
Track Conventions, Not Attack Signatures: Fortifying X86 ABI and System Call
Interfaces to Mitigate Code Reuse Attacks

Sarp Ozdemir, Rutvik Saptarshi, Aravind Prakash and Dmitry Ponomarev
{sozdemi2, rsaptar2, aprakash, dponomar}@binghamton.edu

Binghamton University, NY

Abstract
Code Reuse Attacks (CRAs) are dangerous exploitation

strategies that allow attackers to compose malicious programs
out of existing application and library code gadgets, without
requiring code injection. Previously, researchers explored
hardware-assisted protection schemes that track attack signa-
tures to identify malicious behavior. This paper makes two
main contributions. First, we show that previously proposed
signature-based schemes are impractical because they do not
always distinguish attack patterns from the behavior of benign
programs. Second, we demonstrate that instead of tracking
attack signatures, a more robust defense mechanism is to track
legitimate usage of system calls and ABI compliance in hard-
ware, and detect deviations from established conventions as
possible attacks. We propose two specific tracking mecha-
nisms: the setting of arguments for system calls and register
usage across function calls. We demonstrate that our solution
severely hinders practical CRAs and completely stops code-
reuse execution of sensitive system calls like mprotect. Our
solution imposes very low performance overhead and modest
design complexity.

1. Introduction
Code Reuse Attacks (CRAs) are a dangerous exploitation
method in computer systems [7, 30, 49]. The core idea of
a CRA is to compose a malicious program by stitching to-
gether pieces of existing code, called gadgets, and controlling
transition between the gadgets using indirect branch instruc-
tions. Since no new code is injected by an attacker, defenses
that disallow execution from writable memory, such as Data
Execution Prevention (DEP) [39], are not effective against
CRAs. CRAs come in many forms, ranging in complexity
from basic return-to-libc attacks [52], to Return-oriented Pro-
gramming (ROP) [10, 49] and Jump-oriented Programming
(JOP) [7, 15], to more complex Counterfeit Object-Oriented
Programming (COOP) [48], Block-Oriented Programming
(BOP) [28], Function-Oriented Programming (FOP) [25] and
Printf-Oriented Programming (POP) [13]. Recently, CRA at-
tacks that target SGX enclaves have also been proposed [6].
Although Control-Flow Integrity (CFI) [1] is known to be
principled and promising in mitigating control-flow hijacking
attacks, in practice, they are known to be imperfect [34], and
modern attacks can evade them [29, 48].

Many different approaches for detecting CRAs have been
proposed. On the one hand, from a policy perspective, the

key question is whether the focus of detection should be: a)
on specific attack patterns (signatures), or b) deviations from
normal program behavior? But on the other hand, from an en-
forcement perspective, one needs to decide whether defenses
must be deployed at the software level or the hardware level
or both. Historically, hardware solutions are known to be
highly effective, robust (e.g., DEP, W

⊕
X) and impose low

performance overhead. They are transparent to the software
layers and provide full-system protection. However, unlike
software-level defenses, they are not easily configurable and
offer deployment challenges. If hardware solutions provide
a high level of flexibility and scalability, they are clearly a
favorite choice.

Several previous works advocated detection of attack signa-
tures, including techniques that use hardware support [31, 32].
In particular, these defenses rely on gadget length and the
number of gadgets that are executed consecutively as attack
indicators. In general, there are two potential problems with
such signature-based schemes. First, it is possible that if
the details of the defense are known, the adversary can at-
tempt to modify the attack to bypass the protection. Earlier
work [23] has shown that ad hoc parameter values used in
past defenses [17, 43] can be bypassed, and highlighted the
difficulty of choosing the values of these parameters. Second,
and perhaps even more importantly, signature-based schemes
can lead to a large amount of false positives, where legiti-
mate application code will be flagged as an attack. In this
paper, we demonstrate (Section 3) several practical examples
of programs that legitimately experience gadget-like behavior
and are therefore truly indistinguishable from attacks in terms
of consecutive number of gadgets and gadget lengths. False
positives make the defense less practical, as users are likely to
turn off the defense. These results challenge the viability of
signature-based detection schemes. Formally establishing this
conclusion is the first contribution of this paper.

Instead of tracking signatures, we argue that a more effec-
tive approach to CRA detection is to track deviations from
normal program behavior, specifically deviations from execu-
tion conventions of benign programs. Particularly, we make
two key observations: (a) indirect branching is in the heart of
code-reuse attacks and (b) because sensitive system call invo-
cation (e.g., mprotect) is often the goal of CRAs, protecting
system call interface is critical to defense.

With these observations, we propose a novel CRA-centric
system call defense. We observe that in typical benign code,

1

all (or most) of the system call arguments are set together
right before executing a syscall instruction, usually within the
same basic block. In contrast, in a CRA, system call argu-
ments are set one-at-a-time, each argument in its own separate
gadget. This disparity offers a new detection opportunity by
monitoring the number of indirect branch instructions between
the setting of system call arguments and the invocation of the
syscall instruction. CRA defense based on this observation is
the second contribution of this paper.

We present a light-weight hardware design to track the vio-
lation of system call argument setting. We demonstrate that
our proposed defense is simple and effective. Specifically,
we show that our defense can completely prevent code-reuse
execution of system calls. Our solution incurs minimum per-
formance overhead and incurs about 150 bytes of on-chip
storage (although this number depends on the number of sys-
tem calls tracked). A major advantage of our technique is
that it is program-agnostic and it does not rely on any specific
characteristics of programs. Additionally, because existing
software stack already adheres to the underlying ABI, our
solution requires minimal1 changes to the OS, compiler and
the program binary, and thus offers backward compatibility.

The rest of the paper is organized as follows. Section 2
presents the background on code reuse attacks. Section 3
describes the limitations of existing signature-based schemes
and shows (for the first time) specific code patterns in real
programs that would cause signature schemes to generate false
positives. Section 4 presents a high-level overview of our de-
sign, Section 5 describes the system operation and design, and
Section 6 describes microarchitectural support. We present
performance and security evaluation in Section 7, review re-
lated work in Section 8 and offer our concluding remarks in
Section 9.

2. Technical Background

2.1. CRA Example

We demonstrate an of example jump-oriented programming at-
tack that was crafted using libc.so.6 as our code base. We used
the gadget discovery algorithm proposed in [7,49] and rewrote
the algorithm for x86-64 using the Capstone library [12]. JOP
attacks use special dispatcher gadgets to connect functional
gadgets without using returns. To search for dispatcher gad-
gets from the gadget pool, we used the dispatcher discovery
algorithm proposed in [31]. One of the dispatcher gadgets
found in libc is shown in Figure 1.

pop rsi

jmp qword ptr [rsi + 0x41]

Figure 1: A dispatcher gadget from libc.

1In order to support exception handling, multi-threading and policy con-
figuration.

This dispatcher gadget uses register rsi as the gadget pro-
gram counter (GPC), which holds the starting address of the
next functional gadget. The pop instruction updates and loads
the GPC into the rsi register. The attacker must ensure that
the calculated address rsi + 0x41 points to a location in
their payload that contains the address of the next gadget.

The attack goal is to make a system call with the
sys_execve function, which launches a new shell. Ar-
guments must be passed into this system call as fol-
lows: sys_execve("/bin/sh", ["/bin/sh"], NULL).
The rdi, rsi, and rdx registers must contain the address of
"/bin/sh", the address of the arguments array ["/bin/sh"]
terminated by a null pointer, and a null pointer, respectively.
The rax register must contain the system call number 0x3b
before executing the syscall instruction.

We used six functional gadgets, all found within the libc
codebase, to implement this attack. We refer to these gadgets
by their corresponding number shown in the leftmost column
of Figure 2.

G1 pop rcx ; set dispatcher address

sal b1, 1 ; not used

jmp rcx ; return to dispatcher

G2 pop rax ; set dispatcher address

jmp rcx ; return to dispatcher

G3 pop rdi ; set address of filename

xor rbx, rbx ; irrelevant instruction

jmp rax ; return to dispatcher

G4 pop rcx ; set location of disp. addr

jmp rax ; return to dispatcher

G5 pop rdx ; set null ptr address

jmp [rcx] ; return to dispatcher

G6 mov eax, 0x3b ; set syscall number

syscall ; call execve

Figure 2: Functional gadgets used in the example attack

To commence the attack, we set a register to the dispatcher
address using gadget G1. Next, register rdi is set to the ad-
dress of the string "/bin/sh". We used gadget G2 to set rax
to the dispatcher address. Then, gadget G3 can be used to set
rdi to the string address.

Register rdx needs to contain the null pointer. We found
a gadget G5 that performed a memory indirect branch with
rcx. Since rcx would not contain the appropriate value for a
memory indirect branch, we overwrite rcx with G4. With G5,
we load the null pointer into rdx. We left rsi and rax toward
the end of the attack because these registers were constantly
overwritten by the dispatcher gadget and the functional gad-
gets. rsi needs to point to an array containing the address of
the string "/bin/sh" followed by a null pointer. We crafted
our payload such that the value loaded into rsi for the final
time was the address of argv[]. We also ensured that the cal-
culated address rsi + 0x41 points to a location containing
the address of our final gadget G6. By the time the attacker
branches to G6, register rsi contains the address of argv[].
Finally, gadget G6 loads the system call number into register

2

rax and completes the attack with the call toexecve .

2.2. CFI-Evading Attacks

Control-�ow integrity (CFI) is a popular well-studied defense
against code-reuse attacks [1,51,53]. Consider the example in
Figure 3. Since functionf2 is invoked using a function pointer,
the compiler can not reason about the target at compile time, as
static control-�ow integrity must allow any indirectly invoked
functions whose addresses are referenced as valid targets.

However, a modern CRA in Figure 3 takes advantage of
such an over-approximated CFI policy. By transferring to pos-
sible targets of indirect branches (i.e., entry point of address-
taken functions (gadgetsEG1, EG2) and/or locations where
return instructions can return to (e.g., call-precededCP1gad-
get), the attacker can achieve subversion by evading CFI.

3. Limitations of the State-of-the-Art Defenses

Signature-based hardware defensesPrevious works on
signature-based detection [17,31] view programs with a nar-
row lens of gadget length and gadget count, and �ag many
benign applications that exhibit CRA-like execution as attacks.
In Figure 4, we show an example from an application called
BAP [9], which is written in OCaml. This application fre-
quently executes repetitive, short snippets of code that are
separated by indirect branches. Each line of code in Figure 4
shows the indirect branch instruction, and the number of in-
structions that preceded the indirect branch. This benign code
pattern would be �agged as an attack by previous defenses, as
the number of instructions between indirect branches are small
and the number of consecutive gadgets are large. The Figure 5
shows even shorter gadget lengths that naturally occur during
program execution. The instruction trace from Figure 5 was
found in Pandoc [37].

We also found that method overloading implementation in
Objective C (see Figure 6) programs mimic CRA-like behav-
ior. In essence,_objc_msgSend is an Objective C subrou-
tine that is called beforeeverymethod invocation [2]. The
_objc_msgSend subroutine is a way for Objective C objects
to call its methods. As this subroutine is called very frequently,
it is written in assembly code for minimal performance over-
head [3,55], and thus appears to look like a CRA attack with
a gadget length of 13 instructions. The example in Figure 6
shows that the_objc_msgSend subroutine is called before
theallowsVibrancy method of anNSAppearance object.

Another weakness of using gadget length and gadget count
thresholds are that the thresholds as defense heuristics may not
be effective to newer applications in the future. This creates
the need to occasionally update the defense parameters. For
example, we tested the CRA defense called SCRAP [31] which
tracks JOP attack signatures using gadget counts and lengths
on the newer SPEC 2017 benchmarks, and found many false
positives under the original proposed thresholds. Loosening
these thresholds to decrease the number of false positives

would consequently make it easier for attackers to execute an
attack [23].

These examples from real programs demonstrate that it
is very dif�cult, if not impossible, to detect CRAs based on
attack signatures without creating a signi�cant number of false
alarms.

CFI-based defenses Multiple solutions both at software-
and hardware-levels have attempted to enforce CFI as a
defense primitive. Additionally, shadow-stack based de-
fenses have been deployed to prevent return-address corrup-
tion. While these defenses have been effective in handling
simple CRAs, modern attacks such as Control-�ow Bend-
ing [14], Block-Oriented Programming [28], COOP [48] and
CCFIR [22] evade CFI-based defenses by operating within
a statically recoverable CFG. They leverage high-level pro-
gram semantics such as the printf format string [14], C++
virtual function dispatch [48] and function trace-level uncer-
tainties [29] that are hard to recover in the hardware.

4. Our Approach

4.1. Threat Model

We address a threat model not unlike other defenses against
code reuse attacks. We assume an execution stack where
the kernel and the hardware are uncompromised and trusted.
Additionally, the underlying system software, i.e., compiler
and the dynamic linker/loader are trusted, and the hardware is
capable of preventing data execution (e.g., NX). Further, we
assume that a potential attacker has access to the application
binary and is able to identify and chain gadgets to construct a
CRA. Although presence of additional defenses (e.g., ASLR,
stack-pointer protections [44,46]) will strengthen the impact
of our defense, they are not necessary.

4.2. Key Observations

Our defense is based on two key observations regarding benign
execution of programs:

O1 Initialization of syscall arguments: Most arguments to
functions in general and system calls in particular are ini-
tialized in one or two basic blocks preceding the call/syscall
instruction. More speci�cally, it is highly uncommon to �nd
initialization of different arguments to be separated byindi-
rect branches. However, in the case of CRAs, arguments are
initialized in different gadgets that arenecessarilyseparated
by indirect branches (e.g., indirectjmp instruction in JOP,
ret instruction in ROP).

O2 Adherence to Conventions:Programs are compiled using
compilers that subscribe to pre-de�ned standards and ABIs.
As such, code in programs adhere to calling conventions,
especially the callee- and caller-saved register conventions
as mandated by the ABI. An attack's gadget chains are
under no obligation to, and often do not adhere to any such
conventions.

3

Figure 3: Working example demonstrating enforcement of Calling-Convention policy and System call policy. Gadgets EG1, EG2
and CP1 are used to demonstrate CFI-evading attack presented in CCFIR [22]. The arrows represent control �ow.

1 caml Bap_helpers__entry : call rdi # 11 insn
2 ...
3 caml_curry2_1 : jmp rdx # 6 insn
4 ...
5 caml Bap_helpers__fun_323265 : call rdi # 11 insn
6 ...
7 caml_curry2_1 : jmp rdx # 6 insn
8 ...
9 caml Bap_visitor__fun_8169 : call rdi # 11 insn

10 ...

Figure 4: CRA-like pattern found in BAP, an application written
in OCaml

1 .text : jmp qword ptr [rbx] # 5 insn
2 ...
3 .text : jmp qword ptr [rbx] # 3 insn
4 ...
5 .text : jmp qword ptr [rbp] # 5 insn
6 ...
7 .text : jmp qword ptr [rbx -0x1] # 8 insn
8 ...
9 .text : jmp qword ptr [rbp] # 3 insn

10 ...

Figure 5: Repetitive jump pattern found in Pandoc, an applica-
tion written in Haskell

4.3. System-Call Policy

Based on our observationO1, we de�ne the system-call policy
as follows:

P1: Every argument to a system call must be populated at
distance no greater than the threshold distance from the system
call instruction.

Here, distance is measured in terms of the number of indirect
branch instructions between the system call and associated
argument setting. In a nutshell, we monitor writes to system-
call argument registers in the hardware, and associate a counter
with each register. The counter representsdistancein P1.
Whenever awrite operation occurs to a system-call argument
register, thedistance for the register is set to 0, and when
an indirect branch instruction is encountered, thedistance
values ofall argument registers are incremented. Finally,
when a system call instruction is encountered, thedistance
values of each argument register are examined and validated
against the policy. The corresponding algorithm is presented

1 _objc_msgSend : test rdi , rdi
2 _objc_msgSend : hint- not -taken jz 0x7fff736c4ee8
3 _objc_msgSend : test dil, 0x1
4 _objc_msgSend : hint- not -taken jnz 0x7fff736c4ef3
5 ...
6 _objc_msgSend : jmp qword ptr [r11 +0x8]
7 -[NSAppearance allowsVibrancy]: push rbp # method
8 -[NSAppearance allowsVibrancy]: mov rbp , rsp
9 ...

Figure 6: The instruction trace of _objc_msgSend prior to the
allowsVibrancy method call.

in Algorithm 1.
We examined multiple widely-used programs such as binu-

tils, coreutils, gnome-web, etc. along with SPEC 2017 pro-
grams and empirically found thethreshold distanceto be 2
in most cases, which is unsurprising since system call invoca-
tions in benign code occur through system call wrappers or
dispatcher functions inlibc .

However, as a predominant property of CRAs, arguments
are populated in multiple gadgets that are separated by one
or more indirect branch instructions (indirectcall/jmp or
ret). In order for an attack to circumventP1, it would need to
populate all of the system-call arguments within thethreshold
distance, which is extremely hard (see Section 7.2).

Our system call policyP1has three key advantages. First,
it captures theessenceof code-reuse attacks, i.e., indirect
branching, and is therefore extremely effective. Second, from
a practical standpoint, tracking distance in the hardware is
straightforward with�xed storage overhead. Finally, such
a solution ishighly portable. System V and MSVC ABIs–
the two most popular ABIs are very similar in the way they
utilize registers (see Figure 7) for argument passing. There-
fore, our solution can port to other environments with little
modi�cation.

4.4. Calling-Convention Policy

Based on observationO2, we de�ne a policy directed at ad-
herence to calling convention. Benign programs adhere to
an underlying ABI that mandates the calling convention that
must be followed during function invocation. The calling
convention dictates rules for saving and restoring registers,

4

Figure 7: Convention for register use across function calls for System V and Microsoft ABIs.

passing arguments to caller and passing return value from a
callee back to the caller. As a key insight, attacks rely on in-
directcall andret instructions, but semantically,call and
ret instructions indicate entry and exit from functions, and
therefore the expectation is that the calling conventions are
respected across function calls. However, code-reuse attacks
do not follow these conventions. We derive the following rules
from the ABI:
1. Rule for callee-saved registers:A callee-saved register

must be saved by a callee before use. That is, from a
hardware perspectivea callee-saved register must be read-
from before being written-to.

2. Rule for caller-saved (or volatile) registers:The ABI offers
no guarantees that the contents of a volatile register or
a caller-saved register will be preserved across function
calls. As such, after aret instruction in a callee function
is encountered,the caller function must not read from a
volatile register (except while reading the return value)
before �rst writing into it. Conversely,a callee function
can not read from a non-argument volatile register before
�rst writing into it.

3. Rule for arguments and return value: After aret instruc-
tion, the caller function can only read from the return-value
register (RAX) only if the callee function performed a write
to the return-value register before theret instruction. Sim-
ilarly, after a call instruction, a callee function can not
read-before-write from more number of argument registers
than those that were written to by the caller function.That
is, if the caller function writes to the �rst two argument reg-
ister, the callee function can not read from third or higher
argument register before �rst writing into it.
While each of the rules can lead to a separate policy,not all

rules can be effectively enforced in the hardware(see 4.4.1).
In this paper, we focus on the callee-saved register rule. Specif-
ically, we enforce the following policy:

P2: Between successivecall and ret instructions, callee-
saved register must be read-from before being written-into.

Given the substantial amount of overlap in calling conven-
tion policies for different environments (see Figure 7), our

approach can be easily ported to most X86-64 environments
(e.g., Mac OS X, UN*X, FreeBST, MS Windows). In a nut-
shell, we intercept instructions in hardware, and we check for
read/write operations on registers betweencall-ret instruc-
tion pairs. Acall-ret pair indicates an entry and exit from
a function, so theread-before-writeand write-before-read
primitives will be enforced on callee-saved registers.
4.4.1. Policy Robustness and Compiler OptimizationsIn
our experience, the callee-saved register policy is the most
robust and conducive for hardware enforcement. Modern com-
pilers employ aggressive optimizations that can relax some of
the ABI convention rules. Since the compiler knows all the
callees of a caller function during compile time, if the com-
piler can reason that a callee is not going to use a caller-saved
volatile register, the compiler can optimize performance of the
caller by not saving/restoring the caller-saved registers. In our
experience, such optimizations for caller-saved registers are
common and do not provide a robust basis for enforcement in
the hardware. Whereas, in the case of callee-saved registers,
it is not possible for a compiler to know all the callers of a
function during compile time, therefore, callee-saved registers
are always saved and restored within a function.

In the case of arguments and return value, return values
can be ignored by the caller, and any write to return register
may be interpreted as initialization of return value (even if the
function does not return a value). In essence, without function
signatures (which are not available in the hardware), reasoning
about return values and arguments are non-trivial and incur
performance overhead.

Therefore, in this paper, we focus on enforcement of the
highly robust callee-saved register policy.

5. System Design

In this section, we provide more details of our tracking mech-
anisms.

5.1. System Call Defense

Policy Con�guration We provide anArgument-Speci�c pol-
icy where we pro�le each system call to record the maximum

5

depth foreachargument, and generate aSystem Call Tablethat
represents the highly granular and argument speci�c policy.

System Call Register Tracking The goal of system call
register tracking is to track and record the initialization of var-
ious system call argument registers. The Algorithm 1 presents
our technique for depth tracking. Particularly, we maintain a
per-argument-register variable calledDepththat records the
distance from the system call instruction that a particular argu-
ment was set. When a write occurs on an argument register,
Depth for that register is reset to 0 whereas when an indi-
rect branch instruction is encountered, the depth of registers
is increased to indicate the increase in distance fromsyscall
instruction. Finally, before execution of asyscallinstruction,
the register depths are validated to ensure that they are in
accordance with the policy.

For example, in Figure 3, writes to argument registersrsi,

rdi , i.e., 1 and 2 happen in gadgetEG1 whereas write to

registerrdx , i.e., 3 occurs inEG2. Finally, the system call

number is set inCP1 4 before thesyscall instruction 5
is invoked. So, the depths forrax is 0 (i.e., the write happens 0
indirect branches away from thesyscall instruction),rdx is
1, andrdi andrsi is 2. But as per the policy formprotect ,
the expected depth for all arguments is 0 (see Figure 10).
Therefore, an attack is inferred.

Algorithm 1: System call depth tracking
Data: Instructioninsn
if insn= syscall then

validatePolicy() ;
else

if insn writes to reg2 SysCallArgumentRegisterthen
Depth[reg] 0

end
end
if insn2 f indirect jmp; indirect call; retg then

8reg2 SysCallArgumentRegister
Depth[reg] Depth[reg]+ 1

end

Unequal Depths in Benign Code Although most argu-
ments to system calls are set at depths 0 or 1, there are some
cases where depths are higher.

Structure dereferencing:We performed a case study of the
read system call that accepts 3 arguments throughrdi, rsi ,
andrdx registers. The control �ow leading up to the__read
wrapper function in libc is as shown in Figure 8.

The rsi and rdx registers are written to whenbuf and
size are set inIO_file_read . These are directly passed on
to __read , and therefore depth is 1. Whereas,fp �! fileno
will cause a write tordi , which makes the depth 0. More
generally, when arguments leading up to a system call are
initialized in different functions that are invoked via func-
tion pointers (i.e., indirect branching), such unequal depths
are possible. In order to generate the policy, we pro�led a

1 int IO_file_underflow(fp) {
2
3 IO_file_read(fp, fp->IO_buf_base, fp->IO_buf_end - fp->

IO_buf_base); / * ---> This is an indirect call * /
4
5 }
6
7 int IO_file_read(fp, buf, size) {
8
9 __read(fp->fileno, buf, size); / * fp->fileno is the file

descriptor * /
10 ...
11 }

Figure 8: The case of read system call.

large corpus of real-world applications to determine maximum
depths (i.e., threshold) for each argument to sensitive system
calls in benign code (see Figure 10). Any execution at runtime
that exceeds the threshold is a perceived attack.

Optional arguments: Consider thefutex system call:
int futex (int uaddr , int futex_op , int val , struct
timespec timeout , int uaddr2 , int val3)

Only the uaddr, futex_op , and val arguments are
mandatory whereastimeout, uaddr2, val3 arguments
are optional and their presence depends on the value of
futex_op . In such cases, the compiler will not populate
optional arguments, and the corresponding argument register
will contain a depth value corresponding to some past unre-
lated write to the corresponding register. Therefore, we only
track mandatory arguments.

In case of optional arguments, the policy reserves a special
bit value to indicate to the hardware that the depth of the
register must be ignored during enforcement.

5.2. Calling-Convention Policy

The policyP2 is extracted from the calling conventions pre-
sented in the X86-64 System V ABI document [38].

Step-by-Step Attack Inference for Running Example

Runtime Tracking We are interested in tracking the �rst
access (write or read) that happens on a register withineach
function frame, i.e., between successivecall andret in the
instruction stream. To this end, we intercept each instruction
and record the read and write register operands of the instruc-
tion and accordingly generate shadow data. For each register,
we maintain information per function frame to record read and
write operations. Particularly, we are interested in identify-
ing aread-before-writeor awrite-before-readbehavior on a
register.

Further, because register reads and writes are tracked per
function frame, we maintain a shadow stack that stores individ-
ual frame-speci�c shadow data. The data for a frame is pushed
and popped from the stack whencall andret instructions
are encountered respectively.

Special cases:Instructions such asxor rax, rax read and
write from the register at the same time. However, we are
interested in reads that re�ect the `register saving' behavior

6

Insn Inference
Bit vector after insn
rax,rbx,rcx,rdx,rbp,rsi,rdi

Shadow Stack Policy

1 push rbp rbp: 10 00,00,00,00,10,00,00 P2: Pass
2 mov rbp, rsp 00,00,00,00,10,00,00 rsp: exempt

3 mov rax, rdi
rax: 01,
rdi: 10

01,00,00,00,10,00,10

4 mov rdi, <addr> 01,00,00,00,10,00,10
5 mov rsi, $1024 rsi: 01 01,00,00,00,10,01,10
6 call rax 00,00,00,00,00,00,00 01,00,00,00,10,01,10
7 push rbp rbp: 10 00,00,00,00,10,00,00 01,00,00,00,10,01,10 P2: Pass
8 mov rbp, rsp 00,00,00,00,10,00,00 01,00,00,00,10,01,10 rsp: exempt
9 mov rdx, $4 rdx: 01 00,00,00,01,10,00,00 01,00,00,00,10,01,10
10 add rax, $132 rax: 01 01,00,00,01,10,00,00 01,00,00,00,10,01,10
11 mov [rbp+8],rax 01,00,00,00,10,01,10
12 pop rbp 01,00,00,00,10,01,10
13 ret 01,00,00,00,10,01,10
14 pop rbx rbx: 01 01,01,00,00,10,01,10 P2: Fail

Table 1: Attack trace in Intel syntax for running example in Figure 3 with register read/write tracking and calling-convention policy.
The value '10' represents read-before-write and '01' represents write-before-read.

within a function frame, and as such, we associate awrite-
before-readprimitive with such instructions. Additionally, we
treatrsp register different from other registers. Althoughrsp
is a callee-saved register, awrite-before-readcan occur when
a program is compiled without frame pointerrbp , and stack
space is allocated. Therefore, we exempt stack pointer from
the policy.

Policy Enforcement When an instruction is encountered,
the register reads and writes are evaluated to test for compli-
ance with calling-convention policies in Section 4.4.

An instruction-by-instruction inference and stack contents
for the running example in Figure 3 is presented in Table 1.
The read/write inferences are made after each instruction, and
�nally, when thepop rbx instruction is encountered in gadget
CP1, it is inferred as awrite-before-readfor a callee-saved
registerrbx , which triggers a policy violation perP2.

5.3. Multi-Threading and Multi-Process Support

Although we do not explore multi-threading and multi-process
support in this work, we believe our solution can be easily
extended to support multiple threads and processes including.
Speci�cally, the thread control block (TCB) and process con-
trol block (PCB) can be modi�ed to save the bit vector and
shadow stack as a part of the context information, so that the
enforcement states can be saved and restored across multiple
threads and/or processes. Appropriate changes to runtime and
OS will be necessary.

5.4. Handling Exceptional Flows and Hand-Written As-
sembly

During exceptional �ows likesetjmp/longjmp , a large set
of registers are read from (duringsetjmp) and are restored

(during longjmp) without regard to conventional norms. A
similar case manifests in the case of hand-written assembly. In
totality, such code instances are extremely small and typically
well de�ned (e.g., low-level kernel routines). We propose to
pro�le them before-hand and generate a signature that is made
available to the hardware for exclusion.

6. Hardware and Microarchitectural Support
and Considerations

In this section, we describe simple microarchitectural changes
required to implement our approach. As we demonstrate, the
amount of hardware needed is modest.

6.1. Tracking Argument Depths for System Calls

For the system call tracking approach, the complexity depends
on the number of system calls that are tracked by the detection
system. As shown in Figure 9, the key structure to support
our syscall tracking is a table that is maintained at the commit
stage of the pipeline, we call it System Call Table (SCT). The
number of rows in SCT equals to the number of supported sys-
tem calls, and the number of columns equals to the number of
registers used as system call arguments, plus a column to store
a system call number to use as a search tag for the system call.
Previous research published in security community established
most security-critical system calls to be relatively few [17,24,
53] (speci�cally: execve, write, mprotect, munmap,
clone, fork, open, close, exit_group, read), so
that most attacks can be successfully prevented if only a few
system calls are tracked. SCT forms the policy that provides
expected argument depth values (i.e., threshold) for each mon-
itored system call.

While the size of SCT can be con�gured to cover different

7

Figure 9: Syscall Depth Policy Enforcement

number of system calls, for our calculations we assume that a
16-entry SCT is used. Inside each entry, we store a system call
number and system call arguments. In x86-64 architecture,
the arguments are stored in registers rdi, rsi, rdx, r10, r8, and
r9, so we assume six register depths are stored for each system
call in that order. If each depth value requires 4 bits to express
the depth, plus 9 bits are needed to record the system call
number (assuming 512 system calls), then each SCT entry will
require 33 bits of storage (which can be rounded to �ve bytes
resulting in 80 bytes of storage for a 16-entry SCT). SCT
can be organized as a fully-associative or a set-associative
structure. For the small size of 16 entries we use a fully
associative search on the system call number. SCT is loaded
only once for each execution environment (for example, when
OS boots) and it provides reference information against which
the register depth counters collected at runtime are compared
to make security decisions.

At runtime, we also need to track the depth of every reg-
ister used as a system call argument. Our tracking captures
the depth of each register between consecutive system calls.
Each ISA register is associated with its owndepth counter.
There are 4-bit long saturating counters. After a system call
instruction is committed, all depth counters are reset to zero.
Whenever a write to a register occurs, its depth counter is also
set to zero. Whenever an indirect jump, an indirect call or
a return instruction commits, the depth counters of all reg-
isters are incremented by one. At the commit time of the

next system call (the one that is being tracked), we read depth
counters corresponding to the system call arguments from the
depth counters and compare them from the information for
this syscall in SCT. Since all system calls use standard con-
ventions for register usage, the same ISA registers are always
checked. If a particular register is not used for a given system
call (because the number of arguments is smaller or the argu-
ment is optional), this is indicated by a reserved bit-sequence
for that register in SCT (4 bit value 1111 or 0xF). A variety
of policies can be implemented based on the values of the
counters, ranging from simple to more complicated ones.

Note that these additional hardware resources are manipu-
lated at the commit stage of the instruction pipeline. Since all
accesses occur at the commit stage, these accesses are off the
critical schedule-to-execute timing path. The table can be con-
�gured and sized to be accessed within a single cycle. Even if
an additional cycle or two are needed, the commit stage can be
pipelined into several stages without impacting the number of
instructions committed per cycle, as this does not lengthen the
critical fetch-to-execute loop and does not impact the branch
misprediction penalty [8]. To reduce the size of the system
call table, one can track only the most security-critical system
calls. This will simplify the logic, but still signi�cantly reduce
the attack surface.

The above scheme only tracks and detects CRAs based on
non-speculative gadgets. If speculative gadgets need to be
considered to protect from some forms of transient execution
attacks, our support can be easily extended by moving the
monitoring logic to the front-end of the pipeline (decode stage)
and making appropriate adjustments to the depth counters on
branch misspeculations (similar, in principle, to how a rename
table and a free list of physical registers is recovered on branch
misspeculation). Note that SCT does not need to be adjusted,
since this is not a writable structure during normal execution.

6.2. On-Chip Storage Overhead

ForP1system-call speci�cpolicy, the overhead scales with the
number of system calls monitored. As described above, with
80 bytes of storage we can implement support for 16 most
critical system calls. As the number of system calls increases,
so does the storage requirement for SCT.

6.3. Software Con�guration

We allow software con�guration of SCT. For example, SCT
contents can be set differently for various operating systems
at system boot time. Furthermore, a more �ne-grain recon�g-
uration using privileged system call interface is also possible.
This is no different than any other system with con�gurable
hardware parameters.

7. Evaluation

In this section, we present the performance, complexity, and
security evaluation.

8

7.1. Performance Analysis

The performance overhead of tracking ABI conventions stems
from misses from the hardware shadow stack. To estimate the
additional number of cycles incurred by such accesses, we sim-
ulated our system using Pin binary instrumentation tool [27].
We ran each SPEC 2017 benchmark through the Pin tool for 1
billion instructions. For each benchmark, we simulated with
hardware stack of 2, 4, 8, and 16 entries, and we kept the
cache con�guration consistent. We used a64kB L1 data and
instruction cache, a512kB L2 cache, and a2MBL3 cache. The
assumed access latencies for different memory levels were:
1 cycle for L1 cache, 20 cycles for L2 cache, 35 cycles for
L3 cache, and 200 cycles for DRAM. To calculate the total
cycle penalty, we observed how often the ABI enforcement
mechanism misses into the hardware stack, and from which
level of memory the misses were serviced.

The Table 2 shows that the overhead due to hardware
shadow stack misses had negligible impact on the aver-
age memory access time (AMAT) of the system. The
most signi�cant difference in performance was seen for the
520.omnetpp_r benchmark for a shadow stack size of 2 en-
tries which resulted in the AMAT increasing by 0.35% when
compared to the baseline. These results can be attributed to
the low recursion depth as a result of which there are fewer
entries in the stack. The fewer entries result in a larger number
of stack accesses serviced by the hardware shadow stack and
L1 cache. As one would expect, a hardware stack size of 16
entries resulted in the best AMAT, with the worst performing
benchmark,520.omnetpp_r facing an AMAT increase of
just 6.2e-05% when compared to the baseline.

As the ABI compliance check utilizes the stack to store the
state of register accesses across function calls, benchmarks ex-
hibiting deep non-tail-recursive calls result in greater memory
usage. These exceptional benchmarks however, only manage
to cause insigni�cant losses in cache performance.

Additionally, the memory overhead incurred by use of
shadow stack is presented in Figure 13. For most programs in
Spec 2017, the burden was less than 1KB.

7.2. Security Analysis

We analyze the impact of our defense on the overall security
of the system. Particularly, we examine the reduction in attack
surface due to incorporation ofSystem Call Depth(i.e., P1)
andABI Compliance(i.e.,P2) policies. We analyze the feasi-
bility of execution of system calls in a code-reuse paradigm.
To this end, we examine the system calls in Linux and evalu-
ate how much harder it will be for an attacker to accomplish
an attack—i.e., execute the system calls through code-reuse
attacks—in the presence of our defenses.

Methodology For a given program, we �rst compute the
total possible gadget chains in the program's address space
that can be used invoke each system call. We follow these
steps:

AMAT I NCREASEDUE TO SHADOW STACK

Program Number of Shadow Stack Entries
2 4 8 16

spec17
blender 0.000335 0 0 0
bwaves 3e-05 0 0 0
cactusBSSN 0.000107 4.5e-05 1.3e-05 4e-06
cam4 0 0 0 0
cpugcc 0.00588 0.000278 0 0
cpuxalan 0.005586 0.00061 0.000114 0
deepsjeng 0 0 0 0
exchange2 0 0 0 0
fotonik3d 0 0 0 0
imagick 0 0 0 0
lbm 1e-06 1e-06 0 0
leela 2.2e-05 0 0 0
mcf 2.5e-05 2.2e-05 0 0
nab 2.5e-05 1e-06 0 0
namd 0 0 0 0
omnetpp 0.35306 0.24711 0.005459 6.2e-05
parest 6e-05 6e-06 4e-06 0
perlbench 0.002193 0.00026 0 0
povray 0.028826 1e-06 0 0
roms 2e-06 0 0 0
wrf 0 0 0 0
x264 2.4e-05 2.2e-05 0 0
xz 0.002067 0.000522 0 0

Table 2: Performance impact of the ABI Compliance Check on
AMAT

• We start with a set of all the gadgets in all the libraries in
a process' memory (G). This includes all the gadgets in
all the libraries in the process memory plus the program
executable.

• We identify the set of syscall gadgets (GS � G) that can
be used to invoke a system call, i.e., the last instruction in
the gadget is thesyscall instruction. For any successful
system call invocation,9gs 2 GS wheregs is the last gadget
in the gadget chain.

• We then identify a set of gadgets (GRAX � G) that must
either load an arbitrary value into ther/eax register, or load
a �xed value corresponding to a valid system call number.
If a �xed value is loaded, then the gadget is only usable to
invoke the system call whose number is loaded intor/eax .

• Similarly, we assemble argument-register sets of gadgets
(GRDI;GRSI;GRDX, GR10;GR8;GR9 � G) that can load a
value into the system call argument registers. That is, rdi,
rsi, rdx, r10, r8 and r9 registers, or rax, rbx, rcx, rsi, rdi
and rbp for legacy X86 system calls that useint 0x80 as
their system call instruction. Finally, we identify a chain
of smallest number of gadgetsthat can be used to initialize
system call arguments depending on how many arguments
the given system call accepts.

Target Programs: The SPEC benchmark is not best suited
for security evaluation, as such we picked real-world programs
mysql and Firefox, wherein we testedall loaded libraries along
with Firefox and mysql executables. Our analysis recreates the
exploitation environment an attacker would encounter while
exploiting mysql or Firefox. Additionally, our solution has

9

	Introduction
	Technical Background
	CRA Example
	CFI-Evading Attacks

	Limitations of the State-of-the-Art Defenses
	Our Approach
	Threat Model
	Key Observations
	System-Call Policy
	Calling-Convention Policy
	Policy Robustness and Compiler Optimizations

	System Design
	System Call Defense
	Calling-Convention Policy
	Multi-Threading and Multi-Process Support
	Handling Exceptional Flows and Hand-Written Assembly

	Hardware and Microarchitectural Support and Considerations
	Tracking Argument Depths for System Calls
	On-Chip Storage Overhead
	Software Configuration

	Evaluation
	Performance Analysis
	Security Analysis

	Related Work
	Concluding Remarks

