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Abstract. We introduce RATE TYPES, a novel type system to reason about and
optimize data-intensive programs. Built around stream languages, RATE TYPES

performs static quantitative reasoning about stream rates — the frequency of data
items in a stream being consumed, processed, and produced — a critical perfor-
mance characteristic previously addressed by numerous experimental approaches
but few foundational efforts. Even though streams are fundamentally dynamic,
we find two essential concepts of stream rate control — throughput ratio and
natural rate — are intimately related to the program structure itself and can be
effectively reasoned about by a type system. RATE TYPES is proven sound over
a time-aware and parallelism-aware operational semantics. The strong soundness
result tolerates arbitrary schedules, and does not require any synchronization be-
tween stream filters. We further demonstrate the applications of RATE TYPES in
energy-efficient computing and CPU allocation on multi-core architectures.

1 Introduction

Big Data and parallelism are two dominant themes in modern computing, both of which
call for language support offered naturally by the stream programming model. A stream
program consists of data-processing units (called filters) connected by paths to indicate
the data flow. Stream programming — together with its close relatives of signal pro-
gramming and (more generally) dataflow programming — is successful in scientific
computing [1], graphics [2], databases [3], GUI design [4, 5], robotics [6], sensor net-
works [7], and network switches [8]. Its growing popularity also generates significant
interest in developing theoretical foundations for stream programming [9–11].

In this paper, we develop a novel theoretical foundation to reason about the data rate
aspect of stream programming. Despite the fundamentally dynamic nature of streams,
we show that two crucial characteristics of stream applications can be reasoned about:

Throughput Ratio: the relative ratio between the output stream rate and the input
stream rate of a stream program.

Natural Rate: the upper bound of the output stream rate of a stream program regard-
less of its input stream rate.

Our key insight is that both throughput ratio and natural rate are closely related to the
program structure. RATE TYPES models both concepts as types, and provides a unified
type checking and inference framework to help answer a wide range of performance-
related questions, such as whether a video “decoder” stream program can produce 3241



data items (e.g. pixels) a second when being fed with 1208 raw data items per second.
Make no mistake: it would be unreasonable to expect such performance-focused ques-
tions to be answered completely without any knowledge of the run-time. What is less
obvious — and what RATE TYPES illuminates — is how little such knowledge is re-
quired to enable full-fledged reasoning, so that crucial performance questions such as
data throughput can largely be answered analytically rather than experimentally. At the
core of this exploration is quantitative reasoning about performance-related properties,
an active area of research (e.g. [12–16]). RATE TYPES follows a less explored path by
focusing on quantitative reasoning over data-flow programming models. To the best of
our knowledge, RATE TYPES is the first result for stream rate reasoning, in a general
context that requires neither static scheduling [17] nor inter-filter synchronization [18].

RATE TYPES promotes a type-theoretic approach to reason about data rates, bring-
ing benefits long known to type system research to the emerging application domain of
data-intensive software: (1) type systems excel at relating and propagating information
characteristic of program structures, throughput ratio and natural rate in our system.
(2) Type systems have strong support for modularity, which in our case spearheads a
flavor of compositional performance reasoning. (3) Type systems have “standard” and
provably correct ways to construct and connect a series of algorithms — such as es-
tablishing the connection between type checking and type inference, and determining
principal types — which in RATE TYPES happens to unify many interesting practical
algorithms in stream rate control.

To demonstrate the applications of RATE TYPES and bring it closer to real-world
computing, we further extend RATE TYPES to illustrate its usefulness in energy man-
agement and CPU allocation on multi-core architectures. The relationship between en-
ergy consumption and performance, and that of CPU allocation and performance, have
long been explored in experimental research. Our approach is a first step to formally
illuminate this complex landscape that involves performance (data throughput in our
case), CPU energy consumption, CPU core allocation, and program structure.

This paper makes the following contributions:

– It develops a type system to reason about throughput ratio and natural rate of stream
programs, and formally establishes the correlation between the stream rates from
the reasoning system and those manifest at run time – as a type soundness property.

– It defines a type inference to infer the throughput ratio and the natural rate. The
inference is sound and complete relative to type checking, and further enjoys prin-
cipal typing — the existence of upper bound for throughput ratio and natural rate.

– It applies the type system to assist energy optimization, in a setting where stream
filters may be executed on CPUs whose frequencies are dynamically adjustable.

– It applies the type system to assist CPU allocation optimization, where multiple
instances of the same filter may execute in parallel to support data parallelism.

2 Stream Programming and Reasoning

We now outline the basics of stream programming, and informally describe how RATE
TYPES can help reason about stream programs. Our type system can be built around a



1 s t r u c t xy { i n t x ; i n t y ; i n t ben ; }
2

3 xy�xy f eedbackloop a n n e a l ( ) {
4 j o i n roundrobin ( 1 , 9 9 ) ;
5 body c h e c k N e i g h b o r s ;
6 loop randomJump ;
7 s p l i t roundrobin ( 1 , 9 9 ) ;
8 }
9

10 xy�xy p i p e l i n e c h e c k N e i g h b o r s ( ) {
11 add g e t N e i g h b o r s ;
12 add c o m p u t e P r o f i t s ;
13 add e v a l N e i g h b o r s ;
14 }
15

16 xy�xy f i l t e r g e t N e i g h b o r s ( ) {
17 work push 9 pop 1 {
18 xy p = pop ( ) ;
19 push ( p ) ;
20 push ({p . x +1 , p . y , p . ben } ) ;
21 push ({p . x , p . y +1 , p . ben } ) ;
22 . . .
23 }}

24 xy�xy s p l i t j o i n c o m p u t e P r o f i t s ( ) {
25 s p l i t roundrobin ( 1 , 1 ) ;
26 add g e t P r o f i t ;
27 add g e t P r o f i t ;
28 j o i n roundrobin ( 1 , 1 ) ;
29 }
30 xy�xy f i l t e r g e t P r o f i t ( ) {
31 work push 1 pop 1 {
32 xy l o c =pop ( ) ;
33 l o c . ben= . . . ; / / l o o k up p r o f i t
34 push ( xy ) ;
35 }}
36 xy�xy f i l t e r e v a l N e i g h b o r s ( ) {
37 work push 1 pop 9 {
38 xy p1 = pop ( ) , p2=pop ( ) , . . .
39 p9 = pop ( ) ;
40 xy b e s t = . . . ; / / b e s t o f 9
41 push ( b e s t ) ;
42 }}
43 xy�xy f i l t e r randomJump ( ) {
44 work push 1 pop 1 {
45 xy p = pop ( ) ;
46 xy rand = . . . ;
47 i f ( . . . ) push ( p )
48 e l s e push ( r and ) ;
49 }}

Fig. 1. A StreamIt Program for Simulated Annealing

variety of programming languages. Here we choose StreamIt [19] as the host language,
and discuss other applicable languages at the end of the section.

Stream Programming Figure 1 is a stream program for simulated annealing [20], a
classic optimization algorithm that probabilistically finds globally optimal solutions
through randomized locally optimal search. Given seed coordinates as the input stream,
this program fragment (entry at anneal in Line 3) takes each input coordinate, checks
its 8 neighbors in the 2D space, and picks the coordinate with best benefit. (check-
Neighbors in Line 10). This coordinate is fed back for the next round of space search.
The neighborhood-based strategy may trap the search to a local, but not global, opti-
mality. Thus, the program has with a “jump” strategy to allow some coordinates to be
randomly mutated (randomJump in Line 43).

The base processing unit of a stream program is a filter, like getNeighbors
in Line 16, whose body is a function labeled with keyword work. A filter execution
instance takes in a finite number of data items from the input stream (through pop) and
places a finite number of data items to the output stream (through push). For instance
in Lines 18-22, the filter places 9 coordinates on the output stream for each coordinate
it reads from the input stream. A filter can only be launched when there are enough data
items on the input stream.

With sufficient data items on their respective input streams, different filters — such
as a getNeighbors and an evalNeighbors — can execute in parallel. Similar
to other concurrency models such as actors [21], a filter execution instance abides by
a “one firing at a time” rule: the evaluation of each function application must be com-
pleted before the a second filter execution instance can start.



To stay neutral to the terminology of host languages, we name the 3 most commonly
used filter combinators as follows:

– Chain (pipeline in StreamIt): connects the output stream of one sub-program to
the input stream of another. For example, checkNeighbors in Line 10 “chains”
the output stream of getNeighborswith the input stream of computeProfits.

– Diamond (splitjoin in StreamIt): dissembles and assembles data streams. For
example, computeProfits in Line 24 says that the data items on the input
stream will be alternatively placed to the input streams of the two getProfit
execution instances, whose respective output streams will be alternatively selected
to assemble the output stream of computeProfits. Declaration roundrobin
(1,1) indicates a 1:1 alternation.

– Circle (feedbackloop in StreamIt): a combinator to support data feedback.
For example, anneal in Line 3 says that for every 100 coordinates produced by
checkNeighbors, 99 are fed back for randomJump processing. Every time
99 coordinates are produced by randomJump, 1 more new coordinate (additional
“seed” coordinates) will be admitted for annealing.

Stream Reasoning For stream applications such as simulated annealing, high perfor-
mance is often a matter of necessity due to high data volume. High on the wish list of a
data engineer is the ability to reason about performance, with questions such as:

Q1: Is it possible for a program to sustain the production of n2 data items per second
when its input is fed with n1 items per second?

Q2: What is the upper bound for a program’s data production, given unlimited rates
for data inputs?

Q3: If a program is targeted at producing n data items per second, what is the minimal
rate of feeding data at its input?

Q4: Given the program is fed with n data items per second, what is the expected rate
for its data production?

RATE TYPES addresses Q1-2 through type checking, and Q3-4 though type in-
ference. It further demonstrates the relationship among these questions in a unified,
provably sound framework.

We further extend RATE TYPES to establish its relationship with the settings of
CPU frequencies, and its relationship with the number of CPU cores available for data
parallelism. Surprisingly, these expressive features only requires minimal extensions
to the framework core. We are able to formally capture how performance and energy
are linked, and formally demonstrate how performance is impacted by CPU allocation
to support data parallelism. Specifically, we offer theoretical answers to two questions
actively under investigation by experimental research:

Q5: Given an expected data production rate, what is the minimal CPU frequency for
each filter execution instance executed on CPUs that support Dynamic Voltage and
Frequency Scaling (DVFS) [22]? As CPU frequency and energy consumption is
correlated, a solution along these lines is tantamount to improving energy efficiency
without performance degradation.



Q6: Given an expected data production rate, and if we relax our framework to allow
multiple instances of the same filter to be executed in parallel to support data par-
allelism, what is the fewest number of parallel execution instances for each filter –
hence the fewest CPU cores – to achieve the expected data production rate?

Assumption Every reasoning framework needs to address the base case of reasoning: to
type an arithmetic expression, the assumption is that integers are of int type; to verify
a program is secure, one needs to know password strings are properly associated with
high security labels. In RATE TYPES, the base case is the filter, and the assumption
we make is its execution time can be predetermined and specified.

At a first glance, this assumption may seem counter-intuitive to what we conven-
tionally consider as “static.” We consider it reasonable because (a) filter behaviors are
much more predictable than full-fledged programs, thanks to the non-shared memory
model and its lack of side effects often called for in real-world stream languages [19,
23]; (b) formal systems to reason about individual filter behaviors exist [10]; (c) Exper-
imentally, filter execution time is known to be stable through profiling. Core optimiza-
tions of the StreamIt compiler [24] rely on it; (d) real-world software development is
iterative. Profiling-guided typing is not new [25]. What matters is to help programmers
reason about performance at some point during the software life cycle.

Applicability RATE TYPES is primarily designed for expressive and general-purpose
stream languages. More broadly, the framework may be applied to systems where
data processing is periodic, and/or where rates matter: (a) sensor network languages
(e.g. [7]), where determining the lowest sensing rate possible is relevant; (b) signal lan-
guages such as FRP [6]. Even though the input signals are theoretically continuous in
this context, practical implementations are still concerned with sampling rate. In addi-
tion, even if all input signals are continuous — a case analogous to Q2 — the output sig-
nal is still discrete where rates may matter. (c) high-performance-oriented composition
frameworks such as FlumeJava [26] and ParaTimer [27], where single MapReduce-like
units are composed together in expressive ways.

3 Syntax and Dynamic Semantics

Abstract Syntax The abstract syntax of our language is defined as follows:

P ::=FL[ni, no] | P �` P ′ | P3δ,αP ′ | P �`
′,`
α,δ P

′ program
δ ::=〈n;n′〉 distribution factor
α ::=〈n;n′〉 aggregation factor

The four forms of a program P are a filter, a chain composition, a diamond compo-
sition, and a circle composition, in that order. Each filter is defined as a filter function
body F , together with a unique filter (program) label L ∈ FLAB. Each filter is fur-
ther declared with two natural numbers: ni for the number of items to be consumed
at a time, and no for the number of items to be produced at a time. The two numbers
correspond to the pop and push declarations in Figure 1. Let NAT represent natural



numbers starting from 1. Metavariable n ranges over NAT. For each filter, we further
require F to be an element of DATAni → DATAno where DATA is the set of data items.
For both diamond and circle compositions, metavariables δ = 〈n;n′〉 and α = 〈n;n′〉
represent the distribution factor and the aggregation factor respectively. They corre-
spond to the tuples succeeding the split and the join in the example respectively.
Each chain expression is associated with a distinct stream label, ` ∈ SLAB, and the
circle expression is associated with 2. They are only used for formal development, to
be explained later.

In Appendix A.1, we show the simple syntax core is capable of encoding other
programming patterns, such as k-way split-join and non-round-robin distribution/ag-
gregation. Given a program P , we use flabels (P ) to enumerate all filter labels, and
slabels (P ) to enumerate all stream labels.

The program in Figure 1 can be represented by our syntax as Panneal where

Panneal = PcheckNeighbors �
`0,`1
〈1;99〉,〈1;99〉 PrandomJump

PcheckNeighbors = (PgetNeighbors �`2 PcomputeProfits)�`3 PevalNeighbors

PgetNeighbors = FL1 [1, 9]
PcomputeProfits = FL2 [1, 1]3〈1;1〉;〈1;1〉FL3 [1, 1]
PevalNeighbors = FL4 [9, 1]
PrandomJump = FL5 [1, 1]

In the rest of the paper, we use notation [X1, . . . , Xn] to represent a sequence with
elements X1, . . . , Xn, or simply X when sequence length does not matter. Further-
more, we define |[X1, . . . , Xn]|

def= n and use comma for sequence concatenation,
i.e. [X1, . . . , Xn], [Y1, . . . , Yn′ ]

def= [X1, . . . , Xn, Y1, . . . Yn′ ]. We call a sequence in
the form of [X1 7→ Y1, . . . Xn 7→ Yn] a mapping sequence if X1, . . . , Xn are dis-
tinct. We equate two mapping sequences if one is a permutation of elements of the
other. Let mapping sequence M = [X1 7→ Y1, . . . Xn 7→ Yn]. We further define
dom (M) def= {X1, . . . , Xn} and ran (M) def= {Y1, . . . , Yn} and use notation M(Xi)
to refer Yi for any 1 ≤ i ≤ n. Binary operator ] is defined as M1 ]M2 = M1,M2 iff
dom (M1) ∩ dom (M2) = ∅. The operator is otherwise undefined.

Stream Runtime The following structures are used for defining the stream runtime:

R ::=` 7→ S program runtime
S ::=d stream
` ∈ SLABEL ∪ {`IN, `OUT} stream label
t ∈ TIME ⊆ REAL+ time
Π ∈ FLAB 7→ TIME filter time mapping

The runtime,R, consists of a mapping sequence from stream labels to streams. A stream
is defined as a list of data items where each data item d ∈ DATA. Two built-in stream
labels, `IN and `OUT are used to facilitate the semantics development. Given a program
P , `IN and `OUT labels the input stream and the output stream of P . Mapping function
Π maps each filter (label) to its execution time.



(a) Chain (b) Diamond (c) Circle

Fig. 2. Stream Runtime Semantics Illustration

Ternary predicate S 'δ SA, SB holds when S can be “split” to SA and SB using
distribution factor δ, and SA, SB .α S holds when SA and SB can be “joined” together
as S with aggregation factor α. Some examples should demonstrate the functionality of
these predicates, whose predictable formal definitions appear in Appendix A.2:

[1, 2, 3, 4, 5, 6] '〈1;2〉 [1, 4], [2, 3, 5, 6]
[1, 4], [2, 3, 5, 6] .〈1;2〉 [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6, 7] '〈1;2〉 [1, 4], [2, 3, 5, 6]
[1, 4, 7], [2, 3, 5, 6] .〈1;2〉 [1, 2, 3, 4, 5, 6]

Operational Semantics Figure 3 defines operational semantics, with relation `d R
P−→
t

R′ denoting that the runtime of program P transitions from R to R′ in time t. To model
stream rates explicitly, we need to (1) “count the beans,” i.e. the number of data items
on the input/output streams, and (2) be aware of time. Since parallelism affects how
time is accounted for, we elect to explicitly consider the impact of parallelism for ev-
ery expression. (In contrast, standard operational semantics for concurrent languages
typically employs one single “context” rule to capture non-determinism.)

The reduction relation is reflexive and transitive. [D-Filter] relies on a pre-defined
Π to obtain the execution time of each filter. The reduction takes ni data items from the
“tail” of the input stream, applies function F to it, and places no number of data items
on the head of the output stream.

The rest of the rules are illusrated in Figure 2, where streams are green arrows
and labeled with metavariables appearing in rules. By convention, we identify a pre-
reduction value with a symbol, and use the same symbol with an apostrophe to indicate
the value after reduction. In [D-Chain], ` represents the stream in between PA and PB ,
i.e. both the output stream of PA and the input stream of PB . In [D-Diamond], ' allows
one stream to be “viewed” as two, whereas . allows two streams to be “viewed” as
one. This idea of “views” is inspired by lens [28]. As illustrated in Fig. 2(c), a circle
composition intuitively looks like a “reverse” diamond composition, in that there is a
“join” at input, and a “split” at output. The input stream (Si) and the output stream of
the feedback sub-program (SD) is “joined” to form the input stream of the forward sub-
program, whose output stream is “split” to the output stream (So) and the input stream
of the feedback sub-program (SB). We postpone its formal definition to Appendix A.3.



`d R
P−→
t
R

[D-Reflex]

`d R
P−→
t1

R′ `d R′
P−→
t2

R′′ t1 + t2 ≤ t

`d R
P−→
t
R′′

[D-Trans]

So2 = F (Si1) |Si1| = ni |So2| = no Π(L) ≤ t

`d [`IN 7→ (Si2, Si1), `OUT 7→ So1]
FL[ni,no]−−−−−−→

t
[`IN 7→ Si2, `OUT 7→ (So2, So1)]

[D-Filter]

R = RA ]RB ] [`IN 7→ Si, `OUT 7→ So, ` 7→ S]
R′ = R′A ]R′B ] [`IN 7→ S′i, `OUT 7→ S′o, ` 7→ S′]

`d RA ] [`IN 7→ Si, `OUT 7→ S]
PA−−→
tA

R′A ] [`IN 7→ S′i, `OUT 7→ (S3, S)]

`d RB ] [`IN 7→ S, `OUT 7→ So]
PB−−→
tB

R′B ] [`IN 7→ S2, `OUT 7→ S′o]

S = S2, S1 S′ = S3, S2 tA ≤ t tB ≤ t

`d R
PA�

`PB−−−−−−→
t

R′
[D-Chain]

R = RA ]RB ] [`IN 7→ Si, `OUT 7→ So]
R′ = R′A ]R′B ] [`IN 7→ S′i, `OUT 7→ S′o]

`d RA ] [`IN 7→ SA, `OUT 7→ SC ]
PA−−→
tA

R′A ] [`IN 7→ S′A, `OUT 7→ S′C ]

`d RB ] [`IN 7→ SB , `OUT 7→ SD]
PB−−→
tB

R′B ] [`IN 7→ S′B , `OUT 7→ S′D]

Si 'δ SA, SB S′i 'δ S′A, S′B SC , SD .α So S′C , S
′
D .α S′o

tA ≤ t tB ≤ t

`d R
PA3δ,αPB−−−−−−−→

t
R′

[D-Diamond]

Fig. 3. Operational Semantics (see Appendix A.3 for circle composition)

There are two important observations. First, the data flow dependency of the two
sub-programs PA and PB – be it in a chain, diamond, or circle – does not prevent
parallelism. The reduction time for each rule is only bound by the longer reduction
of PA and PB . Second, the reduction system does not require synchronization over
any sub-programs. For all three composition forms, a reduction can happen if one sub-
program takes a [D-Reflex] step. In other words, sub-programs of a stream program –
including all filters – can operate asynchronously, and no predefined schedules [17] are
required.

Properties The operational semantics enjoys several simple properties:

Lemma 1 (Stream Count Preservation) If `d R
P−→
t
R′, then dom (R) = dom (R′) =

slabels (P ) ∪ {`IN, `OUT}.



Lemma 2 (Monotonicity of Input and Output Streams) If `d R
P−→
t
R′, then |R(`IN)| ≥

|R′(`IN)|, and |R(`OUT)| ≤ |R′(`OUT)|.

Stream Rates Our operational semantics is friendly for calculating stream rates. First,
let us formalize the notion of how fast the size of a stream changes:

Definition 1 (Stream Size Change Rates). Given a reduction from R to R′ over time
t, the rate for stream ` is defined by function rchange():

rchange(R,R′, t, `) def=
abs (|R′(`)| − |R(`)|)

t

where unary operator abs () computes the absolute value.

From this point on, we use metavariable r to represent stream size change rates. r ∈
FLOAT+. Observe that according to Lem. 2, the input stream of a program through a
reduction is monotonically decreasing, whereas the output stream of a program through
a reduction is monotonically increasing. We define:

Definition 2 (Input/Output Stream Rates). Given a reduction fromR toR′ over time
t, we define:

rti (R,R′, t) def= rchange(R,R′, t, `IN)
rto (R,R′, t) def= rchange(R,R′, t, `OUT)

Bootstrapping A technical detail for a program with circle compositions is that one
needs to prime the loop. For instance, the anneal circle composition in Figure 1 can-
not start until the output stream of randomJump contains 99 items. In practice, most
languages allow programmers to specify the initialization data items to “prime” the
loop. To model this, we say R is a primer of P iff dom (R) is the smallest set of ` where
PA �

`′,`
α,δ PB is a sub-program of P , α = 〈n;n′〉 and |R(`)| = n′. Here, stream label

`′ intuitively identifies the input stream of the forward sub-program (PA), and ` for the
output stream of the feedback sub-program (PB).

Definition 3 (Bootstrapping Runtime). Given programP , input stream S0, and primer
R0, function init (P, S0, R0) computes the initial runtime of P , defined as the small-
est R satisfying the following conditions: R(`IN) = S0, R(`OUT) = ∅, R0 ⊆ R, and
R(`) = ∅ for any ` ∈ slabels (P ) ∩ dom (R0).

4 Rate Types

Types in our system are defined as follows:

τ::=〈θ; ν〉 stream rate type
θ ∈ TR ⊆ FLOAT+ throughput ratio
ν ∈ FLOAT+ natural rate



`t P : τ ′ τ ′ <: τ

`t P : τ
[T-Sub]

`t Pa : 〈θa; νa〉 `t Pb : 〈θb; νb〉
θ = θa × θb ν = min (νa × θb, νb)

`t PA �` PB : 〈θ; ν〉
[T-Chain]

θ = no/ni
ν = no/Π(L)

`t FL[ni, no] : 〈θ; ν〉
[T-Filter]

`t Pa : 〈θa; νa〉 `t Pb : 〈θb; νb〉
θ′a = f1(δ)× θa ×g1(α)
θ′b = f2(δ)× θb ×g2(α)

ν′a = νa ×g1(α) ν′b = νb ×g2(α)
θ = min (θ′a, θ

′
b) ν = min (ν′a, ν

′
b)

`t Pa3δ,αPb : 〈θ; ν〉
[T-Diamond]

θ2 ≤ θ1 ν2 ≤ ν1
〈θ1; ν1〉 <: 〈θ2; ν2〉

[Sub]

`t Pa : 〈θa; νa〉 `t Pb : 〈θb; νb〉
θ′a = min

`
g1(α), θ′b ×g2(α)

´
× θa

θ′b = θ′a ×f2(δ)× θb
ν′a = min

`
νa, ν

′
b ×g2(α)× θa

´
ν′b = min

`
νb, ν

′
a ×f2(δ)× θb

´
θ = θ′a ×f1(δ) ν = ν′a ×f1(δ)

`t Pa �`
′,`
α,δ Pb : 〈θ; ν〉

[T-Circle]

Fig. 4. Rate Type Checking Rules

The throughput ratio, θ, statically characterizes the ratio of the output stream rate
over the input stream rate. The natural rate, ν, statically approximates the output stream
rate when the program can “naturally” produce output with no limitation on the input
stream rate. In other words, it characterizes the upper bound of the output stream rate.

The type form here reveals a fundamental phenomenon of stream rate control: the
input stream rate and the output stream rate can be correlated by a ratio θ, but the
correlation only holds when the output stream rate does not reach its upper bound ν.
To gain intuition on the upper bound aspect of stream control, the key insight is that
it takes time to process data: each filter execution takes time, and each filter instance
can only take “one firing at a time.” The combinational effect is that a program simply
cannot — in practice or in theory — produce output streams at an unlimited rate.

4.1 Type Checking

Judgment `t P : τ denotes P has type τ . This is directly related to two questions
in Section 2. Question Q1 attempts to determine whether a program P can sustain
the production of n1 data items per second when its input is fed with n2 items per
second. That question is tantamount to finding out whether a derivation exists for `t
P : 〈n1/n2;n1〉. Question Q2 — determining the upper bound of the output rate ν —
can be answered by finding out whether a derivation exists for `t P : 〈θ; ν〉 for some θ.



(a) Chain Case I (c) Diamond Case I (e) Circle Case I

(b) Chain Case II (d) Diamond Case II (f) Circle Case II

Fig. 5. Reasoning about Throughput Ratios and Natural Rates (For natural rate reasoning, follow
the red lines; For throughput ratio reasoning, follow both the blue and the red lines.)

The typing rules are summarized in Figure 4. Simple functionsf1(δ),f2(δ),g1(α)
and g2(α) can be informally viewed as computing a form of “normalized” distribution
and aggregation factors. They are defined as:

f1(δ) def= n
n+n′

f2(δ) def= n′

n+n′ where δ = 〈n, n′〉
g1(α) def= n+n′

n

g2(α) def= n+n′

n′ where α = 〈n, n′〉

[T-Sub] introduces subtyping. Intuitively, if a program can sustain a throughput ratio
of 0.4, it can sustain throughput ratio 0.3. In addition, if a program is known to be
capable of producing as much as 300 items a second, it can output 200 items a second.

In [T-Filter], the throughput ratio of a filter is simply the ratio between the number
of data items placed on the output stream through one filter function application and
that of data items consumed by the same application. Following the “one-firing-at-a-
time” execution strategy, the upper bound rate for a filter to produce data items is it runs
“non-stop”: the filter produces every n0 items for its execution time Π(L).

As revealed by [T-Chain], the throughput ratio of a chain composition is the mul-
tiplication of the throughput ratios of the two chaining sub-programs. There are two
cases: (1) Figure 5(a): when PB is fed with an input stream whose rate is high enough
that the output stream of PB reaches its natural rate νb, then νb should also be the upper
bound for the entire composition program. (2) Figure 5(b): otherwise, the upper bound
of the entire program is determined by the rate of the input stream of PB , which is, in
this case, the output stream rate of PA. Since we know the upper bound of that rate is
νA, the output stream rate of PB — and hence also the output stream rate of the entire



program — is no higher than νA × θb. The natural rate of the entire program should be
the minimal of the two, computed by the standard binary function min ().

In [T-Diamond] rule, observe that throughput ratio can be viewed as the “normal-
ized” output stream rate relative to the input stream rate, through the two possible paths
from input to output. Figures 5(c) and 5(d) demonstrate this case.

To see how [T-Circle] works, first let the upper bound of stream rate at the point of
PA’s output be ν′a and let the upper bound of stream rate at the point of PB’s output
be ν′b. Observe that if we can determine ν′a, the natural rate of the entire program is
simply ν′a × f1(δ). To determine ν′a, the general philosophy we used for [T-Chain]
reasoning can still be applied, with two cases: (1) Figure 5(e): when PA is fed with an
input stream whose rate is so high that its output stream is already the upper bound,
then ν′a = νa; (2) Figure 5(f): otherwise, ν′a is determined by the input stream rate
of PA, which in turn is determined by the upper bound of the output rate of PB , i.e.
ν′b × g2(α) × θa. In the more general case, ν′a and ν′b are mutually dependent. Let us
consider an iterative scheme where we compute ν′a and ν′b in iterations, with superscript
k on the left indicates the number of iterations, then:

(k+1)ν′a = min
(
νa,

(k)ν′b ×g2(α)× θa
)

(k+1)ν′b = min
(
νb,

(k)ν′a ×f2(δ)× θb
)

The convergence of such iterations has been well-studied in control theory as the
stability of feedback loop. More general solutions would determine the existence of —
and if so compute — the fix point. [T-Circle] adopts a simple scheme, requiring conver-
gence without iteration. From a type system perspective, this implies we may conser-
vatively reject programs whose natural rate may stabilize after iterations. Nonetheless,
the simple rule here sufficiently demonstrates our core philosophy: our type system is
stability-aware, and programs with unstable circle compositions should be rejected. The
throughput ratio reasoning of [T-Circle] follows similar logic.

Meta-Theories RATE TYPES correctly captures the dynamic behavior as defined by the
operational semantics: specifically, both the throughput ratio and natural rate we reason
about statically is a faithful approximation of the dynamic stream rates:

Theorem 3 (Type Soundness). Given a program, P , and the initial runtime R =
init(P, S0, R0) for some S0 and R0, and if `d R

P−→
t

R′ and rto (R,R′, t) = r1

and rti (R′, R, t) = r2, then `t P : 〈r1/r2; r1〉.

This theorem relates program dynamic behaviors and typing. One drawback is that
it requires relating a runtime state with the initial state. In other words, the rates being
computed are averaged through the entire program execution. Will the same theorem
hold for two arbitrary runtime states (i.e. if we removed the requirement of starting
from the initial state)? The answer unfortunately is no. The reason is that each stream
program runtime may contain “intermediate streams”, i.e. streams that are not identified
by `IN and `OUT. For instance, in a simple program that only involves chaining two filters
together, there is an intermediate stream connecting the two filters. Such intermediate
streams may “buffer” data, potentially leading to localized “bursty” behaviors. We now
state a stronger result saying that the throughput ratio and natural rate are effective in



characterizing arbitrary reduction steps as well, as long as a sustainability condition is
met:

Theorem 4 (Type Soundness over Arbitrary Reduction Steps). Given program P

and `d R
P−→
t

R′ where rto (R,R′, t) = r1, rti (R′, R, t) = r2, and for any ` ∈
dom (R)− {`IN, `OUT}, rchange(R,R′, t, `) = 0 then `t P : 〈r1/r2; r1〉.

Here we call the rchange() predicate in the theorem the sustainability condition.
The theorem says that a reduction sequence starting at any state observes the through-
put ratio and natural rate reasoned about by our type system, as long as the size of each
intermediate stream at the starting state is the same as its size at the end of the reduction
sequence. Since P−→

t
is transitive, this theorem does not require every small step main-

tain sustainability: it only requires the end state is sustainable relative to the beginning
state. In other words, the theorem is tolerant of temporary “bursty” behaviors during the
reduction(s) from R to R′.

In pratice, we expect Theorem 3 and Theorem 4 are useful in complementary sce-
narios. Theorem 3 is more appropriate for characterizing short-running programs, where
sustainability may never be achieved before the execution completes. In that scenario,
the theorem unconditionally says performance reasoning is effective in modeling run-
time stream rates, regardless of sustainability. Theorem 4 says for long-running pro-
grams, we can still capture the rate behavior of a program execution, say, from its 68th

minute to its 95th minute. The theorem further tolerates bursty behaviors, say in the
77th minute, as long as the 95th minute execution snapshot conforms to the sustain-
ability condition relative to the 68th minute snapshot. This is sufficient to characterize
long-running programs that 1) become sustainable after an initial duration of time (but
may be followed by intermittent bursty behaviors); 2) or demonstrate periodic behav-
iors. In the latter case, the theorem is useful when R and R′ are states on the reduction
sequence with full periods in between.

Furthermore, Theorems 3 and 4 may be combined to characterize the same program
execution, with the former addressing the beginning (potentially unstable) stage, and the
latter for the rest.

4.2 Rate Type Inference

In this section, we define a constraint-based type inference for RATE TYPES. The key
element is throughput ratio type variable p ∈ TVAR and natural rate type variable
q ∈ NVAR, the type variable counterparts of θ and ν. Each element in the set is either
an equality constraint (e .= e) or an inequality one (e � e) over expressions formed by
type variables and arithmetic expressions over them, including multiplication (•) and
computing the minimal value of the two (minn). To avoid confusion, we use different
symbols for syntactic elements in constraints and those in predicates, whose pairwise
relationships should be obvious: .= and =,� and≤, • and×, minn and min. We further
define a solution σ as a mapping from type variables to throughput ratios and natural
rates. We use predicate σ ⇓ Σ to indicate that σ is a solution to Σ. Formally, the
predicate holds if every constraint is a tautology for a set identical to Σ, except that
every occurrence of p is substituted with σ(p), and q with σ(q).



p, q fresh

`i FL[ni, no] : 〈p; q〉\{p � no/ni, q � no/Π(L)}
[I-Filter]

`i PA : 〈pa; qa〉\ΣA `i PB : 〈pb; qb〉\ΣB p, q fresh

`i (PA �` PB) : 〈p; q〉\ΣA ∪ΣB ∪ {p � pa • pb, q � minn (qa • pb, qb)}
[I-Chain]

`i PA : 〈pa; qa〉\ΣA `i PB : 〈pb; qb〉\ΣB p, q fresh
Σ1 =

˘
p � minn

`
pa •g1(α)×f1(δ), pb •g2(α)×f2(δ)

´¯
Σ2 =

˘
q � minn

`
qa •g1(α), qb •g2(α)

´¯
`i (PA3δ,αPB) : 〈p; q〉\ΣA ∪ΣB ∪Σ1 ∪Σ2

[I-Diamond]

`i PA : 〈pa; qa〉\ΣA `i PB : 〈pb; qb〉\ΣB p, q, p′a, q
′
a, p
′
b, q
′
b fresh

Σ0 =
˘˙
p � p′a •f1(δ), q � q′a •f1(δ)

¸¯
Σ1 =

˘
p′a

.
= minn

`
g1(α), p′b •g2(α)

´
• pa

¯
Σ2 = {p′b

.
= p′a •f2(δ) • pb} Σ3 = {q′a

.
= minn

`
qa, q

′
b •g2(α) • pa

´
}

Σ4 = {q′b
.
= minn

`
qb, q

′
a •f2(δ) • pb

´
}

`i (PA �
`′,`
α,δ PB) : 〈p; q〉\Σ0 ∪Σ1 ∪Σ2 ∪Σ3 ∪Σ4 ∪ΣA ∪ΣB

[I-Circle]

Fig. 6. Rate Type Inference Rules

Type inference rules are given in Figure 6. Judgment `i P : 〈p; q〉\Σ says program
P is inferred to have throughput ratio represented by type variable p and natural rate
represented by type variable q under constraint Σ. The rules have a one-to-one corre-
spondence with the type checking rules we introduced in Figure 4. Indeed, the close
relationship between the two can be formally established:

Theorem 5 (Soundness of Inference). If `i P : 〈p; q〉\Σ and σ ⇓ Σ then `t P :
〈σ(p), σ(q)〉.

Theorem 6 (Completeness of Inference). If `t P : 〈θ, ν〉, then ∃σ such that σ(p) =
θ, σ(q) = ν and σ ⇓ Σ, where `i P : 〈p; q〉\Σ.

A (trivial) solution clearly exists for the constraints produced by the inference: solv-
ing all p’s and q’s to 0. What is more interesting is whether the “best” solution exists:
this is the existence of principal typing, a property our type inference algorithm enjoys:

Theorem 7 (Principal Typing). For any P such that `i P : 〈p; q〉\Σ, there exists a
unique σ such that σ ⇓ Σ, and for any σ′ ⇓ Σ, 〈σ(p);σ(q)〉 <: 〈σ′(p);σ′(q)〉. We
further call 〈σ(p);σ(q)〉 the principal type of P .

This property has important consequence to stream rate reasoning. Recall in the pre-
vious section, subtyping <: is defined by comparing the values of throughput ratios and



natural rates. What the theorem here tells us is that there exists the “highest” throughput
ratio and natural rate for every program.

We last introduce an effective way to compute the principal type. First, let us define
a new judgment `ip P : 〈p; q〉\Σ. The typing rules for this judgment is identical to that
of `i, except that every occurrence of � is replaced with .=. The following theorem is
an effective decision procedure for computing principal types for `i:

Theorem 8 (Effective Principal Type Computation). For any P such that `ip P :
〈p; q〉\Σ and σ ⇓ Σ holds, then 〈σ(p);σ(q)〉 is the principal type of P .

The two questions — Q3 and Q4 — can be easily answered given we can compute
principal type for the program. Observe that the principal type provides the highest
throughput ratio for the program. Let it be 〈θ; ν〉. The answer to Question Q3 — the
minimal input stream rate given the output stream is expected to produce n items per
second — is simply n/θ if n ≤ ν. The answer to question Q4 — the expected output
stream rate given the input stream rate is n items per second — is either n × θ or ν,
whichever is less.

5 Applications

5.1 RATE TYPES for Energy Management

RATE TYPES, with minor modifications as noted below, provides opportunities for en-
ergy optimization thanks to its refined support for performance reasoning on stream
rates.

The vast majority of CPUs today are equipped with DVFS, which enables dynamic
modification of the operational frequency and supply voltage. They typically support a
limited predefined set of frequencies, which we model as an ordered set, 〈FREQ;<〉,
where each element, fq ∈ FREQ ⊆ FLOAT+ is a frequency (in Hertz) supported by
the hardware. Let us make a few simple assumptions for this short description of the
application of RATE TYPES to stream rate control in a DVFS-enabled setting. First, we
assume each filter runs on its own DVFS-manageable CPU core. Second, we assume
the execution time of a piece of code — such as a filter function — is proportional to
the CPU frequency at which the code (the filter) runs. The key to connect DVFS with
our framework is a simple fact: DVFS affects the execution time of filters. By speeding
up or slowing down the frequency for a specific filter, we can modify its execution time
(and natural rate). We formalize this model by extending the filter time mapping Π to
ΠE , the filter execution time at a given frequency, defined as:

ΠE(L, fq) = Π(L)× max (FREQ)
fq

where we use the original Π to keep the execution time when a filter is executed at the
highest frequency max (FREQ), and compute the execution time of a filter L on a CPU
at frequency fq with ΠE(L, fq).



DVFS is long known to be an effective energy management strategy (e.g.
[22, 29–31]). CPU frequency downscaling (and its corresponding effect on voltage ad-
justment) can significantly reduce the power consumption of CPUs. If the CPU fre-
quency of an execution is scaled down without degrading performance, the overall en-
ergy consumption is reduced. For our discussion here, we choose a very simple energy
model. We use notation energy (L, fq) to denote the energy consumption of filter L
on frequency fq. We leave its definition abstract, and only axiomatically define that
energy (L, fq1) < energy (L, fq2) iff fq1 < fq2.

We can now investigate into Q5 posted in Section 2: identifying the highest possible
output rate using the least possible energy. The key insight here is ΠE introduces us a
way to directly relate CPU frequencies to the type system. If we can introduce frequency
variables, fv ∈ FREQVAR, which are variables whose solutions are frequencies, and
use them to construct constraints related to filter execution time, the solution of the
constraints produced by the type inference algorithm may provide direct answers to
frequency settings.

We first extend our type constraint definitions, as follows:

ΣE::=cE E constraints
cE ::=eE � eE | eE .= eE E constraint
eE ::=p | q | fv | minn

(
eE , eE

)
| eE • eE E expr

σE ::=p 7→ θ ∪ q 7→ ν ∪ fv 7→ fq E solution

Then, we introduce a new system of type inference `ie. Judgment `ie P : 〈p; q〉\ΣE is
identical to `i, except all metavariables should have the predictable E- superscript, and
the rule for filter inference is updated as:

ΣE =
n
p � no/ni, q � no•ΥE(L)

Π(L)×max(FREQ)

o
`ie FL[ni, no] : 〈p; q〉\ΣE

[IE-Filter]

where the simple bijective mapping ΥE ∈ FLAB 7→ FREQVAR allows us to find
out the frequency variable name used for a particular filter L where dom

(
ΥE
)

=
flabels (P ). Note that the second constraint in ΣE is very similar to its counterpart
q � n0/Π(L) in [I-Filter], except that the execution time is Π(L)× max(FREQ)

ΥE(L)
instead

of Π(L).
Next, let us define an ordering relation to “rank” constraint solutions with regard to

DVFS settings. σE ≤E σ′E iff ∀fv ∈ dom
(
σE
)
, σE(fv) ≤ σ′E(fv). Finally, we can

state our theorem on finding the optimal settings for DVFS without any performance
degradation:

Theorem 9 (DVFS-Optimal Solution). For a program P where `ie P : 〈p; q〉\ΣE ,
the GLB of 〈{σE |(σE ⇓ ΣE ∪ {p .= θ, q

.= ν})};≤E〉 exists where 〈θ; ν〉 is the
principal type of P according to `i. We call the GLB the DVFS-optimal solution for P .

This important theorem comes with some subtleties. First, observe that the type
inference algorithm `i uses Π , which in this setting keeps the execution time of each
filter when it runs on the highest possible CPU frequency. Second, the principal type of
P says that θ and ν is the highest possible throughput ratio and natural rate. Combining



the two observations, θ and ν are indeed the best possible performance for P even
when the hardware is considered: all CPUs are running on the highest frequency. As a
result, any solution to ΣE ∪ {p .= θ, q

.= ν} would be a solution without performance
degradation. The GLB computation yields a performance-preserving solution with the
lowest setting of CPU frequencies.

Corollary 1 (Energy Optimality). If σE is the DVFS-optimal solution for P , σE0 ⇓
ΣE where `ie P : 〈p; q〉\ΣE for some p and q,∑

L∈flabels(P )

energy
(
L, σE(ΥE(L))

)
≤

∑
L∈flabels(P )

energy
(
L, σE0 (ΥE(L))

)

5.2 RATE TYPES for CPU Resource Allocation

Our discussion so far has been following the “one-firing-at-a-time” assumption for filter
executions. As we have shown, this is one of the performance-limiting factors of stream
programs. In this section, we allow a single filter to be assigned to multiple CPU cores
to achieve data parallelism. We assume that every filter can be replicated, and there
are unlimited number of cores. If the time required to execute a filter once is defined
by Π(L), we can multiply the output rate for that filter by k ∈ NAT+ when running
the filter k times on k different cores. A new CPU resource allocation problem arises:
assuming we know the output rate we wish to achieve for a stream program, how can
we allocate as few CPU cores for sustaining this output rate as possible?

Similar to our energy-motivated extension, the key insight is that data-parallel CPU
allocation again affects filter execution time: allocating 5 CPU cores for a filter can be
modeled by reducing the execution time of that filter by 5 times. We again formalize
this model by extending the filter time mapping Π to ΠA, the filter execution time at
a given number of CPU allocation, defined as: ΠA(L, k) = Π(L)/k In other words,
we use the original Π to keep the execution time when the filter is executed without
multiple CPU core allocation, and compute the execution time of a filter L on a CPU at
particular allocation k with ΠE(L, k).

We posit another extension to our rate inference structures to manage the allocation
of cores to filters.

ΣA::=cA A constraints
cA ::=eA � eA | eA .= eA A constraint
eA ::=p | q | kv | minn

(
eA, eA

)
| eA • eA A expr

σA ::=p 7→ θ ∪ q 7→ ν ∪ kv 7→ k A solution

As we did in the previous sub-section, let us introduce a new system of type in-
ference `ia. Judgment `ia P : 〈p; q〉\ΣA is identical to `i, except all metavariables
should have the predictable A- superscript, and the rule for filter inference is updated
as:

ΣA =
˘
p � no/ni, q � ΥA(L) • no/Π(L)

¯
`ia FL[ni, no] : 〈p; q〉\ΣA

[IA-Filter]



where the simple bijective mapping ΥA ∈ FLAB 7→ KVAR allows us to find out the
allocation variable name, kv ∈ KVAR used for a particular filter L.

Next, we define an ordering relation to “rank” constraint solutions w.r.t. CPU allo-
cation. σA ≤A σ′A iff ∀kv ∈ dom

(
σA
)
, σA(kv) ≤ σ′A(kv). Finally, we can state our

theorem on finding the minimal CPU allocation without any performance degradation:

Theorem 10 (Allocation-Optimal Solution). Given a program P such that `ia P :
〈p; q〉\ΣA, then the GLB of 〈{σA|(σA ⇓ ΣA ∪ {ν ≤ q})};≤A〉 exists, where ν is the
requested output rate. We call the GLB the allocation-optimal solution for P .

This theorem directly answers Q6 in Section 2. Optimally, each filter (of label L)
is allocated with σA(ΥA(L)) number of cores, where σA is the allocation-optimal so-
lution for P . The optimal solution by definition minimizes the CPU core allocation for
every filter, and therefore minimize the overall CPU allocation as well.

6 Related Work

Quantitative reasoning about stream programs is uncommon. One established direction
that loosely fits into the category is static scheduling of synchronous data flows (SDF)
(e.g. [17]). For example, a schedule of AAB is computed when filters A and B are
chained together and B pops 2 items for each firing. StreamIt implemented an enriched
variant of the static scheduling, steady-state scheduling [24]. The goal of RATE TYPES
– stream rate reasoning – is orthogonal to static scheduling. Our system can reason
about stream rates with arbitrary schedules. Clock calculus [18] was designed as a more
restrictive form of SDF, where different sub-programs (filters) of a stream program are
synchronized. Their type system infers a “clock” to synchronize filters. RATE TYPES
does not require any synchronization between sub-programs. Furthermore, unlike clock
calculus where filter execution time is treated as “unit length,” RATE TYPES illuminates
the relationship between filter execution time and stream rates.

Some type systems have been proposed for non-quantitative aspect of stream rea-
soning. StreamFlex [23] has an ownership type system aimed at enforcing memory
safety, especially non-shared memory access from different filters. A dependent type
system [32] was designed for FRP to enforce productivity: a liveness property to guar-
antee the program continues to deliver output. Krishnaswami et. al. [33] introduced a
linear type system to bound resource usage (especially space) in higher-order FRP. Sue-
naga et. al. [11] designed a type system in the Hoare-style on top of a stream language
core as an example to demonstrate the expressiveness of their discrete-continuous trans-
fer framework for verification. Elm [5] as a FRP-family language has a type system to
outlaw higher-order signals. None of the related work above reasons about the rate of
data processing. Dynamic semantics of stream/signal/dataflow programs is well under-
stood. Historically significant systems such as Kahn networks, Ptolemy, LUSTRE, and
classic FRP all have solid foundations, with numerous formalizations (e.g., [34, 35, 33,
9, 36]). Within this backdrop, ours is designed for friendly accounting of data rates.

For control-flow languages, there is a large body of work on qualitative and quan-
titative reasoning of performance-related properties, e.g., WCET [12], cost semantics
[13], resource bound certification [14], resource usage analysis [15], amortized resource



analysis [16], and Energy Types [30]. RATE TYPES focuses on (data rates of) data-flow
programming models, and their impact on energy consumption and CPU allocation.

In experimental research, data throughput is a critical metric to evaluate the perfor-
mance of stream systems. An active research area is to minimize energy consumption
with least performance penalty (e.g.[29]). These solutions do not often consider pro-
gram structures, and usually measure data rate as the effect of their approaches, whereas
RATE TYPES directly reasons about it, and makes rate control the cause of optimizing
energy and CPU allocation. Our prior work, Green Streams [31], achieves energy effi-
ciency by DVFS through a (non-type-based) program analysis.

7 Conclusion

This paper describes a novel type system for performance reasoning over stream pro-
grams, focusing on a highly dynamic aspect – stream rate control. The framework can
potentially be applied to energy management and CPU resource allocation. The proofs
of theorems and lemmas described in the paper can be found in the technical report. 1
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A Appendix

A.1 Encodings

First, a k-way fork-join of programs P1, . . . , Pk with distribution factor 〈n1; . . . ;nk〉
and aggregation factor 〈n′1; . . . ;n′k〉 can be encoded as:

P13δ1,α1(P23δ2,α2(. . . (Pk−13δn−1,αn−1Pk)))

where δi = 〈ni;ni+1 + . . .+ nk〉 and αi = 〈n′i;n′i+1 + . . .+ n′k〉 for i = 1..n− 1.
Round-robin is not the only way where the input stream of a split-join can be di-

vided. Another useful pattern is to duplicate every input stream element, and feed each
duplicate to the input stream of the two sub-programs (say P1 and P2) participating the
split-join. This can be encoded as FL[1, 2] � (P13〈1;1〉,αP2) where F is function that
takes [x] and returns [x, x] and Π(L) = 0.

Similarly, the output stream of a split-join does not need to be aggregated through
round-robin either. A useful pattern is to aggregate the two output streams of the two
sub-programs (say P1 and P2) participating the split-join through some binary opera-
tors. For example, one may wish to only put the greater value of each pair of output
elements of P1 and P2 to the output stream of the split-join. This can be encoded as
(P13δ,〈1;1〉P2)� FL[2, 1] where F represents the binary operator and Π(L) = 0. For
the example above, F is the function that takes [x, y] and returns [max(x, y)] where
max () is the standard maximum operator.

Last, our formal system idealizes the data transfer across buffers. Consider the chain
composition P1 � P2 for instance. A real-world implementation would place a buffer
between the output stream of P1 and the input stream of P2. Such buffer read/write may
take time. The time of buffer read/write can be taken into account through encoding
P1 � FL[1, 1] � P2 where F is the identity function, and Π(L) is time needed for
buffer access.

A.2 Stream Assembly and Dissembly

|S| < (n+ n′)
S '〈n;n′〉 ∅; ∅

S1 =
[
da1 , . . . , dan ,
db1 , . . . dbn′ ,

]
SA1 = [da1 , . . . , dan ]

SB1 = [db1 , db2 , . . . , dbn′ ]
S2 '〈n,n′〉 SA2, SB2

S1, S2 '〈n;n′〉 SA1, SA2;SB1, SB2

(|SA| < n) OR (|SB | < n′)
SA;SB .〈n;n′〉 ∅

SA1 = [da1 , da2 , . . . , dan ]
SB1 = [db1 , db2 , . . . , dbn′ ]

S1 = [da1 , da2 , . . . , dan , db1 , db2 , . . . , dbn′ ]
SA2, SB2 .〈n;n′〉 S2

SA1, SA2;SB1, SB2 .〈n;n′〉 S1, S2



Fig. 7. Circle Composition Semantics Illustration

R = RA ]RB ]
»
`IN 7→ Si, `OUT 7→ So,
`a 7→ SAA, `b 7→ SBB

–
R′ = R′A ]R′B ]

»
`IN 7→ S′i, `OUT 7→ S′o,
`a 7→ (S′AA, SC0), `b 7→ (S′BB , SD0)

–
`d RA ]

24 `IN 7→ SA,
`OUT 7→ SC ,
`a 7→ SAA

35 PA�
`aPAA−−−−−−−−→
tA

R′A ]

24 `IN 7→ S′A,
`OUT 7→ S′C ,
`a 7→ S′AA

35
`d RB ]

24 `IN 7→ SB ,
`OUT 7→ SD,
`b 7→ SBB

35 PB�
`bPBB−−−−−−−−→
tB

R′B ]

24 `IN 7→ S′B ,
`OUT 7→ S′D,
`b 7→ S′BB

35
identity (PAA) identity (PBB) tA ≤ t tB ≤ t

S′C = SC0, SC S′D = SD0, SD
SC 'δ So, SB Si, SD .α SA S′C 'δ S′o, S′B S′i, S

′
D .α S′A

`d R
PA�

`a,`b
α,δ

PB
−−−−−−−−→

t
R′

[D-Circle]

Fig. 8. Circle Composition Operational Semantics

A.3 Circle Composition Operational Semantics

The operational semantics of a circle composition, the [D-Circle] rule, is defined in
Figure 10. As illustrated in Figure 9, the key insight for understanding [D-Circle] is
a circle composition is (roughly) a reverse diamond composition: it assembles upon
input and dissembles upon output. The former combines the program input stream (i.e.
Si) with the output stream of the feedback (i.e. SD) to form the input stream of sub-
program PA (i.e. SA), and the latter divides the output stream of PA (i.e. SC) into the
program output stream (i.e. So) and the input stream of sub-program PB (i.e. SB). The



thorny issue is after reduction, the additional data items produced by PA and PB need to
be properly represented. Unlike [D-Diamond], we cannot further “lens” them because
that would lead to the next iteration of loop reduction. To address this, we chain PA
with an imaginary filter — PAA in Figure 9 — and use the shared stream in between
the two (i.e. SAA) as the “buffer” for the additional data produced by PA reduction.
PAA intuitively is an “identity” filter that places every input data item to the output as
is. Predicate identity (P ) holds iff P = FL[1, 1] for some L and F is the identity
function. The same scheme is used for treating the post-reduction output of PB . The
identifiers of the two additional introduced streams — SAA and SBB — are the two
program labels associated with the circle construct.


