized ROB is similar
in spirit to the use of the rename buffers [15].  In this paper,
without loss of generality, we call such a design “distributed
ROB” and compare our scheme with the baseline model that
assumes that the speculative results are stored directly within
the ROB slots. However, the proposed techniques are
trivially applicable to any other datapath that uses separate
register file for committed values, such as the datapath with
the rename buffers as implemented in PowerPC 620 [15].

The process of instruction retirement now requires an
indirection through the centralized ROB by following the
pointers to the ROBC entries that have to be committed.
This indirection delay is accommodated by using an extra
commit stage in the pipeline.

As shown in Figure 2, each ROBC has a single write port
that allows the result produced by the associated FU to be
written without the need for any port arbitration.  However,
since the writeback bandwidth is limited by the number of
forwarding buses used to route the produced results to the
waiting instructions in the issue queue, the write to the
ROBC only occurs when the associated FU acquires a
forwarding bus.  Each ROBC has two read ports – one read
port for reading source operands and another for committing
the results.  The dispatch of an instruction is delayed if both
of its operands come from the same ROBC.  Likewise, if
more instructions require their sources to come from the
same ROBC, the dispatch of those instructions is delayed.
This scheme thus requires the port arbitration mechanisms
to arbitrate for the limited number of read ports on the
ROBCs.

In a similar way, the instruction retirement is also
blocked, if the results to be committed reside in the same
ROBC.  According to our simulations, the percentage of
cycles when commitment blocks in this fashion is only 5.5%
on the average across all the executed benchmarks, resulting

in only 0.1% IPC drop on the average if a single read port for
commitment is maintained on each ROBC.  The size of each
ROBC can be tuned to match the characteristics of its
associated FU’s workload.  Detailed results pertaining to the
optimal size of each ROBC are presented later.

The latency of the branch misprediction recovery does
not increase with the introduction of the ROB distribution.
To reconstruct the correct state of the ROBCs, the tail pointer
of each ROBC will have to be updated on a misprediction,
along with the main ROB tail pointer.  This can be done, for
example, by checkpointing the tail pointers of all individual
ROBCs for each branch.

2.2. Eliminating source operand read ports on the
baseline ROB

In a recent work [11] we proposed to reduce the ROB
complexity and its associated power dissipation by
completely eliminating the 2*W read ports needed for
reading the source operands from the ROB.  The technique
was motivated by the observation that only a small fraction
of the source operand reads require the values to come from
the ROB.  For example, for a 4–way machine with a 72–entry
ROB, about 62% of the operands are obtained through the
forwarding network and about 32% of the operands are read
from the ARF.  Only about 6% of the sources are obtained
from the ROB reads [11].  Exploiting the fact that so many
ROB ports are used to supply so few operands, we. proposed
the use of a ROB structure without any read ports for reading
the source operand values.  Consequently, till the result is
committed (and written into the ARF) it is not accessible to
any instruction that was dispatched since the result was
written into the ROB.  To supply the operand value to the
instructions that were dispatched in the duration between the
writing of the result into the ROB and the cycle just prior to
its commitment to the ARF, the value was simply forwarded
(again) on the forwarding buses at the time it was committed.
To avoid the need to perform this late forwarding for each
and every committed result,  only the values that were
actually sought from the ROB were forwarded for the second
time.  As a result, reasonable performance was sustained
without increasing the number of the forwarding buses. 
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Figure 3.  Superscalar datapath with the
simplified ROB and retention latches.
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As a consequence of the elimination of the ROB read
ports, the execution of some instructions is delayed,
resulting in some performance degradation. To compensate
for most of  this performance loss, we used a set of latches,
called retention latches (RLs), to cache a few recently
produced results.  The datapath that incorporates the RLs is



shown in Figure 3.  Instructions dispatched since the writing
of a result to the ROB could still access the value as long as
they could get it from the RLs.  The ROB index of an
instruction that produced the value was used as a key for
associative searches in the RLs.  In case the lookup for a
source operand failed to locate  the data within the RLs, the
operand value was eventually obtained through the late
forwarding of the same value when it was committed to the
ARF, similar to what is described in [20].  Complete details
of the scheme, including the various RL management
strategies and the various branch misprediction handling
approaches are presented in [11].  An important optimization
to the retention latch management was introduced in [12],
where the result values are selectively cached in the
retention latches based on the possibility of their future use.
This optimization can also be used in conjunction with the
scheme that we propose in this paper.

2.3. Using retention latches with a distributed
ROB

The distributed ROB implementation shown in Figure 2
can be further simplified through the incorporation of a set
of retention latches – the read ports used for reading
operands from the ROBCs, RF1 through RFn, can now be
completely eliminated.  The resulting datapath is shown in
Figure 4.
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Figure 4. Superscalar datapath with the distrib-
uted ROB and retention latches.
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Dispatched instructions are allocated to the appropriate
type of FUs.  Where multiple instances of the required type
of FU exist, instructions are allocated within the identical
instances in a round–robin fashion thus distributing the load
on the ROBCs and minimizing the potential port conflicts in
the course of commitment.  When a FU j completes, it writes
the relevant entry within its ROBC, RF j, using the dedicated
write port.  Simultaneously, the result is forwarded on the
result/status bus. Late forwarding uses these same
forwarding connections when results are committed from
the ROBCs (i.e., RF1 through RFn in Figure 4) to the ARF
using the only read port on these components.  As in the case
of a centralized ROB without source read ports and retention
latches, a common set of W forwarding buses is able to
handle normal and late forwarding in a W–way machine.

This design allows for the use of a fully distributed ROB
where the conflicts over both read and write ports on the
ROB are avoided, with the exception of rare occasions of
port conflicts during commitments.  The read ports needed
on the ROB for reading out the sources for instruction
dispatch are completely eliminated by using the technique of

[11].   As each FU is assigned to a dedicated ROBC, all
produced results can be written into speculative storage
within the ROBCs with no need for write port arbitration
(although the arbitration logic for the use of the forwarding
buses is still necessary, just like it is in the baseline machine).

3. Evaluation framework and methodology

The widely–used Simplescalar simulator [1] was
substantially modified to implement realistic models for
such datapath components as the ROB (integrating  physical
register file), the issue queue, and the rename table.  The
studied configuration of superscalar processor is shown in
Table 1.

We simulated the execution of 8 integer SPEC 2000
benchmarks (gap, gcc, gzip, parser, perlbmk, twolf, vortex
and vpr) and 6 floating point SPEC 2000 benchmarks (applu,
art, mesa, mgrid, swim and wupwise).  Benchmarks were
compiled using the Simplescalar GCC compiler that
generates code in the portable ISA (PISA) format.
Reference inputs were used for all the simulated
benchmarks.  The results from the simulation of the first 1
billion instructions were discarded and the results from the
execution of the following 200 million instructions were
used.

For estimating the energy/power of the ROB, the ROBC
and the retention latches, the event counts gleaned from the
simulator were used, along with the energy dissipations, as
measured from the actual VLSI layouts using SPICE.
CMOS layouts for the ROB, the ROBC, and the retention
latches in a 0.18 micron 6 metal layer CMOS process
(TSMC) were used to get an accurate idea of the energy
dissipations for each type of transition.   A Vdd of 1.8 volts
was assumed for all the measurements.

Table 1. Configuration of a simulated processor

Parameter Configuration

Machine width 4–wide fetch, 4–wide issue, 4–wide commit

Window size 32 entry IQ, 96 entry ROB (double results hold two entries), 32 entry LSQ

FUs and
Latency    (total/
issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19),
2 Load/Store (2/1), 4 FP Add (2),
1FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

L1 I–cache 32 KB, 2–way set–associative, 32 byte line, 2 cycles hit

L1 D–cache 32 KB, 4–way set–associative, 32 byte line, 2 cycles hit

L2 Cache com-
bined

512 KB, 4–way set–associative, 128 byte line,
4 cycles hit

BTB 1024 entry, 4–way set–associative

Branch
Predictor

Combined with 1K entry Gshare, 10 bit global history, 4K entry bimodal,
1K entry selector

Memory 128 bit wide, 60 cycles first chunk, 2 cycles interchunk

TLB 64 entry (I), 128 entry (D), fully assoc., 30 cycles miss

4. Results and discussions

In this section, we evaluate the implications of the
proposed techniques in terms of performance and power
dissipation of the ROB.



4.1. Evaluation of the distributed ROB

In order to sufficiently size each of the ROBCs, we first
recorded the maximum number of ROBC entries that are
simultaneously in use (allocated to hold the results of the
in–flight instructions) by each functional unit, provided that
the number of entries in the ROBCs is unlimited and the
instruction window is constrained by the sizes of the ROB
and the issue queue.  The results of these experiments with
unlimited number of the ROBC entries are shown in the
leftmost part of Table 2.  As seen from these results, even the
maximum demands on the number of the ROBC entries are
quite modest across the simulated benchmarks.
Considerable variations in the number of used ROBC entries
are observed for the MUL FUs, both integer and floating
point.  The ROBCs for integer and floating point ADD and
LOAD FUs are utilized fairly uniformly across the
benchmarks.  Notice that in Table 2, a single column is used
to represent four integer ADD units and four floating point
ADD units.  This is because the presented statistics is
identical for all four individual functional units due of the
round–robin allocation of instructions.

Table 2. The max. number of entries used within
each ROBC and the percentage of blocked cycles

Maximum number of ROBC entries in
use

Percentage of cycles when dispatch
blocks for 8_4_4_4_16 configuration

FU  type Int.
Add

Int.
Mul/
Div

FP
Add

FP
Mul/
Div

Load Int.
Add

Int.
Mul/
Div

FP
Add

FP
Mul/
Div

Load

gap 17 8 0 0 28 0.6 0.3 0 0 3.0

gcc 20 4 1 2 30 0.6 0 0 0 2.2

gzip 19 2 0 0 30 1.5 0 0 0 0.9

parser 15 3 0 0 28 1.4 0 0 0 5.5

perl 17 6 4 12 28 0.1 0.1 0 0 5.1

twolf 16 4 3 5 30 0.5 0 0 0 14.0

vortex 16 4 0 0 28 0 0 0 0 1.5

vpr 15 2 5 11 27 2.6 0 0 0.3 9.2

applu 16 0 2 5 22 1.0 0 0 0 0.1

art 12 0 8 16 26 0.1 0 0 0.4 5.2

mesa 12 10 6 11 26 0.4 1.4 0.6 4.4 2.2

mgrid 10 8 2 2 30 0 4.8 0 0 2.7

swim 20 1 2 2 15 4.8 0 0 0 0

wupw. 15 0 3 4 22 2.6 0 0 0 0.9

Int avg. 16.9 4.1 1.6 3.8 28.6 0.9 0.1 0 0 5.2

FP avg. 14.2 3.2 3.8 6.7 23.5 1.5 1.0 0.1 0.8 1.9

Average 15.7 3.7 2.6 5.0 26.4 1.2 0.5 0 0.4 3.8

The averages from Table 2 were then used to determine
the number of entries in each ROBC in the following
manner.  Based on the results of Table 2, the initial values for
the sizes of each ROBC were derived from the averages
presented in Table 2 by taking the corresponding averages
from the last row of Table 2 and rounding them to the nearest
power of two.  In an attempt to keep the sizes of the ROBCs
to the minimum and ensure that the total size of the ROBCs
does not increase the size of the centralized ROB, the

exception was made for the ROBCs of the integer ADD
units, whose initial sizes were set as 8 entries each.
Specifically, 8 entries were allocated for each of the ROBCs
dedicated to integer ADD units, 4 entries were allocated for
the ROBC of integer MUL/DIV unit, 4 entries were used for
the ROBCs of floating–point ADD units, 4 entries were used
for floating point MUL/DIV unit and 16 entries were
allocated for the ROBC serving the LOAD functional unit to
keep the result values coming out of the data cache.  In the
subsequent discussions, the notation “x_y_z_u_v” will be
used to define the number of entries used in various ROBCs,
where x, y, z, u, and v denote the number of entries allocated
to the ROBCs for each of the integer ADD units, integer
MUL unit, floating point ADD units, floating point MUL
unit and the LOAD unit, respectively.  Using this notation,
the initial configuration of the ROBCs is described as
“8_4_4_4_16”.

To gauge how reasonable was our choice for sizing the
various ROBCs, we measured the percentage of cycles when
instruction dispatching blocked because of the absence of a
free ROBC entry for the dispatched instruction.  The
rightmost part of Table 2 indicates that the number of the
ROBC entries allocated for integer ADD, integer MUL/DIV,
floating–point  MUL/DIV and LOAD functional units could
be increased to reduce the number of dispatch stalls.  As a
consequence of these stalls and the conflicts over the read
ports of the ROBCs, the average performance across all
benchmarks degrades by 4.8% in terms of committed IPCs,
as shown in Figure 5.  The floating–point benchmarks are
more effected by this with the average IPC degradation of
6.5%.  Integer codes experience a loss of only 2.5%.

Figure 5. IPCs of 8_4_4_4_16 and 12_6_4_6_20
configurations of the ROBCs compared to the
baseline model. 2 read ports are used for each
ROBC – one port is used for source operand reads
and the other port is used for commits. Access to
the baseline ROB is assumed to take 2 CPU cycles.
Full bypass network is assumed.
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To improve the performance, consistent with the
observations from Table 2 and Figure 5, we increased the
sizes of all ROBCs with the exception of the ROBCs
dedicated to floating–point ADD units.  Specifically, the
ROBC configuration “12_6_4_6_20”  was considered.  The
average performance degradation across all simulated
benchmarks was measured as 2.4% with the average drop for
floating point benchmarks reduced to 3.2%.  A small
performance improvement of 3.8% was observed for mgrid
due to the faster access time to the source operands (2 cycles
in the centralized ROB scheme vs. 1 cycle with the
distributed latches).



4.2. Evaluation of the distributed ROB with 
retention latches

We now evaluate the effects of integrating the set of
retention latches into the datapath with ROBCs.  To
minimize the design complexity, the simplest configuration
of eight 2–ported FIFO retention latches was used in our
experiments.   Recall that by themselves, this combination of
retention latches only degrades the performance of the
baseline datapath by about 0.2% on the average.  Figure 6
shows the IPCs of the processor that uses this small set of
retention latches in conjunction with “12_6_4_6_20”
ROBCs.  The average performance drop is reduced to 1.7%
and each of the ROBCs only has a single port that is still
needed for commitment.  The performance of floating–point
benchmarks improved slightly.  Performance degradation
within integer benchmarks is 1.5% on the average compared
to the baseline organization.

Figure 6. IPC of the “12_6_4_6_20” ROBC config-
uration with  retention latches compared to base-
line configuration and the scheme with distrib-
uted ROB
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4.3. Implications on the ROB power dissipation

Figure 7 shows the power savings achieved within the
ROB by using the techniques proposed in this paper.  The
configuration with just the retention latches results in 23%
of ROB power savings on the average [11].  The ROB
distribution results in more than 49% reduction in energy
dissipations within the ROB.  The savings are attributed to
the use of much shorter bitlines and word–select lines and the
absence of sense amps and prechargers for the small ROBCs.
If the retention latches are integrated into the datapath with
the ROBCs, the power dissipation is actually slightly
increases (47% power savings) for two reasons. First, the
retention latches introduce the extra source of power
dissipation, and second, the performance increases with the
use of the retention latches, resulting is slightly higher
energy dissipation per cycle.  But complexity is still reduced,
because the read ports and connections from all ROBCs are
replaced by a small centralized buffer with just a few ports.

5. Related work

There is a growing body of work that targets the
reduction of the register file ports.  Alternative register file
organizations have been explored primarily for reducing the

Figure 7. Power savings within the ROB
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access time and energy, particularly in wire–delay
dominated circuits [4, 5, 13, 14, 17].  Replicated [10] and
distributed [21, 22] register files in a clustered organization
have been used to reduce the number of ports in each
partition and also to reduce delays in the connections
in–between a function unit group and its associated register
file.

While replicated register files [10] or multi–banked
register files with dissimilar banks (as proposed in [5],
organized as a two–level structure – cached RF – or as a
single–level structure, with dissimilar components) are used
to reduce the register file complexity, additional logic is
needed to maintain coherence in the copies or to
manage/implement  the allocation/deallocation of registers
in the dissimilar banks.

A way of reducing the complexity of the physical
register file by using a two–level implementation, along with
multiple register banks is described by Balasubramonian
et.al. in [3] for a datapath that integrates physical register file
and ARF in a structure separate from the ROB.  The
complexity and power reduction comes from the use of
banks with a single read port and a single write port in each
bank, thus resulting in a minimally–ported design.   The
simplified ROB designs presented in this paper result in
smaller IPC drop compared to the results of [3], mainly
because the conflicts over the write ports are not introduced
and  the conflicts over the read ports are eliminated by using
retention latches.

In [13], Tseng and Asanovic proposed a multi–banked
register file design that avoids complex arbitration logic by
using a separate pipeline stage (following the selection and
preceding the register file read), which detects bank conflicts
and reschedules the instructions that are the victims of the
bank conflicts, as well as the prematurely issued dependents
of such instructions.

In [17], the conflicts over write ports in a multi–banked
register file are avoided by delaying the physical register
allocation until the time of the actual instruction writeback.
The scheme incurs considerable additional complexity
because of the need to manage virtual tags used to maintain
data dependencies.

 In [25], the number of register file read ports is reduced
by using a bypass hint. The speculative nature of the bypass
hint results in some performance loss caused by the need to
stall the instruction issue on bypass hint mispredictions. In
[26], the peak read port requirements are reduced by
prefetching the operands into an operand pre–fetch buffer.

In [23], Savransky, Ronen and Gonzalez proposed a
mechanism to avoid useless commits in the datapath that
uses the ROB slots to implement physical registers.  Their



scheme delays the copy from the ROB to the architectural
register file until the ROB slot is reused for a subsequent
instruction.  In many cases, the register represented by this
slot is invalidated by a newly retired instruction before it is
needed to be copied.  Such a scheme avoids about 75% of
commits, thus saving energy. An alternative way to reduce
the number of data movements in the course of commitments
and writebacks was proposed in [24], where we exploited the
observation that the majority of the generated result values
are short–lived. We stored such short–lived results in a small
dedicated register file and avoided their writeback to the
ROB and commitment to the ARF in most of the cases. The
schemes of [23] and [24] can both be used in conjunction
with the techniques proposed in this paper to achieve further
power savings.

6. Concluding remarks

This paper described several techniques to reduce the
complexity and the power dissipation of the ROB.  We
introduced the conflict–free ROB distribution scheme,
where the conflicts over the use of the write ports are
eliminated by allocating a small separate FIFO queue for
holding the speculative results for each functional unit.  All
conflicts over the read ports are eliminated by removing the
read ports for reading out the source operand values from the
distributed ROB completely and using the combination of a
small set of associatively–addressed retention latches and
late result forwarding to supply the results to the waiting
instructions in the issue queue.

Our designs result in a low performance degradation of
1.7% on the average across the simulated SPEC 2000 and
significant reduction in the ROB complexity and power
dissipation. On the average, the ROB  power savings of as
high as 49% can be realized.
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