Scan Conversion Algorithms for 2D Output Primitives

Types of Primitives to be Scan Converted

- Straight Lines
- Polygons
- Circles
- Ellipses and Other 2-D Curves
- Text (Characters)
Scan Conversion Algorithms for Drawing Straight Lines

- **Task**
 - Given pixel coordinates of endpoints
 - P1 (x1,y1) and P2 (x2,y2)
 - Determine which pixels need to be painted

- **Criteria**
 - Straight as possible between endpoints
 - Constant density (no gaps or bunching)
 - Density independent of orientation
 - **Must be fast**

Line Equations

- **Differential equation:**
 \[
 \frac{dy}{dx} = m \quad (m=\text{constant: the slope})
 \]

- **Integrate (indefinite)**
 \[
 y = mx + \text{constant}
 \]
 The constant (b) is called y intercept
 (value of y when x=0)

- **y = mx + b**
- **“slope-intercept” form**
● Integrate between endpoints (definite)-->
 \[(y_2-y_1) = m*(x_2-x_1)\]
 \[m = \frac{(y_2-y_1)}{(x_2-x_1)}\]
 (an operational definition of slope)

● Integrate between endpoint \((x_1,y_1)\) and arbitrary point to be plotted \((x,y)\) -->
 \[y - y_1 = m*(x-x_1)\]
 \[y = m*(x-x_1) + y_1\]
 This is the “point-slope” form
 – Compute points \((x,y)\) given a point \((x_1,y_1)\) and the slope of the line

Parametric Form

Express \(x\) and \(y\) linearly in terms of a parameter, \(t\)
\[x = ax*t + bx\]
\[y = ay*t + by\]
\(ax, bx, ay, by\) are constants to be determined
Let \(t\) range between \(t=0\), endpoint \((x_1,y_1)\) and \(t=1\), endpoint \((x_2,y_2)\)
Determining the constants: Use endpoint values
\[x_1 = ax*0 + bx \implies bx = x_1\]
\[x_2 = ax*1 + bx \implies ax = x_2-x_1\]
So \[x = (x_2-x_1)*t + x_1, \quad 0 \leq t \leq 1\]
And \[y = (y_2-y_1)*t + y_1\]
Brute Force Line-Drawing Algorithm

Use “point-slope” form

Step in x direction, assume x2 > x1
(if x1 > x2, swap the points)

Compute \(m = \frac{y_2-y_1}{x_2-x_1} \)

\(\text{num-pts} = x_2-x_1+1 \)

\(x = x_1 \)

Repeat num-pts times

\(y = m \cdot (x-x_1) + y_1 \)

SetPixel(x, round(y))

\(x = x+1 \)

Problem if \(|y_2-y_1| > |x_2-x_1|\) --> gaps

Solution: Step in y direction
Stepping in y direction
If \(|y_2-y_1| > |x_2-x_1|\), step in y, assume \(y_2 > y_1\)
(if \(y_1 > y_2\), swap the points):
Compute \(\text{inv}_m = (x_2-x_1)/(y_2-y_1)\)
num-pts = \(y_2-y_1+1\)
y = \(y_1\)
Repeat num-pts times
\(x = \text{inv}_m(y-y_1) + x_1\)
SetPixel(\(\text{round}(x), y\))
y = \(y+1\)

Brute Force line algorithm, continued

- Vertical lines \((x_2 = x_1)\)
 \(y = y+1\) for each new pixel
 \(x\) doesn’t change
- Horizontal lines \((y_2 = y_1)\)
 \(x = x + 1\)
 \(y\) doesn’t change
Brute Force Method is Too Slow

- Each iteration has:
 - floating point multiply
 - floating point add
 - round() operations

Incremental Methods--The Digital Differential Analyzer (DDA)

- Idea: get new point from previous point
- \(\frac{dy}{dx} = m \Rightarrow \frac{\Delta y}{\Delta x} = m \Rightarrow \Delta y = m \Delta x \)
- But \(\Delta y = y_{new} - y_{old} \)
- And \(\Delta x = x_{new} - x_{old} \)
 - So \(x_{new} = x_{old} + \Delta x \)
 - and \(y_{new} = y_{old} + \Delta y \)
 - i.e., \(y_{new} = y_{old} + m \Delta x \)
DDA, continued

- Choose $\Delta x = 1$
 - stepping in x direction
 - Pixel by pixel
- Then compute each new y value
 \[y_{\text{new}} = y_{\text{old}} + m \]

DDA Algorithm

stepping in x, $x_2 > x_1$

(If $x_1 > x_2$, swap the points)

Compute $m = (y_2-y_1)/(x_2-x_1)$

num-pts = x_2-x_1+1

$x = x_1$

$y = y_1$

Repeat num-pts times
 - SetPixel(x,round(y))
 - $x = x+1$
 - $y = y+m$
As for the Brute force method, if $|m| > 1$ and we step in x, we get gaps
 - So we can step in y

DDA Algorithm, stepping in y, $y_2 > y_1$
 - (if $y_1 > y_2$, swap the points):
 Compute $\text{inv}_m = \frac{(x_2-x_1)}{(y_2-y_1)}$
 $\text{num-pts} = y_2-y_1+1$
 $x = x_1$
 $y = y_1$
 Repeat num-pts times
 SetPixel(round(x),y)
 $y = y+1$
 $x = x+$inv$_m$

DDA is Better, but Still Not Fast Enough

- Floating point multiply gone from loop
- But loop still has a floating point add
- And a round()
- WE CAN DO BETTER!
- Best performance:
 - Only integer adds/subtracts inside loop
Bresenham's Line-drawing Algorithm

- Used in most graphics packages
- Often implemented in hardware
- Incremental (new pixel from old)
- Uses only integer operations

Basic Idea of Bresenham Algorithm:
- All lines can be placed in one of four categories:
 A. Steep positive slope \((m > 1)\)
 B. Gradual positive slope \((0 < m <= 1)\)
 C. Steep negative slope \((m < -1)\)
 D. Gradual negative slope \((0 >= m >= -1)\)
- In each case, there are only 2 choices for the next pixel to be plotted!
Look at Case-A (Steep positive slope)
Also assume P1 is to the left of P2 \((x1<x2) \)
 - If not true, points can be swapped
\(\text{delta}_y > \text{delta}_x \Rightarrow \text{stepping in } y \)
If $dl < dr$,
- P_l is closer to actual point than P_r
- i.e., if $dl - dr < 0$, choose "left" pixel
- Criterion for choosing “left” pixel (P_l) is:

 $dl - dr = r' - r - (r+1 - r') < 0$

 or:

 $dl - dr = 2r' - 2r - 1 < 0$
But from the equation for a straight line:

\[y = mx + b \]

New \(y = s+1 \)
\[s+1 = \frac{\Delta y}{\Delta x}r' + b \]
\[r' = (s+1-b)\frac{\Delta x}{\Delta y} \]

So:
Criterion for choosing Pl:
\[\text{dl-dr} = 2*r' - 2*r - 1 < 0 \]
\[\text{dl-dr} = 2*(s+1-b)\frac{\Delta x}{\Delta y} - 2*r - 1 < 0 \]

Result:

\[\text{dl-dr} = 2*(s + 1 - b)\frac{\Delta x}{\Delta y} - 2*r - 1 < 0 \]

If dl-dr is negative, choose "left" pixel
Multiply by \(\Delta y \) to get rid of divide operation
(always positive for Case-A lines)
Call result the "predictor", P
\[P = \Delta y*(\text{dl-dr}) \]
Result:
\[P=2*\Delta x*(s+1-b) - 2*r*\Delta y - \Delta y \]
Divide is gone--but it's still too complex
Bresenham's Contribution

– Try to find a recurrence relation for P
– Call P_n the new value, and P_o the old value
 • Then $P_n = P_o + \Delta P$
– Call s_n & s_o the new & old values of s
– Call r_n & r_o the new & old values of r

Predictor P:
$$P = 2*\Delta x*(s+1-b) - 2*r*\Delta y - \Delta y$$

Change in Predictor:
$$\Delta P = P_n - P_o,$$ so:
$$P_n = P_o + \Delta P$$

Point just plotted: (r_o,s_o)

Two cases for new point:
 Left case ($r_n=r_o$ and $s_n=s_o+1$)
 Right case ($r_n=r_o+1$ and $s_n=s_o+1$)

For both cases:
$$P_o = 2*\Delta x*(s_o+1-b) - 2*r_o*\Delta y - \Delta y$$
Predictor P: \[P = 2^* \Delta x^* (s+1-b) - 2^* r^* \Delta y - \Delta y \]

New Point Left Case (ro,so+1):
\[\begin{align*}
P_n &= 2^* \Delta x^* ((so+1)+1-b) - 2^* ro^* \Delta y - \Delta y \\
P_o &= 2^* \Delta x^* (so+1-b) - 2^* ro^* \Delta y - \Delta y
\end{align*} \]
Subtracting \(P_o \) from \(P_n \) gives \(\Delta P \):
\[\Delta P = 2^* \Delta x \]

New Point Right Case (ro+1,so+1):
\[\begin{align*}
P_n &= 2^* \Delta x^* ((so+1)+1-b) - 2^* (ro+1)^* \Delta y - \Delta y \\
P_o &= 2^* \Delta x^* (so+1-b) - 2^* ro^* \Delta y - \Delta y
\end{align*} \]
Again subtracting \(P_o \) from \(P_n \) gives \(\Delta P \):
\[\Delta P = 2^*(\Delta x - \Delta y) \]

- Both results are very simple (Integers!!)
- Look at current value of the predictor:
 If \(P < 0 \) // left case
 \[\begin{align*}
P &= P + 2^* \Delta x \\
x &= x \\
y &= y + 1
\end{align*} \]
 If \(P > 0 \) // right case
 \[\begin{align*}
P &= P + 2^*(\Delta x - \Delta y) \\
x &= x + 1 \\
y &= y + 1 \]
But to start things off, we need an initial value P_0 of the predictor

Substitute left-hand endpoint (x_1,y_1) into predictor definition:

$$P = 2^*\Delta x^*(s+1-b) - 2^*r^*\Delta y - \Delta y \implies P_0 = 2^*\Delta x^*(y_1+1-b) - 2^*x_1^*\Delta y - \Delta y$$

And use fact that (x_1,y_1) is on line:

i.e., $y_1 = (\Delta y/\Delta x)^*x_1 + b$

$$P_0= 2^*\Delta x^*((\Delta y/\Delta x)^*x_1 + b +1 - b) -2^*x_1^*\Delta y - \Delta y$$

Result: $P_0 = 2^*\Delta x - \Delta y$

Case-A Bresenham Algorithm (Steep positive slope)

If $(x_1>x_2)$ swap endpoints;

$\text{del}_x = x_2-x_1; \quad \text{del}_y = y_2-y_1$;

$P = 2^*\text{del}_x - \text{del}_y$;

$cleft = 2^*\text{del}_x; \quad cright = 2^*\text{del}_x - 2^*\text{del}_y$;

$x = x_1; \quad y = y_1; \quad \text{num}_pts = |\text{del}_y| + 1$;

Repeat num_pts times

SetPixel$(x,y); \quad y = y + 1$;

If $(P < 0)$

$P = P + cleft$;

Else

$\{P = P + cright; \quad x = x + 1;\}$
● Can be generalized to handle Case-C (steep negative slope) lines

● Compute $sdy = \text{sign}(\Delta y)$

 $= 1$ if $y_2 > y_1$

 $= -1$ if not

● Then, in definition of P and $cright$:
 – Replace Δy with $sdy*\Delta y$
 – Replace $y = y + 1$ with $y = y + sdy$

● Then both Case-A and Case-C lines are handled

More Info on Bresenham Line-drawing Algorithm

● See Hearn & Baker Text Book

● Section 3-1 (pages 88-95)

● Specifically Case-B lines
Speeding Up Bresenham

- Bresenham’s algorithm calls SetPixel()
- Not optimized
 - SetPixel(x,y) must work for any pixel
 - For W x H screen, Address = W*y + x
 - Multiply involved (even though hidden)
- Bresenham: We know next pixel is one of two choices
- Faster to access frame buffer directly using addresses -- not values of x and y

- Assume Row major order
- Take advantage of symmetry
- Store addresses instead of coordinates (x,y)
- Example: W x H x 256 direct color mode
 - One byte per pixel
 Byte Address = W*y + x
 Look at Case A (gradual +m)
 - Only integer add needed
Case A Line (gradual +m)

- Consider broad line covering several pixels
- Border pixels
 - Set intensity proportional to % of pixel inside line
 - Produces blurring
 - Looks less jagged
 - But must compute areas (compute intensive)
 - Can use statistical sampling instead

Aliasing (Jaggies)
- Inherent in Raster Scan systems
- Anti-aliasing technique for grayscale:
 - Consider broad line covering several pixels
 - Border pixels
Polyline Algorithm

Polyline (POINT *p, int n)
{
 int xo, yo, xn, yn;
 if (n==0) return;
 xo=p[0].x; yo=p[0].y;
 if (n==1) {SetPixel(xo, yo); return;}
 for (i=1; i<n; i++)
 {xn=p[i].x; yn=p[i].y;
 Line(xo,yo,xn,yn);
 xo=xn; yo=yn;}
}
Calling the Polyline Algorithm

POINT pt[3];
pt[0].x=50; pt[0].y=10;
pt[1].x=250; pt[1].y=50;
pt[2].x=125; pt[2].y=130;
Polyline(pt,3);

Scan Converting Circles

Given:
 Center: (h,k)
 Radius: r
Equation:
 \[(x-h)^2 + (y-k)^2 = r^2\]
To simplify we’ll translate origin to center
 Simplified Equation:
 \[x^2 + y^2 = r^2\]
Circle has 8-fold symmetry
So only need to plot points in 1st octant
Δx > Δy so step in x direction

Brute Force Circle Algorithm

Suppose we have a Set8pixel() routine
xfin = 0.707*r
For (x=0; x<=xfin ; x++)
{
y = SQRT(r*r - x*x);
Set8Pixel(round(x), round(y));
}
TOO SLOW!!
The `Set8Pixel(x,y)` routine

```
SetPixel(x,y);
SetPixel(x,-y);
SetPixel(-x,y);
SetPixel(-x,-y);
SetPixel(y,x);
SetPixel(y,-x);
SetPixel(-y,x);
SetPixel(-y,-x);
```

Could Use Parametric Equations

```
for (theta=90; theta>=45; theta- -)
{
    x = r*cos(theta);
    y = r*sin(theta);
    Set8Pixel(round(x), round(y));
}
EVEN SLOWER!
```
DDA Circle Approximation

\[x^2 + y^2 = r^2 \]

Take Derivative:
\[2x + 2y(dy/dx) = 0 \]
\[dy = (-x/y)dx \]
Step in x direction (dx=1)
\[dy = -x/y \]
\[y = y + dy \text{ (approximation)} \]

DDA Circle Algorithm

\[x=0; \ y=r; \]
\[x_{\text{fin}}=0.707*r; \]
while (\(x<=x_{\text{fin}}\))
\[
\{ \\
\quad \text{Set8Pixel(round(x), round(y))}; \\
\quad y = y - (x/y); \\
\quad x = x + 1; \\
\}
\]
Floating Pt. Divide--STILL TOO SLOW!
Midpoint Circle Algorithm

- Extension of Bresenham ideas
- Circle equation: $x^2 + y^2 = r^2$
- Define a circle function:
 \[f = x^2 + y^2 - r^2 \]
- $f=0 \implies (x,y)$ is on circle
- $f<0 \implies (x,y)$ is inside circle
- $f>0 \implies (x,y)$ is outside circle

We’ve just plotted (x_k, y_k)
- $(\Delta x > \Delta y)$, so we’re stepping in x
- Next pixel is either:
 - $(x_k + 1, y_k)$ -- the “top” case
 - $(x_k + 1, y_k -1)$ -- the “bottom” case
- Look at midpoint
Midpoint Circle Choices

Evaluate f at midpoint
\((x=x_k+1, y=y_k-1/2) \)

Define Predictor: \(P_k = f(x_k+1, y_k-1/2) \)
- \(P_k < 0 \) ==> inside (choose top pixel)
- \(P_k > 0 \) ==> outside (choose bottom pixel)

\[
P_k = (x_k+1)^2 + (y_k-1/2)^2 - r^2
\]

\[
P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2
\]

As for Bresenham, try to get a recurrence relation for \(P \)
• Top Case \((x_{k+1} = x_k + 1, \ y_{k+1} = y_k) \):

\[
P_{k+1} = f(x_{k+1} + 1, \ y_{k+1} - 1/2)
\]

But \(x_{k+1} = x_k + 1 \) and \(y_{k+1} = y_k \)

So \(P_{k+1} = ((x_{k+1} + 1)^2 + (y_k - 1/2)^2 - r^2) \)

\[
P_{k+1} = ((x_k + 2)^2 + (y_k - 1/2)^2 - r^2)
\]

\[
P_{k+1} = x_k^2 + 4x_k + 4 + y_k^2 - y_k + 1/4 - r^2
\]

But, \(P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2 \)

\[
\Delta P_k = P_{k+1} - P_k
\]

So \(\Delta P_k = 2x_k + 3 \), But \(x_{k+1} = x_k + 1 \)

So \(\Delta P_k = 2x_{k+1} + 1 \)

• Bottom Case \((x_{k+1} = x_k + 1, \ y_{k+1} = y_k - 1) \):

\[
P_{k+1} = f(x_{k+1} + 1, \ y_{k+1} - 1/2)
\]

\[
P_{k+1} = ((x_{k+1} + 1)^2 + ((y_k - 1) - 1/2)^2 - r^2)
\]

\[
= (x_k + 2)^2 + (y_k - 3/2)^2 - r^2
\]

\[
= x_k^2 + 4x_k + 4 + y_k^2 - 3x_k + 3/4 - r^2
\]

But \(P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2 \)

\[
\Delta P_k = P_{k+1} - P_k
\]

So \(\Delta P_k = 2x_k - 2y_k + 5 \)

\[
\Delta P_k = 2(x_{k+1} - y_{k+1}) + 1
\]
• Initial P:

P_0 ($x_0=0, y_0=r$)

$P_0 = (x_0 + 1)^2 + (y_0 - 1/2)^2 - r^2$

$P_0 = 5/4 - r \rightarrow 1-r$ (rounding to integer)

Midpoint Circle Algorithm

$x=0; y=r; \quad P=1-r$;

Set8Pixel(x,y);
while (x<y)
{
 x = x + 1; Set8Pixel(x,y);
 if (P < 0)
 P = P + x<<1 + 1;
 else
 { y = y - 1; P = P + (x-y)<<1 + 1;}
}