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Abstract
This paper introduces a novel type-and-effect calculus, first-
class effects, where the computational effect of an expression
can be programmatically reflected, passed around as values,
and analyzed at run time. A broad range of designs “hard-
coded” in existing effect-guided analyses — from thread
scheduling, version-consistent software updating, to data ze-
roing — can be naturally supported through the program-
ming abstractions. The core technical development is a type
system with a number of features, including a hybrid type
system that integrates static and dynamic effect analyses,
a refinement type system to verify application-specific ef-
fect management properties, a double-bounded type system
that computes both over-approximation of effects and their
under-approximation. We introduce and establish a notion of
soundness called trace consistency, defined in terms of how
the effect and trace correspond. The property sheds founda-
tional insight on “good” first-class effect programming.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Data types and structures; F.3.2
[Semantics of Programming Languages]: Program analysis

Keywords first-class effect, type system, hybrid typing

1. Introduction
Type-and-effect systems, either purely static [37, 43, 52], dy-
namic [4, 29, 46] or hybrid [2, 35], have proven to be useful
for program construction, reasoning, and verification. In ex-
isting approaches, the logic of accessing effects and making
decisions over them is defined by the language designer, and
supported by the compiler or the runtime system. The end-
user programmer is generally a consumer of the “hardcoded”
logic for effect management.

Our work is motivated by two fundamental questions.
First, are there benefits of empowering programmers with
application-specific effect management? Second, is there a
principled design for the effect management, so that pro-
grammers are endowed with powerful abstractions while in
the meantime provided with strong correctness guarantees?

In this paper, we develop first-class effects, a novel type-
and-effect system where the effects of program expressions
are available as first-class values to programmers. The life-
cycle of effect management over program expressions be-
comes part of the program itself. The resulting calculus, λfe,
is endowed with powerful programming abstractions:

[EFFECT REFLECTION] Programmers can query the ef-
fect of any expression e through the primitive query e. The
result is a first-class value we call effect closure, which con-
tains expression e and e’s effects, computed by λfe’s type
system, in the form of memory region accesses. For conve-
nience, we call e the passenger expression of the closure.

[EFFECT INSPECTION] The memory access details repre-
sented by an effect closure can be analyzed through a λfe ef-
fect pattern matching expression, enabling effect-based dis-
patch to naturally support effect-guided programming.

[EFFECT REALIZATION] The dual of effect reflection is
effect realization: the realize x expression evaluates the
passenger expression of the effect closure x.

Foundationally, effect reflection and effect realization are
the introduction and elimination of first-class effects, in the
form of effect closures. As effect closures may cross modu-
larity boundaries, it can be viewed as “effect-carrying code.”

The direct benefit of λfe is its support in flexible effect-
guided programming. For example, thread scheduling in
concurrent programs is a prolific area of research [29, 45,
46]. With λfe, programmers can flexibly develop a variety of
thread management strategies. We will further demonstrate
a broad range of applications beyond thread scheduling in
§8 and §B. Overall, a variety of meta-level designs currently
“hidden” behind the compiler and language runtime are now
in the hands of programmers.

With great power comes great responsibility1. The grand
challenge of designing a flexible programming model lies in

1 Marvel’s Spiderman



- - - - - - - - - - - - - - - - - - - Server - - - - - - - - - - - - - - - - - - - -
1 let buf = refr 0 in
2 let scheduler = λ x1:exact, x2:exact.
3 let (p, c) = effcase x1:
4 | EC(l ∼ u) where wrr <<: l=>(x1, x2)
5 | default =>(x2, x1) in
6 {wrr <<: c |−> wrr <<: p} realize p; realize c

- - - - - - - - - - - - - - - - - - - - Client - - - - - - - - - - - - - - - - - - - -
7 let reader = (query !buf) in
8 let writer = (query buf := 1) in
9 scheduler reader writer

notation meaning
query e effect reflection

effcase x : T where P ⇒ e predicated effect dispatch
realize e effect realization
x ∼ y lower bound effect x & upper bound y

EC(x ∼ y) effect closure type
x <<:y effect x is a subset of y
|−> logical implication
{P }e refinement type
wrr write effect to region r

exact lower and upper bounds are equal

Figure 1. A Producer-First Scheduler. (The New Notations Introduced by First-Class Effects Are Explained on the Right.)

principled and precise reasoning. The core technical devel-
opment of λfe is a type system with a number of features.
First, effect reflection is designed through dynamic typing,
resulting in a hybrid type-and-effect system [35] that em-
ploys run-time information to improve precision. Second,
λfe provides static guarantees to application-specific effect
management properties through refinement types, promot-
ing “correct-by-design” effect-guided programming. Third,
λfe computes not only the over-approximation of effects,
the may-effect, but also their under-approximation, the must-
effect. The duality unifies the common theme of permission
[24] vs. obligation [7] in effect reasoning. Fourth, we es-
tablish a stronger notion of soundness called trace consis-
tency, defined in terms of how the effect and the trace (the
“post-execution effect”) correspond. To maintain trace con-
sistency, we introduce a notion of polarity to predicates de-
fined over effects, providing a general solution to a long-
standing problem in effect systems: reasoning about non-
monotone effect operators [6, 38].

In summary, this paper makes the following contributions:
• It describes novel programming abstractions to support

computational effects as first-class values. Expressive
features such as effect reflection, predicated effect in-
spection, and effect realization, are designed to maintain
the lifecycle of λfe in the form of effect closures.
• It develops a sound hybrid type-and-effect system where

dynamic typing is enabled as part of effect reflection,
and static refinement typing is enabled by predicated
effect analysis. The type system is further endowed with
double-bounded effects, where may-analysis and must-
analysis are performed in effect reasoning.
• It introduces a stronger notion of soundness property,

trace consistency, to enable discipline first-class effects
programming. Thanks to a polarity-based effect reason-
ing, λfe enjoys trace consistency even in challenging sce-
narios such as supporting non-monotone effect operators.
• It demonstrates the potentially broad range of applica-

tions of first-class effects in effect-guided programming,
such as effect-aware scheduling, version consistent dy-
namic software update, data zeroing, cooperative multi-
threading, program testing, and algorithmic speculation.

2. Motivation and Design Decisions
To motivate, we illustrate how λfe may help programmers
implement a simple ordering strategy for thread schedul-
ing, write-before-read, shown in Figure 1. The scheduler
aims at executing the “producer” task (i.e., the one that
writes to the region r) first, given the two input tasks x1
and x2. The two tasks are !buf and buf := 1 respec-
tively, created by the Client side of the program (lines 7-9).
According to a well-known scheduling strategy for multi-
threaded programs [34], a data producer should be scheduled
before its consumer. For this program, the programmer may
wish writer to be scheduled before the reader, regard-
less of whether scheduler reader writer appears
on line 9, or scheduler writer reader.

In λfe, the query expression can retrieve the effects of the
tasks, which were defined on lines 7-8. The resulting effects
are analyzed via the effcase pattern matching construct. For
example, on line 4, the case is matched if the must-effect of
x1 writes to region r, noted wrr <<: l. Effects in λfe have
both lower and upper bounds, e.g., x1 has must-effect l and
may-effect u, whose type is noted as EC(l ∼ u). The effect
is realized on line 6, leading to the evaluation of the passen-
ger expression. Finally, to guarantee that the write-before-
read ordering is correctly implemented, the scheduler
uses the refinement type {wrr<<:c |−>wrr <<:p}, which
reads that if c writes to r, then p must also write to r.

2.1 Challenges
This simple program highlights a number of programming
challenges in effect-guided programming:

• [THE NEED FOR DYNAMIC EFFECTS] The scheduler
and its client could be deployed across modularity bound-
aries, such as on different machines or OS domains. Even
if it is easy to precisely specify the effects of the two
tasks !buf and buf:=1 on the client side, any prac-
tical scheduler should make no assumption on what
the effects of x1 and x2 are. The more general case is
that the scheduler takes a set of tasks as arguments.
• [EFFECT-CARRYING CODE SUPPORT] For programs

where the effectful expression and its computational ef-
fect coexist in one program, principled design in both



programming abstraction and typing is required. For ex-
ample, the runtime representation of first-class effects
— such as the reader and writer in the example —
matters. The relationship between the expressions manip-
ulating first-class effects — such as query and realize —
also requires careful type language design.
• [CUSTOM CORRECTNESS-BY-DESIGN] Different appli-

cations may have different safety criteria. In addition to
the more mundane goal of providing precise effects, a
feature highly desirable in effect-guided programming is
to provide static guarantees to custom effect manage-
ment. In the example, the programmer wishes to en-
sure that the program indeed has implemented the write-
before-read strategy.
• [TRACE-EFFECT CORRESPONDENCE] Dynamic effect

querying is tantamount to dynamic typing in a type-and-
effect system. Enforcing soundness is a non-trivial task
when dynamic typing is mixed with static typing [35].
For instance, an effect-guided program may be written in
a way that says if the effect of the task x1 is a superset of
the effect wrr, then execute x1 first. Intuitively, what the
programmer indeed means is that the trace — informally,
the “post-evaluation effect” — of x1 is a superset of wrr.
Unfortunately, effects are pre-evaluation and traces are
post-evaluation, and the two do not always correspond.
A well-designed system should disallow the surprising
behavior where x1 is executed first when the traces do
not conform to supersetting but the effects do.

2.2 The Need for Dynamic Effect Support
We address the first challenge through two programming
abstractions: the query and the effcase expressions. The
query e expression plays an interesting role in effect reason-
ing: it enables dynamic effect reasoning, i.e., a lightweight
type derivation at run time. We further propose an optimized
operational semantics where full-fledged dynamic typing is
unnecessary. This is in contrast to dynamic effect systems
[2, 4, 53] which compute the effects of e by collecting the
traces when evaluating e. In this light, λfe is not an a poste-
riori effect monitoring system, and the reflected effects are
still a sound and conservative approximation of the trace.

Dynamic typing allows runtime information to be used
in effect computation, and hence improves the precision
of effect reasoning. For example, for the code below, with
dynamic typing, λfe is capable of computing both the must-
effect and may-effect of the task w as writing to region r.
Instead, the more conservative may-effect “writing both to r
and r0” and must-effect ∅, are likely to be computed by a
purely static effect system.

1 let client = λ buf.
2 let w = (query buf := 1) in
3 effcase w:
4 | EC(l1 ∼ u1) where wrr <<: l1=> realize w
5 client (if 1 > 0 then refr 0 else refr0 0)

The predicate associated with the case on line 4 says that
the task must write to r. Thanks to the dynamic typing, the
case is matched, but a static system, if equipped with the
effcase expression, would not match the case.

2.3 Effect-Carrying Code Support
With the dual query/effcase design, effect querying is de-
coupled from effect analysis and effect-based decision mak-
ing. This is useful in practice, because querying (dynamic
typing) may incur runtime overhead, and the decoupling al-
lows programmers to decide when the query should happen.
For example, on line 7 and 8, the programmer says that the
client should shoulder the overhead of effect query, not the
server. In a similar vein, such a design allows effect of an
expression to be queried once and used multiple times.

We represent the first-class effect value as an effect clo-
sure, a combination of a passenger expression and its effect.
An effect closure can be passed across modular boundary,
e.g., line 9. Ultimately, we use the realize x expression to
evaluate the passenger expression of the effect closure x,
e.g., line 6. Another obvious choice is to represent the effect
value just as a type. The opportunity such a design misses
out on is a common idiom in effect-guided programming:
the reason why programmers wish to query and analyze an
effect in the first place is to evaluate the expression the afore-
mentioned effect abstractly represents. For example, the rea-
son we perform effect analysis over the passenger expression
e is to run e at the opportune moment.

In other words, the query expression in first-class effects
can also be viewed as a simple form of reflection whereas the
realize is analogous to reification. To the best of our knowl-
edge, this is a novel design in effect reasoning systems.

2.4 Custom Correctness-By-Design
To address the third challenge, we provide static guarantees
for custom-defined application-specific predicates over first-
class effects through a decidable refinement type system.
Our refinement type system design is intimately linked to
our programming abstraction of effect analysis: the case
analysis of the effcase expression is predicated [20, 39].
For example, we are capable of typechecking the program
with the refinement type on line 6, thanks to the predicates
associated with the effcase cases from lines 4-5.

2.5 Trace-Effect Correspondence
To meet the fourth challenge, we define the notion of trace
consistency. The crucial question in λfe is whether the static
guarantees represented in the form of refinement types mat-
ter for the program run-time behavior, and if so, what they
say about the run-time behavior. In λfe, for any well-typed
expression whose refinement type has a predicate defined
over effects, the “corresponding” predicate — identical ex-
cept that every occurrence of the effect is replaced with cor-
responding memory accesses when said effect is realized —
still holds. For example, if the refinement type {wrr <<: c



|−> wrr <<: p}, type checks, and the memory traces of
evaluating c and p are fc and fp respectively, then if fc con-
tains a write to r, then fp must contain a write to r.

We maintain the trace consistency through two interesting
features: double-bounded effects and polarity reasoning. To
illustrate, consider a simple example:

EXAMPLE 2.1. The following program fails to typecheck in
λfe, and rightfully so because it does not fulfill the write-
before-read ordering. The main reason is that the must-effect
should be used in the case analysis instead of the may-effect
on line 4, i.e., where wrr <<: l. The may-effects of the
reader is wrr, thus the case on line 4 is matched and the
reader is evaluated first.

1 let buf = refr 0 in
2 let scheduler = λ x1, x2.
3 let (p,c)= effcase x1:
4 |EC(l ∼ u) where wrr <<: u=>(x1,x2)
5 |default =>(x2,x1)in
6 {wrr <<: c |−> wrr <<: p}realize p;realize c in
7 let reader = (query if 0 < 1 then buf := 1) in
8 let writer = (query buf := 1) in
9 scheduler reader writer

To prevent the misuse of the must- or may-effect, such
as the one in the example above, our type system labels
each n-arity custom predicate with n polarities, one for
each argument. To illustrate, consider the operator <<:, λfe
assigns the RHS of <<: a + polarity to indicate that a must-
effect should be used and the RHS a −. Examples for other
polarities, such as − and i, are shown in the table below.

polarity name example source
− monotone decreasing LHS of <<: may-effect
+ monotone increasing RHS of <<: must-effect
i invariant == may equals must

Figure 2. Polarities for Predicates.

By carefully regulating the interaction between may-must
effects and predicate polarity, our type system is capable
of maintaining trace consistency. The program above fails
to type check because the must-effect should be used i.e.,
where wrr <<:l. Intuitively, the must-effect l is a subset
of the trace fx1 and fx1 is a subset of the may-effect u.
Therefore, if this case is matched, wrr is a subset of fx1,
i.e., x1 will write to r.

Additional Examples Scheduling is one of many applica-
tions where effect-guided programming may make a positive
impact on. Additional examples will be found in §8 and §B.

3. λfe: a Calculus with First-Class Effects
The abstract syntax of λfe with first-class effects, but with-
out refinement types, is defined in Figure 3. We defer the dis-
cussion of refinement type with effect polarities to §5. Our
calculus is built on top of an imperative region-based λ cal-
culus. Expressions are mostly standard, except the constructs

e ::= b | λx : T.e | x | e e expressions
| let x = e in e | e||e
| ref ρ T e | !e | e := e reference
| if e then e else e branching
| effcase x = e : T where P ⇒ e effect dispatch
| query e effect reflection
| realize e effect realization

P ::= b | P ∧ P | P ∨ P | ¬P | P σ predicate
g ::= α type variable

| γ region variable
| ς effect variable

T ::= Bool | α | Refρ T type

| T
σ∼σ′

−−−→ T′ function type
| EC(T, σ ∼ σ′) effect type

ρ ::= r | γ | ρ region
σ ::= πρ | ς | σ effect
π ::= init | rd | wr allocation, read and write
b ::= true | false boolean

Figure 3. λfe Abstract Syntax. (In this Paper, Notation •
Represents a Set of • Elements).

for effect management. As parallel programs serve as an im-
portant application domain of first-class effects, we support
the parallel composition expression e||e. We model branch-
ing and boolean values explicitly, because they are useful to
highlight features such as double bounded effects. The se-
quential composition e;e′ in the examples is the sugar form
of let x = e in e′.

Effect management. consists of the key abstractions de-
scribed in §2. Expression query e dynamically computes the
effect of expression e. The result of a query is an effect clo-
sure. Programmers can inspect a closure with effcase x =
e : T where P ⇒ e. The expression evaluates e to an ef-
fect closure, upon which predicated pattern matching is per-
formed. The expression also introduces a variable x, and
binds it to e. Such a variable can be used in the realize ex-
pression to refer to which effect closure is to be realized,
and may appear in refinement types to specify custom static
guarantees over effects. If the expression e is a variable,
e.g., effcase x = x0 : T where P ⇒ e, we shorten it to
effcase x0 : T where P ⇒ e, as is the case in the examples.
This effect analysis expression pattern-matches the closure
against the type patterns T. P is a type constraint to further
refine pattern matching. It supports connectives of propo-
sition logic, together with the atomic n-ary form P σ, left
abstract, which can be concretized into different forms for
different concrete languages. Please find examples of differ-
ent instantiations of P in §8.

Effects and Effect Types. Effects are region accesses
and have the form πρ, representing an access right π to
values in region ρ. Access rights include allocation init, read
rd and write wr.



Compared with existing effect systems, our system sup-

ports both must- and may-effects. Function types T σ∼σ′

−−−→ T′

specifies a function from T to T′ with must-effect σ and may-
effect σ′ as the effects of the function body.

Effect closure type has the form EC(T, σ ∼ σ′). The value
it represents produces must-effect σ, may-effect σ′ upon
realization, and the realized expression has type T. When
T is not used (e.g., in Figure 1), we shorten it as EC(σ ∼ σ′).

Regions. The domain of regions is the disjoint union of a
set of constants r. The region abstracts memory locations in
which it will be allocated at runtime. Our notion of region
is standard [37, 52]. In λfe, allocation sites are explicitly
labelled with regions. Region inference is feasible [21, 24],
an issue orthogonal to our interest.

In λfe, type α, effect ς , and region γ variables are cu-
mulatively referred to as “pattern variables”, and we use a
metavariable g for them. A type variable α can be used in
the effcase expressions to match any type T, given that the
constraint P is satisfied if α is substituted with T, similar for
effect and region variables.

Before we proceed, let us provide some notations and
convenience functions used for the rest of the paper. Func-
tions dom and rng are the conventional domain and range
functions. Substitution θ maps type variables α to types T,
region variables γ to regions ρ, and effect variables ς to ef-
fects σ. Comma is used for sequence concatenation.

4. A Base Type System with Double-Bounded
Effects

The key innovations of our type system design are twofold.
First, it uses double bounded types to capture must-may
effects. Second, it employs refinement types to fulfill hybrid
effect reasoning. We present double-bounded effects in this
section, and delay refinement types to §5.

4.1 Subtyping
Relation T <: T′ says T is a subtype of T′ defined in
Figure 4. The subtyping relation is reflexive and transitive.
Reference ref types follow invariant subtyping, except that
the regions in the ref types follow covariant subtyping.

The highlight of the subtyping relation lies in the treat-
ment of the must-may effects. In (sub-FUN), observe that
must-effects and may-effects follow opposite directions of
subtyping: may-effects are covariant whereas must-effects
are contravariants. Intuitively, for a program point that ex-
pects a function that must produce effect σ, it is always OK
to be provided with a function that must produce a “superset
effect” of σ. On the flip side, for a program point that ex-
pects a function that may produce effect σ, it is always OK
to be provided with a function that may produce a “subset
effect” of σ. As expected, effect subsumption in our system
— the “superset effect” and the “subset effect” — is sup-
ported through set containment over σ elements. Effect clo-
sure types follow a similar design, as seen in (sub-EC).

Subtyping: T <: T′

(sub-REFL)
T <: T

(sub-TRANS)
T <: T′′ T′′ <: T′

T <: T′

(sub-REF)
ρ ⊆ ρ′

Refρ T <: Refρ′ T

(sub-FUN)
T′x <: Tx T <: T′ σ2 ⊆ σ0 σ1 ⊆ σ3

Tx
σ0∼σ1−−−−→ T <: T′x

σ2∼σ3−−−−→ T′

(sub-EC)
T <: T′ σ2 ⊆ σ0 σ1 ⊆ σ3

EC(T, σ0 ∼ σ1) <: EC(T′, σ2 ∼ σ3)

Figure 4. The Subtyping Relation.

Our covariant design of may-effects and contravariant
design of must-effects on the high level is aligned with
the intuition that along the data flow path, the dual bounds
of a function, or those of a first-class effect closure may
potentially be “loosened.”

4.2 Type Checking
Type environment Γ maps variables to types:

Γ ::= x 7→ T

Notation Γ(x) denotes T if the rightmost occurrence of x :
T′ for any T′ in Γ is x : T.

Type checking is defined through judgment Γ ` e :
T, σ ∼ σ′, defined in Figure 5. The judgment says under type
environment Γ, expression e has type T, must-effect σ and
may-effect σ′. Subtyping is represented in the type checking
process through (T-SUB), which follows the same pattern to
treat must-may effects as in function subtyping and effect
closure subtyping.

Effect Bound Reasoning. If effect bounds are “loos-
ened” along the data flow path as we discussed, the interest-
ing question is when the bounds are “tightened”. To answer
this question, observe that traditional effect systems can in-
deed be viewed as a (degenerate) double-bounded effect sys-
tem, where the must-effect is always the empty set.

Our type system on the other hand computes the must-
effect along the type checking process. Note that in (T-IF),
the must-effect of the branching expression is the intersec-
tion of the must-effects of the then branch and the else
branch, unioned with the must-effect of the conditional ex-
pression. For example, given an expression as follows and
that val is in region r, the must- and may-effects are {rdr}
and {rdr,wrr} respectively:

if x > 0 then !val else val := !val + 1

The must-effect of the effcase expression is computed in
an analogous fashion, as shown in the (T-EFFCASE) rule.

Typing Effect Operators. (T-QUERY) shows the expres-
sion to introduce an effect closure — the query expression
— is typed as an effect closure type, including both the



Type Checking: Γ ` e : T, σ ∼ σ′

(T-EFFCASE)

Γ ` e : EC(T, σ ∼ σ′), ∅ ∼ ∅ ∃θ .(θEC(Ti, σi ∼ σ′i) <: EC(T, σ ∼ σ′)), for all i ∈ {1 . . . n}
∃ς . Tn = ς ∧ Pn = true Γ,x 7→ EC(Ti, σi ∼ σ′i) ` ei : T, σ′′i ∼ σ′′′i , for all i ∈ {1 . . . n}

Γ ` effcase x = e : EC(T, σ ∼ σ′) where P ⇒ e : T,∩i∈{1...n}σ′′i ∼ ∪i∈{1...n}σ′′′i

(T-QUERY)
Γ ` e : T, σ ∼ σ′

Γ ` query e : EC(T, σ ∼ σ′), ∅ ∼ ∅
(T-REALIZE)

Γ ` e : EC(T, σ0 ∼ σ1), σ2 ∼ σ3

Γ ` realize e : T, σ0 ∪ σ2 ∼ σ1 ∪ σ3

(T-ABS)
Γ,x 7→ T ` e : T′, σ ∼ σ′

Γ ` λx : T.e : T
σ∼σ′

−−−→ T′, ∅ ∼ ∅

(T-APP)
Γ ` e : T

σ0∼σ1−−−−→ T′, σ2 ∼ σ3 Γ ` e′ : T, σ4 ∼ σ5

Γ ` e e′ : T′, σ0 ∪ σ2 ∪ σ4 ∼ σ1 ∪ σ3 ∪ σ5

(T-BOOL)
Γ ` b : Bool, ∅ ∼ ∅

(T-SUB)
Γ ` e : T, σ ∼ σ′ T <: T′

σ0 ⊆ σ σ′ ⊆ σ1

Γ ` e : T′, σ0 ∼ σ1

(T-LET)
Γ ` e : T, σ0 ∼ σ1 Γ,x 7→ T ` e′ : T′, σ2 ∼ σ3

Γ ` let x = e in e′ : T′, σ0 ∪ σ2 ∼ σ1 ∪ σ3

(T-GET)
Γ ` e : Refρ T, σ ∼ σ′

Γ `! e : T, σ ∪ rdρ ∼ σ′ ∪ rdρ

(T-REF)
Γ ` e : T, σ ∼ σ′

Γ ` ref ρ T e : Refρ T, σ ∪ initρ ∼ σ′ ∪ initρ

(T-SET)
Γ ` e : Refρ T, σ0 ∼ σ1 Γ ` e′ : T, σ2 ∼ σ3

Γ ` e := e′ : T, σ0 ∪ σ2 ∪ wrρ ∼ σ1 ∪ σ3 ∪ wrρ

(T-VAR)
Γ(x) = T

Γ ` x : T, ∅ ∼ ∅

(T-PARA)
Γ ` e : T, σ0 ∼ σ1 Γ ` e : T′, σ2 ∼ σ3

Γ ` e||e′ : T′, σ0 ∪ σ2 ∼ σ1 ∪ σ3

(T-IF)
Γ ` e : Bool, σ0 ∼ σ1 Γ ` e0 : T, σ2 ∼ σ3 Γ ` e1 : T, σ4 ∼ σ5

Γ ` if e then e0 else e1 : T, σ0 ∪ (σ2 ∩ σ4) ∼ σ1 ∪ σ3 ∪ σ5

Figure 5. Typing Rules.

static type of the to-be-dynamically-typed expression, and
its double-bounded effects as reasoned by the static system.
In other words, even though first-class effects will be com-
puted at runtime based on information garnered from (the
more precise) dynamic typing, our static type system still
makes its best effort to type this first-class value, instead of
viewing it as an opaque “top” type of the effect closure kind.

The dual of the query expression is the realize expres-
sion. Intuitively, this expression “eliminates” the effect clo-
sure, and evaluates the passenger expression. (T-REALIZE) is
defined to be consistent with this view. It says that the ex-
pression should have the type of the passenger expression,
and the effects should include both those of the expression
that will evaluate to the effect closure, and those of the pas-
senger expression.

The (T-EFFCASE) rule shows that the effcase expression
predictably follows the pattern matching semantics. The ex-
pression to be analyzed must represent an effect closure. To
avoid unreachable patterns, the type system ensures every
type pattern is indeed satisfiable through substitution and
subtyping. In addition, λfe requires that the last pattern be
a pattern variable, which matches any type, serving as the
explicit “default” clause [1].

Standard Expressions. Other typing rules are mostly
conventional. Store operations (T-REF), (T-GET) and (T-SET)

compute initialization init, read rd and write wr effects,
respectively. The typing of parallel composition is standard.

5. The Full-Fledged System
The type system in Figure 5 does not provide any static guar-
antees for expressions guarded by the predicate P in the eff-
case expression. For example, in resource-aware scheduling
(Figure 1), the programmer may wish to be provided with
the static guarantee that the order of buffer access is pre-
served. We support this refined notion of reasoning through
refinement types.

We extend the grammar of our language, in Figure 6,
to allow the programmers to associate an expression with a
refinement type, denoting that the corresponding expression
must satisfy the predicate in the refinement type through
static type checking.

A refinement type T takes the form of {T, σ ∼ σ′|P},
where predicate P is used to refine the base type T and
effects σ ∼ σ′, a common notation in refinement type
systems [12, 25, 44]. When T, σ and σ′ are not referred
to in other parts in the refinement type, we shorten the
refinement as {P}, e.g., in the write-before-read example in
Figure 1, {wrr <<: c |−> wrr <<: p}. We extend the
subtyping relation with one additional rule, (subr -REFINE).
Here, subtyping of refinement types is defined as the logical
implication |−> of the predicates of the two types.



e ::= . . . | T e extended expression
T ::= {T, σ ∼ σ′|P} refinement type
T ::= . . . | T type
∆ ::= ς 7→V polarity environment
V ::= + | − | ∗ | i polarity
Subtyping: τ <: τ′

(subr -REFINE)
P |−> P ′

Γ ` {T, σ ∼ σ′|P} <: {T, σ ∼ σ′|P ′}

For all other (subr -*) rules, each is isomorphic to its
counterpart (sub-*) rule in Figure 4.

Figure 6. λfe Extension with Refinement Types.

5.1 Polarity Support
Polarity environment ∆, which will be used in type check-
ing, maps effect variables ς to polarities V. V can either be
contravariant +, covariant −, invariant i and bivariant ∗. In-
tuitively, the + comes from the must-effect, − comes from
the may-effect. If must- and may-effects are exactly the
same, it induces invariant i, e.g., the predicate ==, which re-
quires the effects of its LHS and RHS to be equal in Fig-
ure 21. If ς appears in both must- and may-effects, but the
effects are not the same, ς will be bivariant. The subsump-
tion relations of the variances form a lattice, defined in Fig-
ure 7, with the join t going “up”. Intuitively, an i can appear
in a position where + is required, thus i is a “subtype” of +.

(bivariance)	  
*	  

(covariance)	  -‐	   +	  (contravariance)	  

i	  
(invariance)	  

<:	  

:>	  

	  ⊔	  	  
	  	  
	  

	  ⊓	  	  
	  	  
	  Figure 7. Polarity Lattice.

For a predicate of arity n, we say its position j (1 ≤ j ≤
n) to have contravariant polarity + when effect subsumption
of argument j is aligned with predicate implication, i.e., an
application of this predicate with argument j being σ always
implies a predicate application identical with the former ex-
cept argument j being σ′ and σ ⊆ σ′, shown in (MONO- ↑ )
in Figure 9, where the V(P, j) (Figure 8) notation gets the
jth polarity of the predicate P, e.g., V(<<:, 0) will return
the polarity of LHS of<<:, i.e.,− and V(<<:, 1) will return
RHS, i.e., +. Similarly, we say the position j of a predicate
to have covariant polarity − if an application of this predi-
cate with argument j being σ always implies a predicate ap-
plication identical with the former except argument j being
σ′ and σ′ ⊆ σ, as (MONO- ↓ ). For non-monotone predicates
(e.g., ==), the polarities + and − fall short:
EXAMPLE 5.1. (Effect Invariant for Non-monotone Effect
Predicate) Programmers wish to check that the effects of
two expressions are equal, line 4. The non-monotone (for

both LHS and RHS) predicate == is satisfied for the call
on line 5, but challenging for a system with co- or contra-
variant polarities alone.

1 let buf = refr -1 in
2 let fun = λ x:exact, y:exact. effcase x, y:
3 | EC(l0 ∼ l0),EC(l1 ∼ l1)
4 where l0 == l1 => {y == x} x; y in
5 fun (query !buf) (query !buf);
6 fun (query buf := 0) (query !buf)

P LHS (j = 0) RHS (j = 1)
<<: −(may) +(must)
/<<: +(must) −(may)

# −(may) −(may)
== i(may and must) i(may and must)

Figure 8. Polarities for Client Predicates (V(P, j)).

Predicate Implication: P |−> P

(MONO- ↑ )

V(P, j) = + σj ⊆ σ′j
P σσjσ′ |−> P σσ′jσ′

(MONO- ↓ )

V(P, j) = − σ′j ⊆ σj
P σσjσ′ |−> P σσ′jσ′

(IMP-∧0)
P ∧ P ′ |−> P

(IMP-∨0)
P |−> P ∨ P ′

(IMP-REFL)
P |−> P

(IMP-∧1)
P ∧ P ′ |−> P ′

(IMP-∨0)
P ′ |−> P ∨ P ′

(IMP-TRANS)
P |−> P ′ P ′ |−> P ′′

P |−> P ′′

Figure 9. Predicate Implication |−>.

Note that the equivalent of the may-effects (or must-
effect) of both sides does not guarantee the equivalent of
the traces (runtime memory accesses), e.g., for the following
code, the two parameters (line 8) are the same, but their
runtime traces are not the same.

7 let same = (query if !buf < 0 then buf := 0) in
8 fun same same

The exact annotation solves this problem. This annota-
tion requires that the may- and must-effects of the expression
are the same, inducing invariant. Since the trace is bounded
by the same lower and upper bound effects, it is tight. Given
that x==y and that both x and y have tight bounds, their
traces must be equal.

The must-effect of the expression on line 7 is {rdr}, the
may-effect is {rdr,wrr}, and thus its effects are not ex-
act and the function call, on line 8, fails static type checking.
The effects of the four queried expressions on lines 5-6 are
exact. The calls on those two lines will type check statically.
The call on line 5 will satisfy the runtime predicate == and
execute the code on line 4, while the call on line 8 will not
satisfy the predicate and thus not execute the code on line 4.
Similarly, the exact annotation fulfills a similar task in Fig-
ure 1. Without exact, the program will not be sound.



Refinement Type Checking: ∆; Γ ` e : T, σ ∼ σ′

(R-REFINE)
∆ ` P ∆; Γ ` e : T, σ ∼ σ′ JΓK |−> P

∆; Γ ` {T, σ ∼ σ′|P} e : T, σ ∼ σ′

(R-EFFCASE)

∆; Γ ` e : EC(T, σ ∼ σ′), ∅ ∼ ∅ ∃θ .(θEC(Ti, σi ∼ σ′i) <: EC(T, σ ∼ σ′)), for all i ∈ {1 . . . n}
∃ς . Tn = ς ∧ Pn = ∅ ∆i = ∆ t polart(Ti) t polare(σi ∼ σ′i)

∆i ` Pi ∆i; Γ,x 7→ {EC(Ti, σi ∼ σ′i), ∅ ∼ ∅|Pi} ` ei : T, σ′′i ∼ σ′′′i , for all i ∈ {1 . . . n}
∆; Γ ` effcase x = e : EC(T, σ ∼ σ′) where P ⇒ e : T,∩i∈{1...n}σ′′i ∼ ∪i∈{1...n}σ′′′i

For all other (R-*) rules, each is isomorphic to its counterpart (T-*) rule, except that every occurrence of judgment
Γ ` e : T, σ ∼ σ′ in the latter rule should be substituted with ∆; Γ ` e : T, σ ∼ σ′ in the former.

Type Checking Predicate: ∆ ` P

¬∆ ` P
∆ ` ¬P

∆ ` P ∆ ` P ′

∆ ` P ∧ P ′
∆ ` P ∆ ` P ′

∆ ` P ∨ P ′
∀σj ∈ σ∀ς ∈ σj s.t. ς ∈ dom(∆).∆(ς) <: V(P, j)

∆ ` P σ

Figure 10. Typing Rules for Checking Refinement Types.

In this presentation, our polarity modifiers are coarse-
grained in that when we say an effect is exact, it does not
allow any variance on effects to any region. A finer-grained
approach is to allow polarity to be region-parametric, in that
a notation such as exact<r> says that no variance is allowed
for effects on region r, but the default (bivariance) applies
for all other regions. With this finer-grained formulation, the
example in Figure 1, can be updated where every occurrence
of exact can be replaced by exact<r>. We here do not
formalize this useful but predictable extension.

5.2 Refinement Type Checking
Refinement type checking is defined through judgment
∆; Γ ` e : T, σ ∼ σ′ shown in Figure 10, which extends
the rules in Figure 5 with one additional rule (R-REFINE) for
refinement typing and one adaptation rule (R-EFFCASE) for
typing predicated effect analysis. The rules ensure that the
pattern variables are properly used, e.g., a variable ς with −
polarity should not appear in the position where the predicate
requires +, such as u on line 4 in Example 2.1. (R-REFINE)
requires that the predicate in the refinement type to be en-
tailed from the predicates in the type environment. Function
JΓK computes the conjunction of all predicates that appear
in the refinement types of Γ [13], defined in Figure 11.

The differences between (R-EFFCASE) and (T-EFFCASE)
(in §4) are highlighted. We compute, via the polar function
defined in Figure 11, the polarity for each new effect vari-
able appears in the pattern matching types. An effect vari-
able ς appearing in the must-effect, will have + polarity. If
ς appears in the may-effect, it will have − polarity. If the
must- and may-effects are the same ς , ς has i polarity, oth-
erwise ς has ∗ polarity. We use the computed polarities to
check the proper use of the effect variables in each predicate,

Predicate Combination: JΓK = P

Jς 7→ {T, σ ∼ σ′|P}K =
∧n
j=1 Pj

Environment Negation: ¬∆ = ∆

¬ς 7→V = ς 7→ ¬V

Polarity Negation: ¬V =V

¬+ = −
¬− = +
¬∗ = ∗
¬i = i

Computing ∆ from Type: polart(T) = ∆

polart(Bool) = ∅
polart(α) = ∅

polart(Refρ T) = polart(T)

polart(T
σ∼σ′
−−−→ T′) = polart(T)tpolart(T

′)tpolare(σ ∼ σ
′)

polart(EC(T, σ ∼ σ′)) = polart(T)tpolare(σ ∼ σ
′)

Computing ∆ from Effect: polare(σ ∼ σ) = ∆

polare(ς ∼ ς) = ς 7→ i
polare(πρ ∼ π

′
ρ′) = ∅

polare(ς ∪ σ ∼ σ
′) = ς 7→ + t polare(σ ∼ σ

′)
polare(σ ∼ ς ∪ σ

′) = ς 7→ − t polare(σ ∼ σ
′)

Figure 11. Functions for Computing Effect Polarity.

which is defined in the bottom of the same figure. For exam-
ple, an effect variable ς with + polarity should not appear
in the position where the predicate requires −. Most of the
checking rules are rather predictable except for the predicate
negation. To check the negation, we negate the polarity envi-
ronment ¬∆. For example, we require the may-effect of the



LHS and must-effect of the RHS of the predicate <<:, and
for its negation /<<:, we require the must-effect of the LHS
and may-effect of the RHS. The custom predicates and their
polarities specifications are shown in Figure 8. The rules
associate x with a refinement type that carries the guarded
predicate, Pi in the typing environment, which will be used
to check the (R-REFINE) rule.

Effect closures in λfe are immutable. This language fea-
ture significantly simplifies the design of refinement types in
λfe, as the interaction between refinement types and mutable
features would otherwise be challenging [12].

6. Dynamic Semantics
This section describes λfe’s dynamic semantics. The high-
light is to support runtime effects management and highly
precise effects reasoning through dynamic typing.

Semantics Objects. λfe’s configuration consists of a
store s, an expression e to be evaluated, and an effects trace
f , defined in Figure 12. These definitions are conventional.
The domain of the store consists of a set of references l. Each
reference cell in s records a value, as well as the region r
and type T of the reference. The trace records the runtime
accesses to regions along the evaluation, with init(r), rd(r),
and wr(r), denoting the initialization, read, and write to
r, respectively. Traces only serve a role in the soundness
proofs, and thus are unnecessary in a λfe implementation.
More specifically, we will show that the trace is the “realized
effects” of the effects computed by λfe.

The small-step semantics is defined as transition s;e; f →
s′;e′; f ′. Given a store s and a trace f , the evaluation of an
expression e results in another expression e′, a (possibly
updated) store s′, and a trace f ′. The notation [x\v]e sub-
stitutes xwith v in expression e. The notation→∗ represents
the reflexive-transitive closure of→.

We highlight the first-class effects expressions.
Effect Querying as Dynamic Typing. The (QRY) rule

illustrates the essence of λfe’s effect querying. An effect
query produces an effect closure, which encapsulates the
queried expression and its runtime type-and-effect.

Dynamic typing, defined in Figure 12, is used to compute
the effects of the queried expression. The dynamic type
derivation has the form s; ∆; Γ D̀ e : T, σ ∼ σ′, which
extends static typing with two new rules for reference value
and effect closure typing.

At runtime, the free variables of the expressions will be
substituted with values, e.g., in (LET) and (APP). Thus, e
in query e is no longer the same as what it was in the
source program. These substituted values carry more precise
types, regions, and effects information, bringing to first-
class effects a highly precise notion of effects reasoning
comparing to a static counterpart. Also the dynamic typing
does not evaluate the queried expression to compute effects,
i.e., λfe is not an a posteriori effect monitoring system.

Applying full-fledged dynamic typing could be expen-
sive. In §A, we provide an optimization. Observe that the dif-
ference between the static and dynamic typing (Figure 5 and
Figure 12) is the types of the free variables in the environ-
ment Γ. Our insight is that we can pre-compute the dynamic
effect introducing skolem type-and-effect variables for the
types of the free variables, compute the effects σ0 ∼ σ1

for the to-be-queried expression, and store the effects. At
runtime, we substitute the skolem variables with their corre-
sponding type and derive the effect σ′0 ∼ σ′1 from σ0 ∼ σ1.

Effect Realization. Dual to the effect querying rule is the
realization (REAL) rule, which “eliminates” the effect closure
〈e,T, σ, σ′〉 and evaluates the passenger expression e. To
show the validity of the effect query in first-class effects, we
will prove in Theorem 7.3, that if e is evaluated, its effects
will fall within the lower σ and upper bound σ′ effects. When
the evaluation terminates, it reduces to a value of type T,
specified in the closure.

Effect-Guided Programming via Predicated Effect In-
spection. The (EFFC) rule analyzes the type-and-effect of the
closure. It searches the first matching target types and returns
the corresponding branch expression ei. Such type must be
refined by the inner type of the effect closure, with proper
“alignment” by substituting the pattern effect variables in the
target type with the corresponding effects. It also requires
that the substitution satisfies the target programmer-defined
effect analyses predicate Pi.

Refinement expressions. The (RFMT) rule models re-
finement expressions. It retrieves the dynamic effects of the
subexpression and checks that they are the same as speci-
fied in the refinement type and that the predicate is satisfied.
The trace soundness property of our system guarantees that
refinement type checking at runtime (see Theorem 7.6) al-
ways succeeds. Therefore, these runtime types checking can
be treated as no-op.

Parallelism. The (PAR) rule simulates parallelism. Its
treatment is standard, it nondeterministically reduces to the
sequential compositions e;e′ or let x = e′ in e;x. This
treatment lets the result of e′ be the final result. Due to the
safety guarantee from §5, these two forms will reduce to the
same result [6] upon termination.

7. Meta-theory
This section shows the formal properties of λfe. The full
proofs could be found in our report [33]. We first show the
standard soundness property (Theorem 7.2). Next, we prove
that the effect carried in the effect closure is valid (Theo-
rem 7.3), i.e., the passenger expression always has the effect
carried by the closure, regardless of how the closure has been
passed around or stored. Finally, we present important trace
consistency results in Theorem 7.6. Before we proceed, let
us define a term that will be used for the rest of the section.

DEFINITION 7.1. [Redex Configuration] We say 〈s;e; f〉 is
a redex configuration of program e′, written e′D <s,e, f>,



Definitions:
tc ::= 〈e,T, σ, σ′〉 effect closure
s ::= l→〈r,T〉 v store
f ::= π(ρ) trace
v ::= b | λx : T.e | l | tc value
E ::= −| E e |v E | let x = E in e |ref ρ T E |!E |E := e |v := E | realize E evaluation context

| if E then e else e |effcase x = E : T where P ⇒ o

Dynamic Typing: s; ∆; Γ D̀ e : T, σ ∼ σ′

(ST-LOC)
{l 7→〈r,T〉 v} ∈ s

s; ∆; Γ D̀ l : Refr T, ∅ ∼ ∅
(ST-TYPE)

s; ∆; Γ D̀ e : T, σ ∼ σ′

s; ∆; Γ D̀ 〈e,T, σ, σ
′〉 : EC(T, σ ∼ σ′), ∅ ∼ ∅

For all other (ST-*) rules, each is isomorphic to its counterpart (R-*) rule, except that every occurrence of judgment
∆; Γ ` e : T, σ ∼ σ′ in the latter rule should be substituted with s; ∆; Γ D̀ e : T, σ ∼ σ′ in the former.

Evaluation relation: s;e; f → s′;e′; f ′

(cxt) s; E [e]; f → s′; E [e′]; f, f ′ if s;e s′;e′; f ′

(app) s;λx : T.e v s; [x\v]e; ∅
(let) s; let x = v in e s; [x\v]e; ∅
(if ) s; if b then e0 else e1 s;e; ∅ if e = b ? e0 : e1

(get) s; !l s;v; rd(r) if {l 7→〈r,T〉 v} ∈ s
(set) s; l := v s, {l 7→〈r,T〉 v};v; wr(r) if {l 7→〈r,T〉 v′} ∈ s
(ref ) s; ref r T v s, {l 7→〈r,T〉 v}; l; init(r) if l = freshloc()
(par) s;e||e′  s;e0; ∅ if e0 = (e;e′) or (let x = e′ in e;x)

(qry) s; query e s; 〈e,T, σ, σ′〉 ; ∅ if s; ∅; ∅ D̀ e : T, σ ∼ σ′
(real) s; realize 〈e,T, σ, σ′〉 s;e; ∅
(effc)s; effcase x=〈e,T, σ, σ′〉 :T where P ⇒ e s; θei; ∅ if T <: θTi ∧ θPi ∧ θx = 〈e,T, σ, σ′〉

∧ ∀j < i,@θ′ . T <: θ′Tj ∧ θ′Pj
(rfmt) s; {T, σ0 ∼ σ1|P} e s;e; ∅ if s; ∅; ∅ D̀ e : T, σ ∼ σ′∧σ0⊆σ∧σ′⊆σ1∧P

Figure 12. λfe Operational Semantics.

iff ` e′ : T, σ ∼ σ′, ∅;e′; ∅ →∗ s; E [e]; f . When e′ is
irrelevant, we shorten it as D <s,e, f>.

THEOREM 7.2 (Type Soundness). Given an expression e,
if ` e : T, σ ∼ σ′, then either the evaluation of e diverges,
or there exist some s, v, and f such that ∅;e; ∅ →∗ s;v; f .

THEOREM 7.3 (Query-Realize Correspondence). Given a
store s, a trace f , an expression e = E [query e′]. If

s;e;f→s; E [〈e′,T,σ,σ′〉];f→∗s′; E ′[realize 〈e′,T,σ,σ′〉];f ′

then s; ∅; ∅ D̀ e
′ : T, σ ∼ σ′, and s′; ∅; ∅ D̀ e

′ : T, σ ∼ σ′.

To prove trace consistency, we define trace for expression:

DEFINITION 7.4 (Trace from Effect Closure). We say f is
a trace for expression e under store s, written f ∝<e,s>,
iff s;e; f ′ →∗ s′;v; f ′, f .

We now define the soundness over traces:

DEFINITION 7.5 (Trace Consistency). We say e is trace-
consistent if for any D <s,T e, f ′>, T= {T, σ ∼ σ′|P},
and f ∝<e,s>, then [σ\f ][σ′\f ]P holds.

THEOREM 7.6 (λfe Trace-Based Consistency). If ` e :
T, σ ∼ σ′, then e is trace-consistent.

8. More Examples

application predicate(s): P
priority scheduler, §2 <<:
consistent software update, §8.1 #
information security, §8.2 /<<:, <<:
algorithm speculation, §B.2 ==
atomicity, §B.3 /<<:
testing, §B.3 <<:

Figure 13. Polarities for Client Predicates.

In this section, we motivate λfe through a number of ap-
plications ranging from custom effect-aware scheduling, to
version-consistent dynamic software updating, to data secu-
rity. We are aimed at demonstrating the benefits of λfe in two
folds. First, it provides flexible and expressive abstractions to
address challenging patterns of effect-guided programming.
Second, it helps programmers design programs where effect



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 let run1 = λ prologue, epilogue, update.
2 case epilogue of
3 | [] = realize update
4 | h:t = effcase prologue, epilogue, update:
5 |EC(xl ∼ xu), EC(yl ∼ yu), EC(zl ∼ zu) where zu # xu ∨ zu # yu
6 =>{prologue # update ∨ epilogue # update} realize update; realize epilogue
7 | default => h; run1 (query (realize prologue); h) t update in
8 let run = λ transaction, update.
9 run1 (query 0) transaction update

- - - - - - - - - - - - - - - - - Client - - - - - - - - - - - - - - - - - -
11 let data = refu 0 in
12 let fun0 = refr λx. x := !x + 1 in
13 let fun1 = refw λx. 1 in
14 let update = query (fun0:=(λx. 1);
15 fun1:=(λx. x:= !x + 1)) in
16 let transaction = query [fun0 data,
17 fun1 data,
18 !data] in
19 run transaction update

Figure 14. Dynamic Software Updating in First-Class Ef-
fects to Preserve Consistency [42].

analysis and manipulation are “correct-by-design,” with re-
fined guarantees specific to individual applications.

The instantiations of the type constraints P in §3 for the
applications in §8 and §B are shown in Figure 13.

8.1 Version-Consistent Dynamic Software Update
Dynamic software update (DSU) [41] allows software to be
updated to a new version for software evolution without halt-
ing or restarting the software. DSU patches running software
with new code on-the-fly. An important property of DSU is
version consistency (VC) [42]. For VC, programmers spec-
ify program points where updates could be applied. Code
within two immediate update points is viewed as a transac-
tion, i.e., we execute either the old version of the transaction
completely or the new version completely.

The listing in Figure 14 defines a piece of data and
two functions fun1, an empty function, and fun0, which
increments the input by 1. Programmers would like to let a
list of three blocks of code in transaction, lines 16-18
to be a transaction. The three blocks invoke the functions
fun0 and fun1 and finally read the data. Because one of
the functions increases data by one, the final result should
be !data + 1. An example update, lines 14-15, swaps the
bodies of the functions fun0 and fun1. One approach is to
delay the update until the end of transaction, i.e., after
the last block !data finishes execution. In this case, the
transaction executes the old version in the current invocation
and will execute the new version in the next invocation.

To increase update availability while ensuring VC, we
would like to apply the update when it is available instead
of at the end of transaction, e.g., the swapping update
happens correctly if it is patched after the second block of
code fun1 data. Here we have executed the two functions
whose bodies are to be swapped. The transaction executes
the old version completely and the final value of data is 1.

In contrast, assuming that the updated is patched after fun0
data, where we have executed the old version of fun0 and
increased data by 1. We will execute the new version of
fun1, which also increases data by 1. The final result is 2,
which is unintuitive to programmers.

The second update violates VC, we execute part old code
fun0, part new code fun1 and the final result is not correct.

Observe that first-class effects could help reason about
whether a patch violates VC at any specific program point.
If the effects σi of the patch do not conflict (#) with the ef-
fects σp of code of the transaction before the update, noted
as prologue, or effects σe of the code after, noted as epi-
logue, the immediate update (IU) respects VC (details see
[42]). In the nutshell, if σi#σp, IU is equivalent to apply-
ing the update at the beginning of the transaction. On the
other hand, if σi#σe, IU is equivalent to applying the up-
date at the end of the transaction. This logic of the effects
checking is implemented in method run1 on lines 1-7. It
first checks whether the transaction is done, line 3, i.e., the
epilogue is an empty list []. If so, the update could
be applied immediately. Otherwise, effect inspection is used
to analyze whether the effects of the update conflict with
both prologue and epilogue. If there are no conflicts,
line 5, update could also be applied at this point. Otherwise,
the update needs to be delayed.

For example, the effects of the patch on line 15 is writing
to the two functions, wrr, wrw, the effects of the there blocks
of the transaction are below, and 3 and 5 represent the
effects of the block conflict and do not conflict with the
swapping update, respectively:

!fun0 data rdr, rdu 5

!fun1 data rdw, rdu 5

!data rdu 3

The update is problematic after the first block, because
σi conflicts with both σp and σe, while it is okay after the
second block because σi only conflicts with σp, but not σe.

First-class Effects are very well-suited for this applica-
tion. First, it allows programmers to query the effect of the
update, which is important because the update is not avail-
able until at runtime. Second, it allows programmers to de-
fine their custom conflicting (#) function, such as the ones
shown in the custom conflict model section in Figure 17, that
can go beyond the standard definition “two effects conflict
if they access the same memory region” [42], e.g., conflicts
on statistical data does not affect the final results of a pro-
gram and thus could be ignored [19, 40]. Programmers let



the type system know this important fact by writing custom
effect analyses in predicated pattern matching, line 5. Fi-
nally, first-class effects allow programmers to define custom
VC correctness criteria, e.g., on line 6, it says the update
could only be applied if its effects do not conflict with both
prologue and epilogue. This refinement type will be
statically verified by λfe’s type system.

8.2 Data Zeroing
Information security is of growing importance in applica-
tions which interact with third-party libraries, available only
at runtime. Consider an example of a bank account in Fig-
ure 15. It stores the password in the variable pw. It has a
method close, which will be invoked when a client closes
the account. This method accepts a library x which displays
advertisements when the account is closed [11].

- - - - - - - - - - - - - - - Bank account - - - - - - - - - - - - - - -
1 let pw = refr 12 in
2 let close = λx.effcase x:
3 |EC(l∼u) where wrr <<: l =>{wrr <<: x} realize x
4 |default =>pw := -9 in

- - - - - - - - - - - - - - Third party libraries - - - - - - - - - - - - -
5 close (query pw := -9); // Safe Library
6 close (query (if 0 then pw := -9)) // Unsafe

Figure 15. Data Zeroing in First-Class Effects Against
Leakage of Sensitive Data.

The library could be malicious (e.g., line 6), thus enforc-
ing the security policy that no sensitive data are leaked by
the library is vital in protecting the system [11, 35]. We use
the zeroing strategy [55]. At runtime, we programmatically
analyze the effects of the library and execute it only if it de-
stroys (overwrites) the password in the must-effect wrr<<:
y, to avoid the recovery of the original password.

Double-Bounded Effects The must-may effect distinc-
tion in λfe is crucial for program correctness. In traditional
type-and-effect systems [37, 52], effects are conservative ap-
proximations of expressions. This “may-effect” (i.e., over-
approximation) may not be expressive enough for a number
of applications, including data zeroing. Image the program
that would be identical to the one in Figure 15 except that the
effcase expression where the case on line 3 is predicated by
the may-effect, i.e., wrr <<:u. The may-effect view would
allow the case to be selected as long as u may write to re-
gion r, such as the problematic client on line 6. Since the
may-effect is an over approximation, the evaluation of the
expression may not write to r at all! As a consequence, the
pw is not overridden and could be leaked in the future! With
double-bounded effects, the distinction is explicit, and pro-
grammers use the must-effects on line 3 to ensure that the
pw must be overridden. We explain how λfe prevents the
misuse of the must- and may-effect in §5.1.

The general-purpose zeroing policy is useful in detecting
malicious library in many systems, but clients may desire

other special-purpose policies, such as the password is not
directly read by the library, a.k.a confidentiality. In first-
class effects, by substituting line 3 with EC(l ∼ u) where
wrr <<:l ∧ rdr /<<: u (u does not read r), we ensure
that the password is not read in the current execution, it is
destroyed and thus can not be read in the future, through the
combination of confidentiality and zeroing. Other applicable
policies are shown in Figure 16.

how why
zeroing [55] destroy/overwrite sensitive data
confidentiality [11] can not read sensitive data
integrity [11] can not write sensitive data
multiple accesses [49] can access a subset of data, but not all
negative authorization [5] can only read non-sensitive data
weak authorization [5] overridable policy

Figure 16. Representative Information Security Policies in
First-Class Effects.

Summary The flexibility of λfe is on par with other secu-
rity systems and λfe shares the philosophy of improving the
flexibility of meta-level designs “hidden" behind effect sys-
tem [35] by allowing programmers to define custom policy.

8.3 Additional Examples on Scheduling
Thread scheduling is prolific area of research, known to have
diverse strategies on schedule ordering, conflict detection,
and conflict modeling. In §2, we have already shown the
write-before-read strategy. With λfe, programmers can flex-
ibly develop a variety of strategies (see Figure 17 for some
examples), such as “if the effects of the tasks commute, then
execute them concurrently, otherwise sequentially".

In §B, we demonstrate more examples on concurrent pro-
gramming applications, including efficient algorithmic spec-
ulation, cooperative multi-threading, and program testing.

9. Related Work
We are unaware of type-and-effect systems where the (pre-
evaluation) effect of an expression is treated as a first-class
citizen. The more established route is to treat the post-
evaluation effect (in our terms, trace) as a first-class value. In
Leory and Pessaux [32], exceptions raised through program
execution are available to programmers. This work has influ-
enced many exception handling systems such as Java, where
Exception objects are also values. Bauer et al. [4] extends
the first-class exception idea and allows programmers to an-
notate an arbitrary expression as effect and upon the evalu-
ation of that expression, control is transferred to a matching
catch-like handling expression as a first-class value. Sim-
ilar designs also exist in aspect-oriented systems [47]. In
general, the work cited here, albeit bearing similar terms,
has a distant relationship with our work.

Bañados et al. [2] extends the idea of gradual typing [50]
to develop a gradual effect system and later Toro et al. [53]
provides an implementation, which allows programmers



category scheduling strategy
FIFO [34, 54]

LIFO [29]
random scheduling [27]

inherit from previous decisions [29]
write before read [34]

ordering tasks with less effects first [34]
strategy tasks with more effects first [34]

concurrent read, exclusive write [27, 54]
conflicting tasks in same thread [29, 45]

task fusion [18, 46]
divide into no conflicting groups of tasks [46]

execute conflicting tasks concurrently [9, 10, 19]
suspend conflicting tasks [56]

conflict latent effect conflict detection [6]
detection pairwise tasks conflict detection[27]
strategy conflict detection with only the last task [34]

task group conflict detection [54]
custom tolerate write/write conflict [19, 40]
conflict tolerate read/write conflict [19, 40]
model privatization [8, 46, 48]

speculation [48]

Figure 17. An Example λfe Client Domain: The Menagerie
of Scheduling Strategies

customize effect domains. A program element in their sys-
tem may carry unknown effects, which may become grad-
ually known at runtime. Long et al. [35] develops inten-
sional effect polymorphism (IEP), a system that combines
dynamic typing and effect polymorphism. Compared with
these systems, effect reflection is a first-class programming
abstraction in our system, and effect closures are first-class
values. This leads to a number of unique contributions we
summarized at the end of §1.

There is a large body of work of purely static or dynamic
systems for effect reasoning. Examples of the former include
Lucassen [37], Talpin et al. [52], Marino et al. [38], Clarke
and Drossopoulou [14], Task Types [28] and DPJ [6]. The
latter is exemplified by Soot [30], TWEJava [27], Legion
[54], and ATE [34]. Along these lines, Nielson et al. [43]
is among the most well known foundational system.

The may/must-effect duality may be unique to our sys-
tem, but double-bounded types is not new. For example,
in Java generics, Type bound declarations super and
extends are available for generic type variables [15, 51],
the dual bounds in the Java nominal type hierarchy. Unique
to our system is that the type checking process actively com-
putes and tightens the bounds of effects — e.g., the type rules
of branching and effect analysis — suitable for constructing
a precise effect programming and reasoning system. The use
of must-effects to enhance expressiveness and in combina-
tion with the may-effects to enable non-monotone effect op-
erator in our system may be unique, but type system design-
ers should be able to find conceptual analogies in existing
systems, such as liveness [23] and obligation [7].

feature benefit reason

effect reflection
precision employs run-time type information
flexibility allows dynamic effect computation

predicated flexibility allows custom effect analyses
effect program

facilitates refinement typing
analysis correctness

effect closure
flexibility implements first-class effects
soundness connects expression and effect

refinement program
provides refined static guarantees

type correctness
double-bounded flexibility provides dual views of effects

effects soundness enforces trace consistency

polarity support
flexibility enables non-monotone operators
soundness enforces trace consistency

Figure 18. A Summary of λfe Features

The typecase-style runtime type inspection by Harper
and Morrisett [26] and Crary et al. [16] is an expressive ap-
proach to perform type analyses at runtime. Our effcase ex-
pression shares the same spirit, except that it works on effect
closures. In addition, our pattern matching may be guarded
by a predicate, which on the high level can be viewed as
an (unrolled/explicit) form of predicate dispatch [20, 39]. In
general, supporting expressive pattern matching has a long
tradition for data types in functional languages, with many
developments in object-oriented languages as well (e.g., [1]).
Our work demonstrates how predicated pattern matching
interacts with refinement types, dynamic typing, double-
bounded effect analysis, and first-class effect support.

Refinement types [13, 22, 25, 44] have received signif-
icant attention, with much progress on their expressiveness
and decidability. Effect closures in first-class effects are im-
mutable. This language feature significantly simplifies the
design of refinement types in λfe, as the interaction between
refinement types and mutable features is known to be chal-
lenging [12]. λfe demonstrates the opportunity of bridging
predicated effect analysis and refinement types.

10. Conclusion
We describe a new foundation for effect programming and
reasoning, where effects are available as first-class values
to programmers. Our system is powered by the subtle in-
teraction among powerful features such as dynamic typing,
double-bounded effects, polarity support in predicates, and
refinement types. The high-level design features of first-class
effects — together with how they are interconnected in an
organic fashion — are summarized in Figure 18.
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A. Optimization Dynamic Semantics:
Efficient Effect Computation through
Pre-computation and Substitution

The operational semantics we have introduced in §6 may not
be efficient, because it may require dynamic construction of
type derivations to compute dynamic type-and-effects. Here,
we introduce one optimization.

Note that the expressions that do not have free variables
will have exactly the same static effects (i.e., via static typ-
ing) and dynamic effects (i.e., via dynamic typing). Observe
that the only difference between the two forms of effects for
an expression lies in the typing of the free variables. Because
of this, we define an optimized effect computation strategy
with two steps:

1. At compile time, the static effects of the expression used
by the effect reflection of each query expression in the
program are computed. Also the type (which contains
free type/effect/region variables) of each free variable
that appears in the query expressio is recorded.

2. At run time, the static types of the free variables are
substituted with the dynamic types computed with their
corresponding values. This substitution will be used to
substitute the effect computed in the previous step to
compute the dynamic effect.

For the first step, Figure 19 defines a transformation
from the original expression e to an annotated expression
o. The two expressions are identical, except that the query
in the “annotated expression” now takes the form of query (



Abstract Syntax in Optimized λfe:

o ::= b | λx : T.o | x | o o | let x = o in o | o||o | ref ρ T o |!o | o := o | realize o annotated expressions
| query (x : T B T, σ ∼ σ) o | if o then o else o | effcase x = o : T where P ⇒ o

oc ::= 〈o,T, σ, σ′〉 effect closure
os ::= l→〈r,T〉 ov store
ov ::= b | λx : T.o | l | oc value
O ::= − | O o | ov O | let x = O in o | ref ρ T O | !O | O := o | ov := O evaluation context

| if O then o else o | realize O | effcase x = O : T where P ⇒ o

Gen function
Gen(Bool) = Bool

Gen(Refρ T) = Refρ T

Gen(T
σ∼σ′

−−−→ T′) = Gen(T)
ς∼ς′−−−→ Gen(T′) where ς, ς ′ fresh

Gen(EC(T, σ ∼ σ′)) = EC(Gen(T), ς ∼ ς ′) where ς, ς ′ fresh

Transformation: e
∆,Γ
 o

query e ∆,Γ
 query (x : T B T, σ ∼ σ′) o if e

∆,Γ
 o ∧ x = fv(e) ∧ Γ(x) = T′

∧ Gen(T′) = T ∧ ∆; Γ,x 7→ T ` o : T, σ ∼ σ′

effcase x = e : T where P ⇒ e
∆,Γ
 effcase x = o : T where P ⇒ o if ∀e ∈ e.e ∆,Γ

 o

realize e ∆,Γ
 realize o if e

∆,Γ
 o

b
∆,Γ
 b

λx : T.e
∆,Γ
 λx : T.o

x
∆,Γ
 x

ref ρ T e ∆,Γ
 ref ρ T o if e

∆,Γ
 o

!e
∆,Γ
 !o if e

∆,Γ
 o

e := e′
∆,Γ
 o := o′ if e

∆,Γ
 o,e′

∆,Γ
 o′

e e′
∆,Γ
 o o′ if e

∆,Γ
 o,e′

∆,Γ
 o′

let x = e in e′
∆,Γ
 let x = o in o′ if e

∆,Γ
 o,e′

∆,Γ
 o′

e||e′ ∆,Γ
 o||o′ if e

∆,Γ
 o,e′

∆,Γ
 o′

if e then e0 else e1
∆,Γ
 if o then o0 else o1 if e

∆,Γ
 o,e0

∆,Γ
 o0,e1

∆,Γ
 o1

Evaluation relation: os;o; f →O os′;o′; f ′

(Ocxt) os;O[o]; f →O os′;O[o′]; f, f ′ if os;o O os′;o′; f ′

(Oqry) os; query (ov : T B T, σ ∼ σ′) o  O os; 〈o, θT, θσ, θσ′〉 ; ∅ if os; ∅; ∅ D̀ ov : T′, ∅ ∼ ∅ ∧ θT = T′

For all other O rules, each is isomorphic to its counterpart rule, except that every occurrence of metavariable e, tc, s, v,
and E in the latter rule should be substituted with o, dtc, os, ov, and O in the former.

Figure 19. Optimized λfe.

x : T B T, σ ∼ σ′) o, which records the free variables of ex-
pressions o and their corresponding static types, denoted as
x : T. The same expression also records the statically com-
puted type T, must-effects σ and may-effects σ′ for o. The
function fv (o) computes the free variables for o.

Considering all the annotated information is readily avail-
able while we perform static typing of the query expression

— as in (T-QUERY) — the transformation from expression e
to annotated expression o under ∆ and Γ, denoted as e

∆,Γ
 

o, is rather predictable, defined also in Figure 19.
The reduction system→O is defined at the bottom of the

same figure and the notation→∗O represents the reflexive and
transitive closure of →O. Upon the evaluation of the anno-
tated query expression, the types associated with the free



- - - - - - - - - - - - - - - - - - Tasks with Effect - - - - - - - - -
1 let s = λ fn.
2 let t1 = query fn x1 in
3 let t2 = query fn x2 in
4 let t3 = query fn x3 in
5 effcase t1, t2, t3:
6 |EC(T0,y4 ∼ y0), EC(T1,y5 ∼ y1), EC(T2,y6 ∼ y2)
7 where (y0 # y1) ∧ (y0 # y2) ∧ (y1 # y2)
8 =>realize t1||realize t2||realize t3
9 |default=> fn x1; fn x2; fn x3 in

- - - - - - - - - - - - - - - - Latent Effect Analysis - - - - - - -
10 let s = λ fn.
11 let t = query fn in
12

13
14 effcase t:

15 |EC(T0
y0∼y1−−−−→ T1,y ∼ z)

16 where (y1 # y1)
17 =>realize t x1||realize t x2||realize t x3
18 |default => fn x1; fn x2; fn x3 in

Figure 20. SIMD in First-Class Effects. On the Left, the Effects of each Pair of the Tasks Are Checked to Verify Concurrency
Safety (line 7), O(n2) Complexity. On the Right, Latent Effects Are Checked (line 16), O(n) Complexity.

variables — now substituted with values — are substituted
with the types associated with the corresponding values. The
latter is computed by judgment os; ∆; Γ D̀ o : T, σ ∼ σ′,

defined as s; ∆; Γ D̀ e : T, σ ∼ σ′ where e
∆,Γ
 o, substi-

tuted types of the free variables with the types of the values.

B. More Applicability
B.1 Latent Effect Analysis
With λfe, programmers can inspect the structure of effects,
allowing latent effect associated with higher-order function
to be analyzed or more generally any effects nested in the
types. To illustrate, consider the example in Figure 20. As-
sume that we have already defined three references bf0,
bf1, and bf2 in different regions r, u, and w respectively.
The funciton s accepts a function fn as an argument and
decides whether it can be applied on the three references in
parallel, so called single instruction multiple data (SIMD)
application. With the effcase expression, programmers can
inspect the latent effects of the instruction to verify the con-
currency safety [6] (line 16). In contrast, traditional systems
[27, 35] will create a task for each data, and check that the
effects of each pair of tasks do not interfere (lines 2-7), that
can lead to O(n2) checks, where n is the size of the data. In
a similar vein, such a design eases the effects reasoning of
the map, filter, select functions in the MapReduce and Par-
allelArray framework [17, 31].

B.2 Algorithmic Speculation
We highlight the use of the non-monotone operator ==
(line 4), in Figure 21, which is not supported or can be hard
to reason about in previous system [35]. The operator == is
satisfied if the effects of LHS and RHS are equal.

Typically, in algorithmic speculation [48], a master pro-
cess executes a computation in multiple worker processes
and returns with the fastest among them. The runtime will
copy the heap from the master to the worker whenever the
worker reads the heap and copy the heap from the best
worker back to the master upon completion. The workers are
organized into topology to reduce copying overhead. With
λfe, overhead can be further reduced.

If the to-be-speculated computation x is pure and only
writes the final result to the returning buf, then the copying

1 let buf = refr -1 in
2 let speculate =
3 λx.effcase x:
4 |EC(wrr∼wrr)=>{x == wrr} realize x||realize x
5 |default =>/* default copying strategy*/ in
6 speculate (query buf := 1)

Figure 21. Algorithmic Speculation [48] in First-Class Ef-
fects to Improve Performance.

overhead can be avoided. The programmer analyzes its ef-
fects (line 4) and if both its must- and may-effects are wrr,
i.e., EC(wrr ∼ wrr), x can be evaluated in two threads and
the result from the faster one is used. As such, expensive
copying by executing them in processes is avoided.

B.3 Atomic Cooperative Multi-threading and Testing
Writing concurrent programs is difficult, error prone, and
creates code which is hard to debug. Consider an adapted
real world bug shown in Figure 22. It is intuitive that in the
function buggy, if the value of buf is not 0 on line 8,
then its value will not be 0 on the immediate next line
either. However, such an intuition could be violated by the
expression on line 10 from the interfere thread during
concurrent execution, causing a program crash [36].

The root cause of the problem is that programmers usu-
ally think sequentially and assume that a small block of code
will be executed atomically, which is not provided in the
preemptive semantics [3, 56]. Under the preemptive seman-
tics, an yield expression will be inserted into the program
points, wherever references are accessed, e.g., on line 9. The
yield expression serves as a breakpoint to pause the cur-
rent thread, from which control could be transferred to other
threads, e.g., the interfere thread.

Testing Previous work [10] on programmer-guided testing
has proposed to let programmers to decide which thread the
control will be transferred to in order to trigger bug faster,
within the yield function.

With first-class effects, this can be done in a more ef-
fective matter. By inspecting the effect, the programmer
schedules threads that must write to region r (e.g., line 3).
This technique is arguably more effective because priority
is given to conflicting threads, which may trigger bugs. By



- - - - - - - - - - - - - - - Yield in Testing - - - - - - - - - - - - -
1 let yield = λx. for y : !threads
2 effcase y:
3 |EC(h ∼ z) where wrr <<: h =>{wrr <<: y} realize y

- - - - - - - - - - - - - - - Yield in Atomicity - - - - - - - - - - - - - -
4 let yield = λx. for y : !threads
5 effcase y:
6 |EC(h ∼ z) where wrr /<<: z =>{wrr /<<: y} realize y

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Application code - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7 let buf = refr 0 in
8 let buggy = λx. if !buf not 0
9 then yield buf; /* break point */ 10 / !buf in // potential divide by 0 error

10 let interfere = λ x. !buf := 0 in
11 let threads = ref (cons (query buggy 0) (query interfere 0)) in
12 buggy || interfere

Figure 22. Programmer-Guided Testing and Atomicity Preservation in First-Class Effects, Inspired by Yi et al. [56],
Burckhardt et al. [9], Erickson et al. [19] and Burnim et al.’s Work [10].

1 λ x1, x2, x3.
2 effcase x1, x2, x3:
3 |EC(y4∼y0), EC(y5 ∼ y1), EC(y6 ∼ y2) where y0 # y1 ∧ y0 # y2 ∧ y1 # y2=>realize x1||realize x2||realize x3
4 |EC(y4∼y0), EC(y5 ∼ y1), EC(y6 ∼ y2) where y0 # y1 =>(realize x1||realize x2); realize x3
5 |EC(y4∼y0), EC(y5 ∼ y1), EC(y6 ∼ y2) where y0 # y2 =>(realize x1||realize x3); realize x2
6 |EC(y4∼y0), EC(y5 ∼ y1), EC(y6 ∼ y2) where y1 # y2 =>(realize x2||realize x3); realize x1
7 |default =>realize x1; realize x2; realize x3

Figure 23. Don’t-care Non-determinism in First-Class Effects. Expression e || e′ Denotes Running e and e′ in Parallel. Binary
Operator # Is Satisfied If the Effects of LHS and RHS Are Disjoint.

specifying the must-effect, threads that must write to r will
be executed and the precision can be enhanced. Alterna-
tively, if the predicate on line 3 is substituted with where
wrr <<: h => , recall will be enhanced. Interestingly,

programmers can choose to increase precision or recall by
choosing the must- and may-effects. Note that the effects of
the threads are retrieved once when the threads are created
(line 11) and may be reused many times.

Maintaining Atomicity Conversely, for the application
of atomicity, programmers aim at achieving concurrency
safety, instead of triggering bug. The programmer-defined
atomic scheduler analyzes the effects of the threads, and
allows only the threads that do not write r to be run in con-
current, line 6, i.e., pausing all conflicting threads.

B.4 Application Specific Effect Analyses
one man’s meat is another man’s poison

To increase flexibility, λfe allows programmers to decide
which expression to query and to customize their effect anal-
yses to meet their domain knowledge. The value of domain
knowledge can be viewed in the application for safe paral-
lelism. The fork function would like to execute the three
tasks x1, x2, and x3 in parallel. Let the predefined ternary
operator spawn denote running the tasks in parallel if their
effects are pairwise disjoint and sequentially otherwise.

1 let fork = λ x1, x2, x3.
2 spawn x1, x2, x3 in ...

Clearly, the fork function maintains sequential consis-
tency, i.e., the potential concurrent execution of the tasks is

behaviorally equivalent to executing the tasks one by one.
This property is the most intuitive model for sequentially-
trained programmers to understand and reason about their
programs [36]. However, such property is neither sufficient
nor necessary for several applications.

It is not sufficient (correctness), e.g., certain applications
[34] will reorder the conflicting tasks such that producer
tasks are executed before comsumer tasks, to ensure proper
initialization or to prioritize producer tasks.

It is not necessary (performance), e.g., several effect sys-
tems [27, 34, 54] will reorder the tasks and execute non-
conflicting tasks in parallel. so called the don’t-care non-
determinism parallelism.

3 fork reader writer reader

For example, for the above call site of, an user may wish to
run the two readers concurrently, and after they are done,
run writer, but fork will run them sequentially. Such
concurrent execution may have huge performance benefits
compared with the sequential execution. Paradoxically, the
reordering is only correct in certain domain but not the others
[46], which certainly requires domain knowledge.

Other effect-aware schedulings are possible and are
shown in Figure 17. While, previous work allows program-
mers to select a small predefined subset of schedulings, in
λfe, programmeres are endowed the power of implementing
any of the schedulings and combining them in any order.

With λfe, programmers can implement don’t-care non-
determinism scheduling as in Figure 23.
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