‘ Circles not centered on origin ‘

¥
¥ Y ¥
A (X,Y)

y=Y+k E /_ (f\\j X %%B (Y?
k .
NP :

A: x=X+h, y=Y+k
B: x=Y+h, y=X+k

x=X+h

Need to redo the Set8Pixel() function

New Set8Pixel() Function

Set8Pixel(x,y,h,k)

{ SetPixel(x+h,y+k);
SetPixel(x+h,-y+k);
SetPixel(-x+h,y+k);
SetPixel(-x+h,-y+Kk);
SetPixel(y+h,x+k);
SetPixel(y+h,-x+Kk);
SetPixel(-y+h,x+k);
SetPixel(-y+h,-x+k);

Adjusting for Aspect Ratio

= One way--adjust at pixel level
& If pixel width = w, height =h
=A.R. = hiw

« S0 either:
— Multiply each x by A.R.
—or Divide each y by A.R.

Scan Converting an Ellipse

P (x,4) Vesxts Crm)™ + Voo Grgs =K
S)gawt fuwice £ rearvenge
== Aty @7L+ ny 4D wa !:“7 0

-+ %

SEN@{ C‘J"‘?_ - E’/J/’I{ d«'/ffugd (,..-J{L }(_Ir Axes

! : [e jav Seuni -G Axe S

T Ty Sem ,/} ;

(x,u.) s Coovel inates oFf Center

K- Kz fa= c’_,.,(r_ n _

{ -) . -
(\ L (U)

Wau—< c)ri:T_w\ ’f‘o (ce—'ffr‘:

z
3;L+L=l
x

1.
O

(K,%) [(¥J7)
C//r/osr: has - fdd f?mm'/f7 _ /_L\\ ¥

fo cm a SetuPixel functon '
fmwr’re. rot ?Mdd’ﬂ(gz‘ (‘xnkk (,=4)

Step r_i« X untit %’-}v(11 (X I) az(f9) = -
 Then Step in g | | X vz
) o
DDA Afim'“m (2*-' N T)“W?fhx e 0
AX=l) By= - xR} /;m %5“;,:
Eacl . f‘fz'f‘ftlfd*\i X7 X+f N
92 4= X fap Wamt ot (x]y)

_ Qo Sitre for (x'y)
DDA ﬁff#n‘ﬂa (Q:fm\ .U)"‘ S?ep mcg
A Axs g A

_ M IQ._.Q‘fi Elhpre H!]LQL“‘\ e (Kk/ ‘fk)_;).aﬂf.iﬂﬂsz@f_. e
i] :—';";f, , ___Eemn I: -,7- > f -'-? .?r‘x< 2- o; ________
ul hd \P,
o e NL A/m“ pa"-'T Z (%, ”, ffk] ’}"F |
_ i :kr_ . (x,;r, ,:Q,k@rb‘am
R g b of N e
i "E*,‘i xp,‘ﬂé' B E_E_‘,hﬂ 714 { _
~l Lfff‘
e ' _ A/d}(‘f‘ ﬂ#f (X e] Ie M '
 Defue. Pz 2\'}';} P,?':' ..7_1’;?';1 < j |
S }. L =2 ;rmT WIF\?EL P
— E‘HP:-Q fﬁcf’on o _ . —% o
C Ffrx¥iniedn —r“‘v:f,\ =03(Xﬂ)%,sm
e EUsluaTe af (x+j ‘fg‘%_) _ (0 -') mside dﬂo{eTﬂ
e . (MU’(pmn?‘)‘ L>O‘?a«‘f‘5.rlz C.\'nao{,e T

' Evngagﬂic, ;f"/' S 7@1—?4:750!1 a?’ mlafw;nf (X' +1 aﬁ—!r‘,_):

EEESEN A CRT RN G2 S Sl il
=

| Too compfex —- (r 7‘__?@{" rReurbence reletim;
s A VA7

— e)~ E S
w-#kﬂu "J'._-P ¢ Botfom)

Eew fs SRR faﬁ_ 7

 lmults AF=T TT«Z X +35) e
But ¥ - (_ka) So. AF” GW 1)
. . _of = l:L Y e

Bl gses £ = 1@: +f)+:j S (TR E S

_) /Zfsu(f: Afr— (-'x *‘ﬂ*:‘ E"’ :1?4 "'ZI —]

o But X = W el e oot 2 Af= Ty AR R

5;

I”Jf@f _Zf_ﬂ'ﬁ_z?_@_./, _:4;_19; R tohen %= 0 g

EENN CEl e (A T —

N....___._______,f __Cr-[- . -IM'«L —
fqtﬁ) .V.'ffp(fiﬂ‘&(Udczgr(; 07[" P ‘_e. {7?; - -

AR

Also M-e'a(re ecvn»—cnce re /a‘f{rﬂhs bv P &€ P]

2 r Kk P?k _2 LIE. g_k_ ,....._.,_...._._._ e -

— _Qr EFEpa xt#),,,
R _ f? - gr-z-m C?'?’PJ
- e A Tonedet) ™ iw(;) et
e _ 5o (o_(Ts
[7 ! -gf‘; P (dﬁ%]

__,_ﬂe?@j; = Tust phtted (¥, m)

((Yk ‘f,). Lfﬁ‘ ease,

[

Mol ol [(ot gol) Rgltase

M :/{?é[}f (xk+,(;_ j -;)4 .;_, Wi)" 5 @‘f)”’f% |
(predictr An)

__ﬂ%e_mﬁf.ﬁ!ii_‘“ /géam T was (X, ‘ﬂm

Resutfst it 3 n"(x *«”) AR
U-ﬂr{' Pn u:t

_£_O ""7 AF‘ rl Pq

-F<o —a) K' XH ‘d_‘{_ I" .._P - P

Midpoint Ellipse Alg. (Region)
DPx=2*ry*ry; DPy=2*rx*rx; x=0; y=ry; Px=0;
Py=2*rx*rx*ry; f=ry*ry+rx*rx(0.25-ry); ry2=ry*ry;
Set4Pixel(x,y);
while (px<py) //Region |

{
x=x+1; Px=Px+DPx;
if (f>0) // Bottom case
{y=y-1; Py=Py-Dpy; f=f+ry2+Px-Py;}
else /I Top case
f=f+ry2+Px;
Set4Pixel(x,y);
}

Scan Converting other 2D

Curves
DDA:
y = f(x); If we can differentiate it:
dy/dx =" (X)
Step in x for parts of curve where dy/dx < 1
X=x+1
y=y+f(x)
Step in y for parts of curve where dy/dx > 1

y=y+1
X =x+1f (x)

Plotting Implicit Functions

=« Explicit function: y = f(x)

— Can always plot using DDA or Midpoint
Algorithms

& Implicit function: g(x,y) =0, e.g.:

— Ovals of Casini

—g(x,y) = (x"2+y"2+a"2)"2 - 4a"2x"2 — b
= Often can’'t be converted to explicit form
« NoO solution y = f(x)
= How do we plot such functions?

3D Surfaces

« A related more general implicit function
=z =1f(X,y)
— z could represent the height of point (x,y)
« Contour curves
— Want to plot points that have the same height
—f(x,y) = h, aconstant
— Gives curves like on a topographic map

— Need to compute points (x,y) that satisfy
f(x,y) =h

Marching Squares

= Approximation technique for solving
contour curve problem

= Suppose we sample f(x,y) at evenly-
spaced points on a rectangular array
fij = f(xi,yj), xi =x0+i*dx,i=0,1,...,N-1
yj = y0+j*dy, j=0,1,...,M-1
— Want to find an approximation to curve

z=f(x,y) for a particular value of z = h

» For a given c there may 0, 1, or many contour
curves

Constructing Piecewise Linear Curve

& Start with rectangular cell

& Algorithm will find line segments for
each cell using corner z values to
determine if contour passes through cell

(X,'r y_'l+1) (Xf+'1’ yj-i- 1)

(X yj,') (XH- 1 yf)

= In general, sampled values are not
equal to contour values

=« But curve could still go through the
cell

« One possible case:
« f(i,j) > h

= f(i+1l,j) <h

&« f(i+1,j+1) <h

« f(i,j+1) < h

= If f(x,y)-h > 0 at one vertex

= And f(x,y)-h < 0 at adjacent vertex,

— It must be 0 somewhere in between &
contour passes through that segment

Line Segments between intersection pts
=« Estimate where contour intersects two edges
and join points with line segment
— Simplest approximation to curve

= Use interpolation to get intersection pts.
f(xi,yj)) =a, a<h; f(xi+ly)=b, b>h
(x-xi)/dx = (a-h)/(a-b) = x = xi +dx*(a-h)/(a-b)

Other Types of Cells

=« There are 16 possible combinations of cell
vertex labelings

o —o o o @ ® @ I
| |

- ® O o -0 O

* 0 ® O &0 =3
@ ® O ® &—O O
P—e O oo\oo\I
[-

& ® O ® o O O

O o O o O '®) o)
L __ ' :
i .
® —e® O ® @ O O

Only 4 Unique Vertex Labelings

« Rotational symmetry (e.g. 1 & 2)

« Exchange (black & white) symmetry
(e.g. 0 & 15)

= S0 there are only 4 unique cases:

[T

Four unique cases of vertex labelings.

How to draw Line Segments
for each Case

« 15t case: trivial (contour doesn't intersect
cell) no line segments drawn

= 2"d case: adjacent edges, as above,
generates one line segment between
adjacent edges

= 3" case: also draw one line segment
that goes between opposite edges

= 4™ case: has an ambiguity

4™ Case Ambiguity

|
/|
T~ N
‘ 3 T k // \\
/ ~ o
~ s s ’
~ 4 e s
A P ’ #

T , ’
/ s s
, e s s,
V4 c)_,_._.__——. / ()———’——.——.
P P
” ’
s

= Which one to use? Break or join contour?
— Pick one at random
— Subdivide into smaller cells & repeat
— Or ignore since no solution w/o more data

Subdivision

11

o—eo O—o—@

= But we can ignore them if we want to
keep the edges closed

Marching Squares Algorithm

« Form cell array data[][] from implicit
function
— For each cell i,
» Compute datali][j] from f(x,y)
=« Process cells to generate line segments

— “March” through the cells
» For each cell
— Call code for single-cell processing: cell(...)
— Compute & draw appropriate lines for that cell
— Call helper functions for each of 4 cases

Code for Single Cell (i, j)

vertices a, b, ¢, d
int cell(double a, double b, double c, double d)
{
int n=0;
ifa>h) n+=1; if (b>h) n+=8; if(c>h) n+=4; if(d>h) n+=2;
switch(n) {
/lcases 1, 2,4,7,8,11, 13, 14: // contour cuts 1 corner
draw_one(n, i,], a, b, c, d); break
/l cases 3, 6, 9, 12: // contour crosses cell
draw_opposite(n, i, j, a, b, ¢, d); break;
Il cases 0, 15: break; // nothing to draw

draw_one ftn: adjacent edges

void draw_one(n, i, }, a, b, c, d) {
Switch(n)
{ (05 0, +dy) (o +dx, o, +dv)
case 1: case 14:
x1=o0x; yl=oy+dy*(h-a)/(d-a);
x2=ox+dx*(ha)/(b-a); y2=oy;
break;
// Other cases here Drawing the line segment for adjacent
} case 1
glBegin(GL_LINES);
glVertex2d(x1,yl); glVertex(x2,y2);
g9lEnd(); }

[ox' oy} {Ox + dx, oyJ

Other “draw” function

« Draw_opposite(n,i,j,a,b,c,d)
— For opposite-edge case

O O
I
[
|
I
.“
I
O O 2 Q)

Extension to 3D
« Marching Squares is easily extended to
handle 3D volumetric data
— Represent “iso-surfaces” instead of contours
* f(X,y,z) = constant
* Display as 3D contour plots
— Use 3D grid cells instead of 2D cells
— “Marching Cubes” algorithm
» Check data values at 8 corners of a cell
* Interpolate to find best polygon surface element

passing through a cell
* Result: polygon mesh approximation to the surface

ol :
[~ anvil
&
n
i
b
3.
-
”
rd
]
s
FIGURE B-128 Cross-sectional slices of FIGURE 8-129 Anisosurface generated from a
threg-dimensional data set. (Courtesy of set of water-content values obtained from a
Spyglass, Inc.) numerical model of a thunderstorm. (Cowrfesy of Bob
' Wilhelmson, Department of Atmospheric Sciences and

the National Center for Supercomputing Applications,
Liniversity of llinois at Urbana-Chanipaign.)

T i

Isosurface intersections with grid cells, modeled with triangle

FIGURE 8-130
patches.

Text and Characters

= Very important output primitive
« Many pictures require text
« Two general techniques used
—Bitmapped (raster)
— Stroked (outline)

Bitmapped Characters
« Each character represented (stored) as a
2-D array
— Each element corresponds to a pixel in a
rectangular “character cell”

— Simplest: each element is a bit (1=pixel on,
O=pixel off)

== B Pughk: 00111000
- - 01101100

4

11000110
11000110
11111110
11000110
11000110
00000000

i
B Pi b e e T

T

Stroked Characters

« Each character represented (stored) as
a series of line segments

— sometimes as more complex primitives

« Parameters needed to draw each stroke
— endpoint coordinates for line segments

x Strokes:
F (0,0), (0,10}
{(0,0), (10,0)

(0,5), (6,5)

Characteristics of Bitmapped
Characters

« Each character in set requires same
amount of memory to store

« Characters can only be scaled by integer
scaling factors

= --> "Blocky" appearance

& Difficult to rotate characters by arbitrary
angles

« Fast (BitBLT)

Characteristics of Stroked
Characters

= Number of stokes (storage space) depends
on complexity of character

= Each stroke must be scan converted ==>
more time to display

« Easily scaled and rotated arbitrarily
— just transform each stroke

Example Character-Display
Algorithms

= See CS-460/560 Notes Web Pages:

& Links to:

— An illustration of how to display bitmapped
characters

— An illustration of how to display stroked
characters

Algorithm for Bitmapped
Characters--an Example

= 1. Define bitmap for the letter--e.g. ‘T’
int {7][7] = { {0,0,0,0,0,0,0}, {0,1,1,1,1,1,0},
{0,0,0,1,0,0,0}, {0,0,0,1,0,0,0}, {0,0,0,1,0,0,0},
{0,0,0,1,0,0,0}, {0,0,0,0,0,0,0}}; // bitmap for ‘T’
—[Could have a file with the bitmap
descriptions of each character in the
character set to be displayed]

— Not the most efficient way of doing it
* Could have used individual bits
* Algorithm would be more complex

Bitmapped Character

Algorithm, Continued

&« 2. Define a function to display bitmap

letter[][] at pixel coordinates (X,y)

disp_letter (int x, int 'y, int letter[7][7])

{inti,j;

for (i=0; i<7; i++)
for (j=0; j<7; j++)
if (letter[i][j] == 1)
Setpixel(x+j,y+i); // plot from bitmap }

« 3. Call the function, passing desired bitmap

disp_letter (50,100,t); // draw a 'T" at (50,100)

Algorithm for Stroked

Characters

& 1. Define a character (CH) type:
typedef struct tagCH

{
int n;
POINT * pts;
} CH;
= pts is an array of stroke endpoint vertices
= N is the number of vertices

Stroked Character Algorithm,

Continued

& 2. Define generic display-character function
— Strokes are specified in variable c (type CH)
— Display at pixel coordinates (xx,yy):
disp_char (int xx, intyy, CH c)
{inti, n_strokes;
n_strokes=c.n/2; // n points ==> n/2 strokes
for (i=0; i<n_strokes; i++)
line(xx+c.pts[2*i].x, yy+c.pts[2*i].y,
XX+C.pts[2*i+1].X, yy+cC.pts[2*i+1].y);

Stroked Character Algorithm,
Continued

= 3. Define the character's CH structure

& The following could be for an 'F":
POINT p[6]; CH f;
p[0].x=0; p[0].y=0; p[1].x=0; p[1].y=10;
p[2].x=0; p[2].y=0; p[3].x=10; p[3].y=0;
p[4].x=0; p[4].y=5; p[5].x=6; p[5].y=5;
f.n=6; fpts=p;

= [Descriptions of each character in the

character set could be stored in a file]

Stroked Character Algorithm,
Continued

« 4. Call the character-display function,
passing it the desired character (CH)

disp_char (50,100,f); // draw ‘F’ at (50,100)

OpenGL Character Functions

« Only low-level support in basic OpenGL
library
— Explicitly define characters as bitmaps

— Display by mapping selected sequence of
bitmaps to adjacent positions in frame
buffer (BitBLTing)

OpenGL GLUT Text Support

Some predefined character sets in GLUT:

1. GLUT Bitmapped:

 Display with glutBitmapCharacter(font, ch);
— font: constant type face to be used
— GLUT_BITMAP_8_BY_13 (fixed-width)
— GLUT_BITMAP_TIMES_ROMAN_10 (variable width)
— Others are available
— ch: ASCII code of character
¢ Position with glRasterPosition2i(x,y);
* Example:
glRasterPosition2i(20,10);
glutBitmapCharacter(GLUT_BITMAP_8_15, ‘AY);
« X coordinate is incremented by width of character after display

2. GLUT Stroked Characters:
— glutStrokeCharacter(font, ch);

— Font:
e« GLUT_STROKE_ROMAN (proportional spacing)
* GLUT_STROKE_MONO_ROMAN (constant spacing)

— Ch: ASCII code of character

— Size & position determined by specifying
transformation operations

—We'll see these later

Character Fonts in Windows

= FONT--Typeface, style, size of
characters in a character set
« Three kinds of Windows Fonts
— Stock Fonts
— Logical or GDI Fonts
— Device Fonts

Windows Stock Fonts

Built into Windows
=« Always available

Font = ANSI_FIXED FONT
Font = ANSI_VAR_FONT

Font = DEVICE_DEFAULT FONT
Font = OEM_PIXED_FONT

Font = SYSTEM_FONT
Font = SYSTEM _FIXED_FONT

Windows Stock Fonts

Windows Logical or GDI Fonts

= Defined in separate font resource files on disk
— .fon file
* (Stroke or Raster)
— fot/.ttf file
* (TrueType)

= Specific instance must be “created”

Windows Stroke Fonts
« Consist of line/curve segments
=« Continuously scalable
& Slow to draw
« Legibility not too good

Modern AgBbCcDdEe
Roman AaBbCeDdEe
bl A BUCBdE,

Windows Stroke Fonts

Windows Raster Fonts
& Bitmaps so:
— Scaling by non-integer factors difficult

— Fast to display

— Legibility very good
Courier AaBbCcDdEe
MS Senf AaBbCcDdEe

MS Sans Serif AaBbCcDdEe
ZwuBoh AaBBSXxAGEe

Windows Raster Fonts

Windows TrueType Fonts

= Rasterized stroke fonts so:

— Stored as strokes with hints to convert to
bitmap

— Conversion called rasterization

— Continuously scalable

— Fast to display

— Legibility very good

— Combine best of both stroke and raster
fonts

Windows TrueType Fonts

Courier New AaBbClcDdEe
Courier New Bold AaBbCcDdEe
Courier New Italic AaBbCcldEe
Courier New Bold Italic AaBbCcDdrEe
Times New Roman AaBbCcDdEe
Times New Roman Bold AaBbCcDdEe
Times New Roman Italic AaBbCcDdEe

Times New Roman Bold Italic 4aBbCcDdEe
Arial AaBbCcDdEe
Arial Bold AaBbCcDdEe
Arial ltalic AaBbCcDdEe
Arial Bold ltalic AaBbCcDdEe
TyuBoN AaBBXxAOEe

L *XEY, XY ¥SL L)oo

Device Fonts

= Native to output device
& €.g., built-in printer fonts
— Postscript

Using Windows Stock Fonts

« Like stock pens, brushes
= Accessed with:
GetStockObject(font_name);
* Returns a handle to a font

» Use by selecting into DC with
SelectObject():

Or --
CDC::SelectStockObject(font_name);

Using Windows Logical Fonts

«Instantiate a CFont object

«=Use CFont::.CreateFont(14 params!!)

» Specify characteristics
* Interpolates data from font file
* --> new sizes, bold, rotated, etc.

«Select CFont object into the DC

« Called logical since determined by program
logic not just file contents

= See online help

Windows Text Metrics

= CreateFont() may not give you exactly
what you ask for

= Can use CDC::GetTextMetrics() to find out
font details
— Gives lots of information in a TEXTMETRIC
structure

— Commonly used to determine font size

 can be used to set line spacing, caret size, sizes of
buttons, etc.

Windows Text Metrics

External leading

Imternal leading 1’“—

| [|
Asgeant Haight
p ¥

Deseent [

"-ﬁ-'l"*—""'

