A Comprehensive Study on the Energy Efficiency of Java’s Thread-Safe Collections

Gustavo Pinto¹ Kenan Liu² Fernando Castor³ Yu David Liu²
¹IFPA, Brazil ²SUNY Binghamton, USA ³UFPE, Brazil

Abstract—Java programmers are served with numerous choices of collections, varying from simple sequential ordered lists to sophisticated hashtable implementations. These choices are well-known to have different characteristics in terms of performance, scalability, and thread-safety, and most of them are well studied. This paper analyzes an additional dimension, energy efficiency. We conducted an empirical investigation of 16 collection implementations (13 thread-safe, 3 non-thread-safe) grouped under 3 commonly used forms of collections (lists, sets, and mappings). Using micro- and real world-benchmarks (TOMCAT and XALAN), we show that our results are meaningful and impactful.

In general, we observed that simple design decisions can greatly impact energy consumption. In particular, we found that using a newer hashtable version can yield a 2.19x energy savings in the micro-benchmarks and up to 17% in the real world-benchmarks, when compared to the old associative implementation. Also, we observed that different implementations of the same thread-safe collection can have widely different energy consumption behaviors. This variation also applies to the different operations that each collection implements, e.g., a collection implementation that performs traversals very efficiently can be more than an order of magnitude less efficient than another implementation of the same collection when it comes to insertions.

I. INTRODUCTION

A question that often arises in software development forums is: “since Java has so many collection implementations, which one should I use?”¹ Answers to this question come in different flavors: these collections serve for different purposes and have different characteristics in terms of performance, scalability and thread-safety. In this study, we consider one additional attribute: energy efficiency. In an era where mobile platforms are prevalent, there is considerable evidence that battery usage is a key factor for evaluating and adopting mobile applications.²

Energy consumption estimation tools do exist [2], [3], [4], but they do not provide direct guidance on energy optimization, i.e., bridging the gap between understanding where energy is consumed and understanding how the code can be modified in order to reduce energy consumption.

Energy optimization is traditionally addressed by hardware-level (e.g., [5], [6]) and system-level approaches (e.g., [7], [8]). However, it has been gaining momentum in recent years through application-level software engineering techniques (e.g., [9], [10], [11]). The overarching premise of this emerging direction is that the high-level knowledge from software engineers on application design and implementation can make significant impact on energy consumption, as confirmed by recent empirical studies [12], [13], [14], [15]. Moreover, energy efficiency, similarly to performance and reliability, is a systemic property. Thus, it must be tackled across multiple levels of the system stack. The space for application-level energy optimization, however, is diverse.

In this paper, we elucidate the energy consumption of different Java thread-safe collections running on parallel architectures. This is a critical direction at the junction of data-intensive computing and parallel computing, which deserves more investigation due to at least three reasons:

- Collections are one of the most important building blocks of computer programming. Multiplicity — a collection may hold many pieces of data items — is the norm of their use, and it often contributes to significant memory pressure, and performance problems in general, of modern applications where data are often intensive [16], [17].
- Not only high-end servers but also desktop machines, smartphones, and tablets need concurrent programs to make best use of their multi-core hardware. A CPU with more cores (say 32) often dissipates more power than one with fewer cores (say 1 or 2) [18]. In addition, mobile platforms such as Android, due to responsiveness requirements, concurrency in the form of asynchronous operations is the norm [19].
- Mainstream programming languages often provide a number of implementations for the same collection and these implementations have potentially different characteristics in terms of energy efficiency [20], [21].

Through extensive experiments conducted in a multi-core environment, we correlate energy behaviors of 13 thread-safe implementations of Java collections, grouped by 3 well-known interfaces (List, Set, and Map), and their turning knobs. Our research is motivated by the following questions:

RQ1. Do different implementations of the same collection have different impacts on energy consumption?
RQ2. Do different operations in the same implementation of a collection consume energy differently?
RQ3. Do collections scale, from an energy consumption perspective, with an increasing number of concurrent threads?
RQ4. Do different collection configurations and usages have different impacts on energy consumption?

In order to answer RQ1 and RQ2, we select and analyze the behaviors of three common operations — traversal, insertion and removal — for each collection implementation. To answer

¹http://stackoverflow.com/search?q=which+data+structure+use+java+is:
question
RQ3, we analyze how different implementations scale in the presence of multiple threads. In this experiment, we cover the spectrum including both under-provisioning (the number of threads exceeds the number of CPU cores) and over-provisioning (the number of CPU cores exceeds the number of threads). In RQ4, we analyze how different configurations — such as the load factor and the initial capacity of the collection — impact energy consumption.

We analyze energy-performance trade-offs in diverse settings that may influence the high-level programming decisions of energy-aware programmers. We apply our main findings into two well-known applications (XALAN and TOMCAT). To gain confidence in our results in the presence of platform variations and measurement environments, we employ two machines with different architectures (32-core AMD vs. 16-core Intel). We further use two distinct energy measurement strategies, relying on an external energy meter, and internal Machine-Specific Registers (MSRs), respectively.

The main finding of this work is that, in the context of Java’s thread-safe collections, simple changes can reduce the energy consumption considerably. In our micro-benchmarks, differences of more than 50% between data structure implementations were commonplace. Moreover, in two real-world applications analyzed, overall reductions of 9.32 and 17.82% in energy consumption could be achieved. This result has a clear implication: Tools to aid developers in quickly refactoring programs to switch between different data structure implementations can be useful if energy is important.

In addition, similarly to previous work targeting concurrent programs [21], [15], [2], we found that execution time is not always a reliable indicator for energy consumption. This is particularly true for various Map implementations. In other words, the consumption of power — the rate of energy consumption — is not a constant across different collection implementations. Furthermore, different operations of the same implementation have different energy footprints. For example, a removal operation in a ConcurrentSkipListMap can consume more than 4 times of energy than an insertion to the same data structure.

II. RELATED WORK

The energy impacts of different design decisions have been previously investigated in several empirical studies. These studies varied from constructs for managing concurrent execution [15], design patterns [22], cloud offloading [10], [23], [24], VM services [25], GPUs [26], and code obfuscation [27]. In particular, Zhang et al. [24] presented a mechanism for automatically refactoring an Android app into one implementing the on-demand computation offloading design pattern, which can transfer some computation-intensive tasks from a smartphone to a server so that the task execution time and battery power consumption of the app can be reduced significantly. Li et al. [12] presented an evaluation of a set of programming practices suggested in the official Android developers web site. They observed that some practices such as the network packet size can provide impressive energy savings, while others, such as limiting memory usage, had minimal impact on energy usage. Vallina-Rodriguez et al. [28] surveys the energy-efficient software-centric solutions on mobile devices, ranging from operating system solutions to energy savings via process migration to the cloud and protocol optimizations. Lima et al. [21] studied energy consumption of thread management constructs and data structures in a lazy purely functional programming language, Haskell. Although they found that there is no clear universal winner, in certain circumstances, choosing one data sharing primitive (MVar) over another (TMVar) can yield 60% energy savings.

Java collections are the focus of several studies [16], [29], [30], although only few of them studied their energy characteristics [31], [32], [20]. Previously, we have presented a preliminary study on the energy consumption of the Java thread-safe collections [31]. This current study greatly expands the previous study, attempting to answer two additional research questions. Also, in this current submission, we employ two different energy measurement methods in two different machines, instead of just one, as reported in the initial study. Finally, we also applied our findings to two real-world applications.

To the best of our knowledge, three other studies intersect with our goal of understanding the energy consumption of Java collections [32], [20], [33]. SEEDS [32] is a general decision-making framework for optimizing software energy consumption. The authors demonstrated how SEEDS can identify energy-inefficient uses of Java collections, and help automate the process of selecting more efficient ones. Hasan et al. [20] investigated collections grouped with the same interfaces (List, Set, and Map). Among the findings, they found that the way that one inserts in a list (i.e., in the beginning, in the middle, or in the end) can greatly impact energy consumption. These studies, however, do not focus on concurrent collections. Finally, the study of Pereira [33] although analyzed concurrent implementations of Java collections, they did not use two different environments or energy consumption measurements. Therefore our study can be seen as complementary to theirs.

III. STUDY SETUP

Here we describe the benchmarks, the infrastructure, and the methodology that we used to perform the experiments.

A. Benchmarks

The benchmarks used in this study consist of 16 commonly used collections (13 thread-safe, 3 non-thread-safe) available in the Java programming language. Our focus is on the thread-safe implementations of the collections. Hence, for each collection, we selected a single non-thread-safe implementation to serve as a baseline. We analyzed insertion, removal and traversal operations. We grouped these implementations by the logical collection they represent, into three categories:

Lists (java.util.List): Lists are ordered collections that allow duplicate elements. Using this collection, programmers can have precise control over where an element is inserted in the list. The programmer can access an element using its index, or traverse the elements using an
Several implementations of this collection are available in the Java language. We used ArrayList, which is not thread-safe, as our baseline, since it is the simplest and most common non-thread-safe list implementation used. We studied the following thread-safe List implementations: Vector, Collections.synchronizedList(), and CopyOnWriteArrayList. The main difference between Vector and Collections.synchronizedList() is their usage pattern in programming. With Collections.synchronizedList(), the programmer creates a wrapper around the current List implementation, and the data stored in the original List object does not need to be copied into the wrapper object. It is appropriate in cases where the programmer intends to hold data in a non-thread-safe List object, but wishes to add synchronization support. With Vector, on the other hand, the data container and the synchronization support are unified so it is not possible to keep an underlying structure (such as LinkedList) separate from the object managing the synchronization. CopyOnWriteArrayList creates a copy of the underlying ArrayList whenever a mutation operation (e.g., using the add or set methods) is invoked.

Maps (java.util.Map): Maps are objects that map keys to values. Logically, the keys of a map cannot be duplicated. Each key is uniquely associated with a value. An insertion of a (key, value) pair where the key is already associated with a value in the map results in the old value being replaced by the new one. Our baseline is HashMap, instead of the more commonly used HashMap. This is because the latter causes a non-termination bug during our experiments [34]. Our choice of thread-safe Map implementations includes Hashtable, Collections.synchronizedMap(), ConcurrentSkipListMap, ConcurrentHashMap, and ConcurrentHashMapV8. The difference between ConcurrentHashMap and ConcurrentHashMapV8 is that the latter is an optimized version released in Java 1.8, while the former is the version present in the JDK until Java 1.7. While all Map implementations share similar functionalities and operate on a common interface, they are particularly known to differ in the order of element access at iteration time. For instance, while HashMap iterates in the order in which the elements were inserted into the map, a Hashtable makes no guarantees about the iteration order.

Sets (java.util.Set): Sets model the mathematical set abstraction. Unlike Lists, Sets do not count duplicate elements, and are not ordered. Thus, the elements of a set cannot be accessed by their indices, and traversals are only possible using an Iterator. Among the available implementations, we used LinkedHashSet, which is not thread-safe, as our baseline. Our selection of thread-safe Set implementations includes Collections.synchronizedSet(), ConcurrentHashMap, and CopyOnWriteArraySet, and ConcurrentHashMapV8. The latter is the version of ConcurrentHashMap available in Java 1.8. It should be noted that both ConcurrentHashMap and ConcurrentHashMapV8 are not top-level classes readily available in the JDK library. Instead, they can be obtained by invoking the newSetFromMap() method of the Collections class. The returned Set object observes the same ordering as the underlying map.

B. Experimental Environment

To gain confidence in our results in the presence of platform variations, we run each experiment on two significantly different platforms:

System#1: A 2×16-core AMD Opteron 6378 processor (Piledriver microarchitecture), 2.4GHz, with 64GB of DDR3 1600 memory. It has three cache levels (L1, L2, L3): L1 with 32KB per core, L2 with 256KB per core, and L3 20480 (Smart cache). It is running Debian 3.2.46-1 x86-64 Linux (kernel 3.2.0-4-amd64), and Oracle HotSpot 64-Bit Server VM (build 21) JDK version 1.7.0_11.

System#2: A 2×8-core (32-cores when hyper-threading is enabled) Intel(R) Xeon(R) E5-2670 processor, 2.60GHz, with 64GB of DDR3 1600 memory. It has three cache levels (L1, L2, L3): L1 with 48KB per core, L2 with 1024KB per core, and L3 20480 (Smart cache). It is running Debian 6 (kernel 3.0.0-1-amd64) and Oracle HotSpot 64-Bit Server VM (build 14), JDK version 1.7.0_71.

When we performed the experiments with Sets and Maps, we employed the jsr166e library\(^2\) which contains the ConcurrentHashMapV8 implementation. Thus, these experiments do not need to be executed under Java 1.8.

We also used two different energy consumption measurement approaches. This happens because one of our measurement approach relies on Intel processors, while System#1 uses an AMD one.

For System#1, energy consumption is measured through current meters over power supply lines to the CPU module. Data is converted through an NI DAQ and collected by NI LabVIEW SignalExpress with 100 samples per second and the unit of the current sample is deca-ampere (10 amperes). Since the supply voltage is stable at 12V, energy consumption is computed as the sum of current samples multiplied by 12 × 0.01 × 10. We measured the “base” power consumption of the OS when there is no JVM (or other application) running. The reported results are the measured results modulo the “base” energy consumption.

For System#2, we used jRAPL [4], a framework that contains a set of APIs for profiling Java programs running on CPUs with Running Average Power Limit (RAPL) support. Originally designed by Intel for enabling chip-level power management, RAPL is widely supported in today’s Intel architectures, including Xeon server-level CPUs and the popular i5 and i7 processors. RAPL-enabled architectures monitor

\(^2\)Available at: http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/
the energy consumption information and store it in Machine-Specific Registers (MSRs). Due to architecture design, RAPL support for System#2 can access CPU core, CPU uncore data (i.e., caches and interconnects), and in addition DRAM energy consumption data. RAPL-based energy measurement has appeared in recent literature (e.g., [35], [13], [36]), its precision and reliability have been extensively studied [37].

As we shall see in the experiments, DRAM power consumption is nearly constant. In other words, even though our meter-based measurement strategy only considers the CPU energy consumption, it is still indicative of the relative energy consumptions of different collection implementations. It should be noted that the stability of DRAM power consumption through RAPL-based experiments does not contradict the established fact that the energy consumption of memory systems is highly dynamic [38]. In that context, memory systems subsume the entire memory hierarchy, and most of the variations are caused by caches [39] — part of the “CPU uncore data” in our experiments.

All experiments were performed with no other load on the OS. We conform to the default settings of both the OS and the JVM. Several default settings are relevant to this context: (1) the power management of Linux is the default ondemand governor, which dynamically adjusts CPU core frequencies based on system workloads. (2) For the JVM, the parallel garbage collector is used, and just-in-time (JIT) compilation is enabled. The initial heap size and maximum heap size are set based on system workloads. (2) For the JVM, the parallel ondemand feature is disabled on System#2.

IV. STUDY RESULTS

Here we report the results of our experiments. Results for RQ1 and RQ2 are presented in Section IV-A describing the impact of different implementations and operations on energy consumption. In Section IV-B we answer RQ3 by investigating the impact of accessing data collections with different numbers of threads. Finally, in Section IV-C we answer RQ4 by exploring different “tuning knobs” of data collections. Due to space constraints, we will not show performance figures. When relevant, we discuss performance result in the text.

A. Different Collection Implementations and Operations

For RQ1 and RQ2, we set the number of threads to 32 and, for each group of collections, we performed and measured insertion, traversal and removal operations.

1) For the insertion operation, we start with an empty collection, and each thread inserts 100,000 elements. At the end the total number of elements inside the collection is 3,200,000. To avoid duplicate elements, each insertion operation adds a String with value thread-id + “.” + current-index.

2) For the traversal operation, each thread traverses the entire collection generated by the insertion operation, i.e., over 3,200,000 elements. On Sets and Maps, we first get the list of keys inserted, and then we iterate over these keys in order to get their values. On Lists, it is performed using a top-level loop over the collection, accessing each element by its index using the get(int i) method.

3) For the removal operation, we start with the collection with 3,200,000 elements, and remove the elements one by one, until the collection becomes empty. For Maps and Sets, the removals are based on keys. On Lists, the removal operation is based on indexes, and occurs in-place — that is, we do not traverse the collection to look up for a particular element before removal.

Lists. Figure 1 shows the energy consumption (bars) and power consumption (lines) results of our List experiments. Each bar represents one List implementation. Each bar represents the total amount of energy consumed. The three graphs at top of the figure are collected from System#1, whereas the three graphs in the bottom are from System#2. Figures for Traversal, Insertion, and Removal are presented, respectively, from left to right. We do not show the figures for CopyOnWriteArrayList because the results for insertion and removal are an outlier and would otherwise skew the proportion of the figures.

First, we can observe that synchronization does play an important role here. As we can see, ArrayList, the non-thread-safe implementation, consumes much less energy than the other ones, thanks to its lack of synchronization. Vector and Collection.synchronizedList() are similar in energy behaviors. The greatest difference is seen on insertion, on System#1, in which the former consumed about 24.21% less energy than the latter. Vector and Collection.synchronizedList() are strongly correlated in their implementations, with some differences. While both of them are thread-safe on insertion and removal operations, Collection.synchronizedList() is not thread-safe on traversals using an Iterator, whereas Iterators over Vector are thread-safe. CopyOnWriteArrayList, in contrast, is thread-safe in all operations. However, it does not need synchronization on traversal operations, which makes this implementation more efficient than the thread-safe ones (it consumes 46.38x less energy than Vector on traversal).

Furthermore, different operations can have different impacts. For traversal, Vector presents the worst result among the List implementations: it consumes 14.58x more energy and 7.9x more time than the baseline on System#1 (84.65x and 57.99x on System#2, respectively). This is due to both Vector and Collection.synchronizedList() needing to synchronize on traversal operations. In contrast, the CopyOnWriteArrayList only requires synchronization on operations that modify the list.

For insertion operations, ArrayList consumes the
Fig. 1. Energy and power results for traversal, insertion and removal operations for different List implementations. Bars denote energy consumption and lines denote power consumption. AL means ArrayList, VEC means Vector, and CSL means Collections.synchronizedList().

When comparing the thread-safe implementations, Collections.synchronizedList() consumes 1.30x more energy than Vector (1.24x for execution time) on System#1. On System#2, however, they consume almost the same amount of energy (Collections.synchronizedList() consumes 1.01x more energy than Vector). On the other hand, CopyOnWriteArrayList consumes a total of 6,843.21 J, about 152x more energy than Vector on System#1. This happens because, for each new element added to the list, the CopyOnWriteArrayList implementation needs to synchronize and create a fresh copy of the underlying array using the System.arraycopy() method. As discussed elsewhere [15], [10], even though this behavior can be observed in sequential applications, it is more evident in highly parallel applications, when several processors are busy making copies of the collection, preventing them from doing important work. Although this behavior makes this implementation thread-safe, it is ordinarily too costly to maintain the collection in a highly concurrent environment where insertions are not very rare events.

Moreover, removals usually consume much more energy than the other operations. For instance, removal on Vector consumes about 778.88x more energy than insertion on System#1. Execution time increases similarly, for instance, it took about 92 seconds to complete a removal operation on Vector. By contrast, insertions on a Vector took about 1.2 seconds, on average. We believe that several reasons can explain this behavior. First, removals need to compute the size of the collection in each iteration of the for loop and, as we shall see in Section IV-D, it can greatly impact both performance and energy consumption. The second reason is that each call to the List.remove() method leads to a call to the System.arraycopy() method in order to resize the List, since all these implementations of List are built upon arrays. In comparison, insertion operations only lead to a System.arraycopy() call when the maximum number of elements is reached.

Power consumption also deserves attention. Since System.arraycopy() is a memory intensive operation, power consumption decreases, and thus, execution time increases. Moreover, for most cases, power consumption follows the same shape as energy. Since energy consumption is the product of power consumption and time, when power consumption decreases and energy increase, execution time tends to increase. This is what happens on removal on System#2. The excessive memory operations on removals, also observed on DRAM energy consumption (the black, top-most part of the bar), prevents the CPU from doing useful work, which increases the execution time.

We also observed that the baseline benchmark on System#2 consumes the least energy when compared to the baseline on System#1. We attribute that to our energy measurement approaches. While RAPL-based measurement can be efficient in retrieving only the necessary information (for instance, package energy consumption), our hardware-based measurement gathers energy consumption information pertaining to everything that happens in the CPU. Such noise can be particularly substantial when the execution time is small.

For all aforementioned cases, we observed that energy follows the same shape as execution time. This result goes in the line of recent studies, that observed that energy and time are often not correlated [2], [13], [15], which is particularly true for concurrent applications. For the List implementations, however, we believe that developers can safely use time as a proxy for energy, which can be a great help when refactoring an application to consume less energy.

Maps. Figure 2 presents a different picture for the Map
implementations. For the `LinkedHashMap`, `Hashtable`, and `Collections.synchronizedMap()` implementations, energy follows the same curve as time, for both traversal and insertion operations, on both `System#1` and `System#2`. Surprisingly, however, the same cannot be said for the removal operations. Removal operations on `Hashtable` and `Collections.synchronizedMap()` exhibited energy consumption that is proportionally smaller than their execution time for both systems. Such behavior is due to a drop on power consumption. Since such collections are single-lock based, for each removal operation, the other threads need to wait until the underlying structure is rebuilt. This synchronization prevents the collection from speed-up, and also decreases power usage.

On the other hand, for the `ConcurrentSkipListMap`, `ConcurrentHashMap`, and `ConcurrentHashMapV8` implementations, more power is being consumed behind the scenes. That energy consumption is the product of power consumption and time. If the benchmark receives a 1.5x speed-up but, at the same time, yields a threefold increase in power consumption, energy consumption will increase twofold. This scenario is roughly what happens in traversal operations, when transitioning from `Hashtable` to `ConcurrentHashMap`. Even though `ConcurrentHashMap` produces a speedup of 1.46x over the `Hashtable` implementation on `System#1`, it achieves that by consuming 1.51x more power. As a result, `ConcurrentHashMap` consumed slightly more energy than `Hashtable` (2.38%). On `System#2`, energy consumption for `Hashtable` and `ConcurrentHashMap` are roughly the same. This result is relevant mainly because several textbooks [41], research papers [42], and internet blog posts [43] suggest `ConcurrentHashMap` as the de facto replacement for the old associative `Hashtable` implementation. Our result suggests that the decision whether or not to use `ConcurrentHashMap` should be made with care, in particular, in scenarios where the energy consumption is more important than performance. However, the newest `ConcurrentHashMapV8` implementation, released in the version 1.8 of the Java programming language, handles large maps or maps that have many keys with colliding hash codes more gracefully. On `System#1`, `ConcurrentHashMapV8` provides performance savings of 2.19x when compared to `ConcurrentHashMap`, and energy savings of 1.99x in traversal operations (these savings are, respectively, 1.57x and 1.61x in insertion operations, and 2.19x and 2.38x in removal operations). In addition, for insertions and removals operations on both systems, `ConcurrentHashMapV8` has performance similar or even better than the not thread-safe implementation.

`ConcurrentHashMapV8` is a completely rewritten version of its predecessor. The primary design goal of this implementation is to maintain concurrent readability (typically on the `get()` method, but also on `Iterators`) while minimizing update contention. This map acts as a binned hash table. Internally, it uses tree-map-like structures to maintain bins containing more nodes than would be expected under ideal random key distributions over ideal numbers of bins. This tree also requires an additional locking mechanism. While list traversal is always possible by readers even during updates, tree traversal is not, mainly because of tree rotations that may change the root node and its links. Insertion of the first node in an empty bin is performed with a compare-and-set operation. Other update operations (insertional, removal, and replace) require locks.

Sets. Figure 3 shows the results of our experiments with `Sets`. We did not present the results for `CopyOnWriteHashSet` in this figure because it exhibited a much higher energy consumption, which made the figure difficult to read. First, for all of the implementations of `Set`, we can observe that power consumption follows the same...
behavior on traversal operations for both System#1 and System#2. However, for insertion and removal operations, they are not always proportional. Notwithstanding, an interesting trade-off can be observed when performing traversal operations. As expected, the non-thread-safe implementation, LinkedHashSet, achieved the least energy consumption and execution time results, followed by the CopyOnWriteArraySet implementation. We believe that the same recommendation for CopyOnWriteArrayList fits here: this collection should only be used in scenarios where reads are much more frequent than insertions. For all other implementations, the ConcurrentHashMapV8 presents the best results among the thread-safe ones. For traversals, ConcurrentHashMapV8 presented the worst results, consuming 1.23x more energy and 1.14x more time than Collections.synchronizedSet() on System#1 (1.31x more energy and 1.19x more time on System#2).

The sometimes convoluted nature of the relationship between energy and time can be observed in ConcurrentSkipListSet. It consumes only 1.31x less energy than a Collections.synchronizedSet() on removal operations on System#1, but saves 4.25x in execution time. Such energy consumption overhead is also observed on System#2. Internally, ConcurrentSkipListSet relies on a ConcurrentSkipListMap, which is non-blocking, linearizable, and based on the compare-and-swap operation. During traversal, this collection marks the “next” pointer to keep track of triples (predecessor, node, successor) in order to detect when and how to unlink deleted nodes. Also, because of the asynchronous nature of these maps, determining the current number of elements (used in the Iterator) requires a traversal of all elements. These behaviors produce the energy consumption overhead observed in Figure 3.

B. Energy Behaviors with Different Number of Threads

In this group of experiments, we aim to answer RQ3. For this experiment, we chose Map implementations only, due to the presence of both single-lock and high-performance implementations. We vary the number of threads (1, 2, 4, 8, 16, 32, 64, 128, and 256 concurrent threads) and study how such variations impact energy consumption. An increment in the number of threads also increments the total number of elements inside the collection. Since each thread inserts 100,000 elements, when performing with one thread, the total number of elements is also 100,000. When performing with 2 threads, the final number of elements is 200,000, and so on.

To give an impression on how Map implementations scale in the presence of multiple threads, Figure 4 demonstrates the effect of different thread accesses.

In this figure, each data point is normalized by the number of threads, so it represents the energy consumption per thread, per configuration. Generally speaking, Hashtable and Collections.synchronizedMap() scale up well. For instance, we observed a great increase in energy consumption when using Collections.synchronizedMap() when we move from 32 to 64 threads performing traversals, but this trend can also observed for insertions and removals. Still on traversals, all Map implementations greatly increase the energy consumed as we add more threads. Also, despite the highly complex landscape, some patterns do seem to recur. For instance, even though ConcurrentHashMapV8 provides the best scalability among the thread-safe collection implementations, it still consumes about 11.6x more energy than the non-thread-safe implementation. However, the most interesting fact is the peak of ConcurrentHashMapV8, when performing with 128 and 256 threads. As discussed

![Figure 3. Energy and power results for traversal, insertion and removal operations for different Set implementations. Bars mean energy consumption and lines mean power consumption. LSH means LinkedHashSet, CSS means Collections.synchronizedSet(), SLS means ConcurrentSkipListSet, CHS means ConcurrentHashMap, and CHSV8 means ConcurrentHashMapV8.](image-url)
earlier, during traversal, ConcurrentSkipListMap marks or unlinks a node with null value from its predecessor (the map uses the nullness of value fields to indicate deletion). Such mark is a compare-and-set operation, and happens every time it finds a null node. When this operation fails, it forces a re-traversal from the caller.

For insertions, we observed a great disparity; while Hashtable and Collections.synchronizedMap() scale up well, ConcurrentHashMap, ConcurrentHashMapV8 scale up very well. One particular characteristic about ConcurrentHashMapMapV8 is that the insertion of the first element in an empty map employs compare-and-set operations. Other update operations (insert, delete, and replace) require locks. Locking support for these locks relies on buildin “synchronized” monitors. When performing using from 1 to 32 threads, they have energy and performance behaviors similar to the non-thread-safe implementation. Such behavior was previously discussed in Figure 2.

For removals, both ConcurrentHashMap and ConcurrentHashMapMapV8 scale better than all other implementations, even the non-thread-safe implementation, ConcurrentHashMap. ConcurrentSkipListMap, on the other hand, presents the worst scenario, in particular with 16, 32 and 128 threads, even when compared to the single-lock implementations, such as Hashtable and Collections.synchronizedMap().

C. Collection configurations and usages

We now focus on RQ4, studying the impact of different collection configurations and usage patterns on program energy behaviors. The Map implementations have two important “tuning knobs”: the initial capacity and load factor. The capacity is the total number of elements inside a Map and the initial capacity is the capacity at the time the Map is created. The default initial capacity of the Map implementations is only 16 locations. We report a set of experiments where we configured the initial capacity to be 32, 320, 3,200, 32,000, 320,000, and 3,200,000 elements — the last one is the total number of elements that we insert in a collection. Figure 5 shows how energy consumption behaves using these different initial capacity configurations.

As we can observe from this figure, the results can vary greatly when using different initial capacities, in terms of both energy consumption and execution time. The most evident cases are when performing with a high initial capacity in Hashtable and ConcurrentHashMap. ConcurrentHashMapMapV8, on the other hand, presents the least variation on energy consumption.

The other tuning knob is the load factor. It is a measure of how full the hash table is allowed to get before its capacity is automatically increased. When the number of elements inside a Map exceeds the product of the load factor and the current capacity, the hash table is rehashed; that is, its internal structure is rebuilt. The default load factor value in most Map implementation is 0.75. It means that, using initial capacity as 16, and the load factor as 0.75, the product of capacity is 12 (16 * 0.75 = 12). Thus, after inserting the 12th key, the new map capacity after rehashing will be 32. If the initial capacity is greater than the maximum number of entries divided by the load factor, no rehash operations will ever occur. Figure 5 shows results with different load factors configurations. We perform these experiments only with insertion operations.

From this figure we can observe that, albeit small, the load factor also influences both energy consumption and time. For instance, when using a load factor of 0.25, we observed the most energy inefficient results on System#1, except in one case (the energy consumption of ConcurrentHashMap). On

3We did not performed experiments with ConcurrentSkipListMap because it does not provide access to initial capacity and load factor variables.
System#2, the 0.25 configuration was the worst in three out of 5 of the benchmarks. We believe this due to the successive rehashing operations that must occur. Generally speaking, the default load factor (0.75) offers a good tradeoff between performance, energy, and space costs. Higher values decrease the space overhead but increase the time cost to look up an entry, which can reflect in most of the Map operations, including get() and put(). It is possible to observe this cost when using a load factor of 1.0, which means that the map will be only rehashed when the number of current elements reaches the current maximum size. The maximum variation was found when performing operations on a HasTable on System#1, in the default load factor, achieving 1.17x better energy consumption over the 0.25 configuration, and 1.09x in execution time.

D. The Devil is in the Details

In this section we further analyze some implementation details that can greatly increase energy consumption. **Upper bound limit.** We also observed that, on traversal and insertion operations, when the upper bound limit needs to be computed in each iteration, for instance:

```java
for(int i=0; i < list.size(); i++) { ... }
```

the Vector implementation consumed about twice as much as it consumed when this limit is computed only once on (1.98x more energy and 1.96x more time), when using

```java
int size = list.size();
for(int i=0; i < size; i++) { ... }
```

When this limit is computed beforehand, energy consumption and time drop by half. Such behavior is observed on both System#1 and System#2. We believe it happens mainly because for each loop iteration, the current thread needs call list.size() and fetch the stored variable from the memory, which would incur in some cache misses. When initializing a size variable close to the loop statement, we believe such variable will be stored in a near memory location, and thus, can be fetched together with the remaining data. Using this finding, well-known IDEs can implement refactoring suggestions for developers. Also, recent studies have shown that programmers are likely to follow IDE tips [44]. One concern, however, is related to removal operations. Since removal on Lists shift any subsequent elements to the left, if the limit is computed beforehand, the i++ operation will skip one element.

Enhanced for loop. We also analyzed traversal operations when the programmer iterates using an enhanced for loop, for instance, when using

```java
for (String e: list) { ... }
```

which is translated to an Iterator at compile time. In this configuration, Vector needs to synchronize in two different moments: during the creation of the Iterator object, and in every call of the next() method. By contrast, the Collections.synchronizedList() does not synchronize on the Iterator, and thus has similar performance and energy usage when compared to our baseline, ArrayList. On System#1, energy decreased from 37.07J to 2.65J, whereas time decreased from 0.81 to 0.10. According to the Collections.synchronizedList() documentation, the programmer must ensure external synchronization when using Iterator.

Removal on objects. When using Lists, instead of performing removals based on the indexes, one can perform removals based on object instances. We observed an increment on energy consumption of 39.21% on System#1 (32.28% on execution time). This additional overhead is due to the traversal needed for these operations. Since the collection does not know in which position the given object is placed, it needs to traverse and compare each element until it finds the object – or until the collection ends.

V. Case Study

In this section we apply our findings in two real-world applications. We select applications that make intensive use of HasTables. We chose the HasTable implementation because it presents one of the greatest differences in terms of energy consumption, when compared to its intended replacement class, ConcurrentHashMap (Figure 2). The first selected application is XALAN, from the well-known DaCapo suite [43]. This application transforms XML documents into HTML. It performs reads and writes from input/output channels, and it has 170,572 lines of Java code. We chose this application because it employs more than 300 HasTables.

Since the DaCapo framework is not under active development, we used the BOA infrastructure [46] to select active, i.e., have at least one commit in the last 12 months, non-trivial, i.e., have at least 500 commits in the whole software history, applications that use at least 50 HasTables. We found 151 projects that fit on this criteria. Among the projects,
we selected TOMCAT, which is an open-source Web server. The latest version, 8.5, has 188,645 lines of Java code, and 149 uses of Hashables. Also, one of its previous versions (6.0) is also part of the DaCapo framework.

For each application, we performed our experiments by changing the Hashtable instance to ConcurrentHashMap and ConcurrentHashMapV8. The rest of the source code remained unchanged. We ran the applications on System#1, with 32 concurrent threads. Figure 7 shows the results.

The results here confirm some patterns from microbenchmarking. Both XALAN and TOMCAT present an improvement in energy consumption when migrating from Hashtable to ConcurrentHashMap. XALAN, in particular, presented an improvement of 12.21% when varying from Hashtable to ConcurrentHashMap, and 17.82% when varying from Hashtable to ConcurrentHashMapV8. This is particularly due to its CPU intensive nature, which is also observed with the green line. TOMCAT, on the other hand, spends most of its computational time with logging and network operations — which are intrinsically IO operations. Nonetheless, it was still possible to obtain a 9.32% energy savings when moving from Hashtable to ConcurrentHashMapV8.

These results suggests that even small changes have the potential of improving the energy consumption of a non-trivial software system. It is important to observe that the degree of energy saving is related to the degree of use of an inefficient collection (e.g., Hashtable). Therefore, applications that make heavy use of single-lock based collections are more likely to have high energy gains.

Finally, although ConcurrentHashMap and Hashtable implement the Map interface, the refactoring process is not always straightforward. We found at least three complicating scenarios. We did not refactor any of them:

1) Hashtable and ConcurrentHashMap do not obey the same hierarchy. For instance, Hashtable inherits from Dictionary and implements Cloenable, while ConcurrentHashMap does not. It means that operations such as hash.clone() raises a compile error when changing the instance of the hash variable.

2) Third party libraries often require implementations instead of interfaces. If a method is expecting a Hashtable instead of, say, a Map, a ConcurrentHashMap needs to be converted to Hashtable, decreasing its effectiveness.

3) Programmers often use methods that are present only in the concrete implementation, not in the interface (e.g., rehash). This creates a strong tie between the client code with the concrete implementation, hampering the transition from Hashtable to ConcurrentHashMap.

VI. THREATS TO VALIDITY

Internal factors. First, we did not use the same energy measurement in both systems. This happens because jRAPL only works with Intel processors, and System#1 uses an AMD one. We mitigate this threat by replicating the same experiments in both systems, while using the same methodology. Second, the elements which we used are not randomly generated. We chose to not use random number generators because they can greatly impact the performance and energy consumption of our benchmarks — we observed standard deviation of over 70% between two executions. We mitigate this problem by combining the index of the for loop plus the thread id that inserted the element. This approach also prevents compiler optimizations that may happen when using only the index of the for loop as the element to be inserted.

External factors. First, our results are limited by our selection of benchmarks. Nonetheless, our corpus spans a wide spectrum of collections, ranging from lists, sets, and maps. Second, there are other possible collections implementations and operations beyond the scope of this paper. Third, our results are reported with the assumption that JIT is enabled. This stems from our observation that later runs of JIT-enabled executions do stabilize in terms of energy consumption and performance [15]. We experienced differences in standard deviation of over 30% when comparing the warmup run (first 3 executions) and later runs, but less than 5% when comparing the last 3 runs.

VII. CONCLUSIONS

We presented an empirical study that investigates the impacts of using different collections on energy usage. Differently than related work, we focus on Java thread-safe implementations. Our results are meaningful and impactful in the sense that: (1) Different operations of the same implementation also have different energy footprints. For example, a removal operation in a ConcurrentHashMap can consume more than 4 times of energy than an insertion to the same collection. Also, for CopyOnWriteArraySet, an insertion consumes three order of magnitude more than a read. (2) Small changes have the potential of improving the energy consumption by 2x, in our micro-benchmarks, and by 10%, in our real-world benchmarks.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their useful comments. Gustavo is supported by PROPPG/IFPA. Fernando is supported by CNPq/Brazil (304755/2014-1, 477113/2013-2), FACEPE/Brazil (APQ-0839-1.03/14) and INES (CNPq 573964/2008-4, FACEPE APQ-1037-1.03/08, and FACEPE APQ-0388-1.03/14). David is supported by US NSF CCF-1526205 and CCF-1054515.

