
Tempo Support in Programming Languages

Yu David Liu
SUNY Binghamton, NY 13902, USA

davidL@cs.binghamton.edu

According to Wikipedia:

“In musical terminology, tempo (Italian for time) is
the speed or pace of a given piece. Tempo is a crucial
element of any musical composition, as it can affect
the mood and difficulty of a piece.”

Just like musicians, software designers often think of
themselves as artists and their programs as artistic compo-
sitions. If we carry out the analogy between music and pro-
grams further – notes as syntax, sound as semantics, sym-
phony as program executions – the fundamental concept of
tempo in music is naturally mapped to the “execution pace”
of programs. What is eerily missing is the programming lan-
guage foundations for tempo. In this short essay, we seek
answers to three questions:

• What does “tempo” mean in programs?
• How can it be implemented in real-world machines?
• Why should we care about it?

Tempo intuitively can be thought of as how fast a program
progresses. Imagine a computation operationally defined in
five reduction steps, shown below as a sequence of gray
transparent rectangles, the width of each representing its
abstract reduction time, i.e. an abstract notion of CPU cycles:

Time

slow tempo

fast tempo

0 reduction in real timereduction in abstract time

computation

When this computation is executed on a 300MHz CPU
and a 1000MHz CPU respectively, the first will intuitively
take longer time, in which case we say the first has a slower
tempo than the second. A fundamental problem does arise
from this example: the tempo here appears to be a charac-
teristic of the external hardware environment – the CPU fre-
quency – so how could it be considered as a program se-
mantic element? It is our belief that, even though the abso-
lute tempo of a program execution may be difficult to cap-
ture on the language level, the relative tempo of different
program fragments within the same program can be effec-
tively expressed and serves as a useful semantic feature. To
set the analogy with music again, we believe that all layers

of software design – semantics definition, optimizer specifi-
cation, and programs themselves – should have a way of say-
ing lento, allegro, and accelerando, so that different program
fragments coordinate executions as composing a symphony.

The advances of hardware/software platforms in the last
two decades significantly facilitate the implementation of
program tempo adjustment. Virtually all CPUs being used
today – from ARM Cortex on Droid smartphones, Intel
Core 2 on laptops and desktops, to high-end clusters in data
centers – are equipped with the ability of adjusting CPU
frequencies (and voltages) on the fly, a feature commonly
known as Dynamic Voltage and Frequency Scaling (DVFS).

To see why tempo can be a useful idea for programmers,
consider a simple search from a large dictionary:

1 boolean f i n d (S t r i n g s) {
2 acce l erando f o r (long i = 0 ; i< 200000; i ++) {
3 i f (d i c t i o n a r y [i] . e q u a l s (s) re turn true ;
4 }
5 re turn f a l s e ;
6 }

The accelerando keyword denotes that the loop execu-
tion “picks up” the tempo gradually: the execution starts at
the lowest CPU frequency, and hopefully the search will “get
lucky” when the 53rd entry – not the 53000th entry – of
dictionary contains the string. If the search turns out
not to be so lucky and the loop iteration reaches the 53000th
entry, it becomes necessary to increase the CPU frequency.
To use an analogy perhaps familiar with us researchers –
work harder when the deadline looms! Because the CPU fre-
quency is proportional to system energy consumption, the
temp-variant execution here offers programmers an intuitive
way to trade-off the quality of service (QoS) and energy con-
sumption.

Tempo-variant executions may also be conducive for re-
ducing concurrency bugs such as race conditions and dead-
locks. The common nature of this category of bugs is that
they are situational: whether they occur in an execution
is non-deterministic, largely dependent upon the relative
progress of different threads. Novel algorithms may be de-
signed to allow different threads to execute on different
tempi. For example, the occurrence of deadlocks may be
reduced by increasing the tempo of thread A when it holds
locks that may be requested by another thread B but in a
different lock order, and decreasing the tempo of thread B at
the same time.

1 2012/11/8

