

Scan Conversion Algorithms for 2D Output Primitives

Types of Primitives to be Scan Converted

- Straight Lines
- Polygons
- Circles
- Ellipses and Other 2-D Curves
- Text (Characters)

Scan Conversion Algorithms for Drawing Straight Lines

- Task
 - Given pixel coordinates of endpoints
 - $P1(x_1, y_1)$ and $P2(x_2, y_2)$
 - Determine which pixels need to be painted
- Criteria
 - Straight as possible between endpoints
 - Constant density (no gaps or bunching)
 - Density independent of orientation
 - Must be fast

Line Equations

- Differential equation:
 $dy/dx = m$ (m =constant: the slope)
- Integrate (indefinite)
 $y = m*x + \text{constant}$
The constant (b) is called y intercept
(value of y when $x=0$)
- $y = m*x + b$
- “slope-intercept” form

- Integrate between endpoints (definite) ->

$$(y_2 - y_1) = m * (x_2 - x_1)$$

$$m = (y_2 - y_1) / (x_2 - x_1)$$

(an operational definition of slope)
- Integrate between endpoint (x_1, y_1) and arbitrary point to be plotted (x, y) ->

$$y - y_1 = m * (x - x_1)$$

$$y = m * (x - x_1) + y_1$$

This is the “point-slope” form

 - Compute points (x, y) given a point (x_1, y_1) and the slope of the line

Parametric Form

Express x and y linearly in terms of a parameter, t

$$x = ax*t + bx$$

$$y = ay*t + by$$

ax , bx , ay , by are constants to be determined

Let t range between $t=0$, endpoint (x_1, y_1) and $t=1$, endpoint (x_2, y_2)

Determining the constants: Use endpoint values

$$x_1 = ax*0 + bx \implies bx = x_1$$

$$x_2 = ax*1 + bx \implies ax = x_2 - x_1$$

$$\text{So } x = (x_2 - x_1)*t + x_1, \quad 0 \leq t \leq 1$$

$$\text{And } y = (y_2 - y_1)*t + y_1$$

Brute Force Line-Drawing Algorithm

Use “point-slope” form

Step in x direction, assume $x_2 > x_1$

(if $x_1 > x_2$, swap the points)

Compute $m = (y_2 - y_1) / (x_2 - x_1)$

num-pts = $x_2 - x_1 + 1$

$x = x_1$

Repeat num-pts times

$y = m * (x - x_1) + y_1$

SetPixel(x, round(y))

$x = x + 1$

Problem if $|y_2 - y_1| > |x_2 - x_1| \rightarrow$ gaps

$(1, 0)$ to $(6, 4)$
 $n = 6 - 1 + 1 = 6$

$x_2 - x_1 = 5$
 $y_2 - y_1 = 4$
no gaps!

$(1, 0)$ to $(3, 6)$
 $n = 3 - 1 + 1 = 3$

$x_2 - x_1 = 2$
 $y_2 - y_1 = 6$
gaps!

Solution: Step in y direction

Stepping in y direction

If $|y2-y1| > |x2-x1|$, step in y, assume $y2 > y1$

(if $y1 > y2$, swap the points):

Compute $inv_m = (x2-x1)/(y2-y1)$

num-pts = $y2-y1+1$

$y = y1$

Repeat num-pts times

$x = inv_m * (y - y1) + x1$

SetPixel(round(x), y)

$y = y+1$

Brute Force line algorithm, continued

- Vertical lines ($x2 = x1$)
 $y = y+1$ for each new pixel
 x doesn't change
- Horizontal lines ($y2 = y1$)
 $x = x + 1$
 y doesn't change

Brute Force Method is Too Slow

- Each iteration has:
 - floating point multiply
 - floating point add
 - round() operations

Incremental Methods--The Digital Differential Analyzer (DDA)

- Idea: get new point from previous point
- $dy/dx = m \rightarrow \Delta y/\Delta x = m \rightarrow \Delta y = m * \Delta x$
- But $\Delta y = y_{\text{new}} - y_{\text{old}}$
- And $\Delta x = x_{\text{new}} - x_{\text{old}}$
 - So $x_{\text{new}} = x_{\text{old}} + \Delta x$
 - and $y_{\text{new}} = y_{\text{old}} + \Delta y$
 - i.e., $y_{\text{new}} = y_{\text{old}} + m * \Delta x$

DDA, continued

- Choose $\Delta x = 1$
 - stepping in x direction
 - Pixel by pixel
- Then compute each new y value
 $y_{\text{new}} = y_{\text{old}} + m$

DDA Algorithm stepping in x, $x_2 > x_1$ (If $x_1 > x_2$, swap the points)

Compute $m = (y_2 - y_1) / (x_2 - x_1)$

num-pts = $x_2 - x_1 + 1$

$x = x_1$

$y = y_1$

Repeat num-pts times

 SetPixel($x, \text{round}(y)$)

$x = x + 1$

$y = y + m$

- As for the Brute force method, if $|m| > 1$ and we step in x , we get gaps
 - So we can step in y
- DDA Algorithm, stepping in y , $y_2 > y_1$
 - (if $y_1 > y_2$, swap the points):
 Compute $inv_m = (x_2 - x_1) / (y_2 - y_1)$
 $num_pts = y_2 - y_1 + 1$
 $x = x_1$
 $y = y_1$
 Repeat num_pts times
 $SetPixel(round(x), y)$
 $y = y + 1$
 $x = x + inv_m$

DDA is Better, but Still Not Fast Enough

- Floating point multiply gone from loop
- But loop still has a floating point add
- And a $round()$
- WE CAN DO BETTER!
- Best performance:
 - Only integer adds/subtracts inside loop

Bresenham's Line-drawing Algorithm

- Used in most graphics packages
- Often implemented in hardware
- Incremental (new pixel from old)
- Uses only integer operations

- Basic Idea of Bresenham Algorithm:
 - All lines can be placed in one of four categories:
 - A. Steep positive slope ($m > 1$)
 - B. Gradual positive slope ($0 < m \leq 1$)
 - C. Steep negative slope ($m < -1$)
 - D. Gradual negative slope ($0 \geq m \geq -1$)
 - In each case, there are only 2 choices for the next pixel to be plotted!

The Four Bresenham Cases

- Look at Case-A (Steep positive slope)
- Also assume P1 is to the left of P2 ($x_1 < x_2$)
 - If not true, points can be swapped
- $\Delta_y > \Delta_x \implies$ stepping in y

- If $dl < dr$,
 - P_l is closer to actual point than P_r
- i.e., if $dl - dr < 0$, choose "left" pixel
- Criterion for choosing "left" pixel (P_l) is:

$$dl - dr = r' - r - (r + 1 - r') < 0$$

or:

$$dl - dr = 2 * r' - 2 * r - 1 < 0$$

But from the equation for a straight line:

$$y = m \cdot x + b$$

$$\text{New } y = s+1$$

$$s+1 = (\Delta y / \Delta x) \cdot r' + b$$

$$r' = (s+1-b) \cdot \Delta x / \Delta y$$

So:

Criterion for choosing P_l :

$$dl-dr = 2 \cdot r' - 2 \cdot r - 1 < 0$$

$$dl-dr = 2 \cdot (s+1-b) \cdot \Delta x / \Delta y - 2 \cdot r - 1 < 0$$

Result:

$$dl-dr = 2 \cdot (s+1-b) \cdot \Delta x / \Delta y - 2 \cdot r - 1 < 0$$

If $dl-dr$ is negative, choose "left" pixel

Multiply by Δy to get rid of divide operation

(always positive for Case-A lines)

Call result the "predictor", P

$$P = \Delta y \cdot (dl-dr)$$

Result:

$$\underline{P=2 \cdot \Delta x \cdot (s+1-b) - 2 \cdot r \cdot \Delta y - \Delta y}$$

Divide is gone--but it's still too complex

Bresenham's Contribution

- Try to find a recurrence relation for P
- Call P_n the new value, and P_o the old value
 - Then $P_n = P_o + \Delta P$
- Call s_n & s_o the new & old values of s
- Call r_n & r_o the new & old values of r

Predictor P :

$$P = 2 \cdot \Delta x \cdot (s+1-b) - 2 \cdot r \cdot \Delta y - \Delta y$$

Change in Predictor:

$$\Delta P = P_n - P_o, \text{ so:}$$

$$P_n = P_o + \Delta P$$

Point just plotted: (r_o, s_o)

Two cases for new point:

Left case ($r_n = r_o$ and $s_n = s_o + 1$)

Right case ($r_n = r_o + 1$ and $s_n = s_o + 1$)

For both cases:

$$P_o = 2 \cdot \Delta x \cdot (s_o + 1 - b) - 2 \cdot r_o \cdot \Delta y - \Delta y$$

Predictor P: $P=2^*\Delta x^*(s+1-b) - 2^*r^*\Delta y - \Delta y$

New Point Left Case (ro, so+1):

$$P_n = 2^*\Delta x^*((s+1)+1-b) - 2^*r^*\Delta y - \Delta y$$

$$P_o = 2^*\Delta x^*(s+1-b) - 2^*r^*\Delta y - \Delta y$$

Subtracting Po from Pn gives ΔP

Result:

$$\Delta P = 2^*\Delta x$$

New Point Right Case (ro+1, so+1):

$$P_n = 2^*\Delta x^*((s+1)+1-b) - 2^*(r+1)^*\Delta y - \Delta y$$

$$P_o = 2^*\Delta x^*(s+1-b) - 2^*r^*\Delta y - \Delta y$$

Again subtracting Po from Pn gives ΔP :

$$\Delta P = 2^*(\Delta x - \Delta y)$$

- Both results are very simple (Integers!!)

- Look at current value of the predictor:

If ($P < 0$) // left case

$$P = P + 2^*\Delta x$$

$$x = x$$

$$y = y + 1$$

If ($P > 0$) // right case

$$P = P + 2^*(\Delta x - \Delta y)$$

$$x = x + 1$$

$$y = y + 1$$

- But to start things off, we need an initial value P_0 of the predictor
- Substitute left-hand endpoint (x_1, y_1) into predictor definition:

$$P = 2 * \Delta x * (s + 1 - b) - 2 * r * \Delta y - \Delta y \implies$$

$$P_0 = 2 * \Delta x * (y_1 + 1 - b) - 2 * x_1 * \Delta y - \Delta y$$
- And use fact that (x_1, y_1) is on line:
 i.e., $y_1 = (\Delta y / \Delta x) * x_1 + b$

$$P_0 = 2 * \Delta x * ((\Delta y / \Delta x) * x_1 + b + 1 - b) - 2 * x_1 * \Delta y - \Delta y$$

$$P_0 = 2 * \Delta y * x_1 + 2 * \Delta x - 2 * x_1 * \Delta y - \Delta y$$
- Result: $P_0 = 2 * \Delta x - \Delta y$

Case-A Bresenham Algorithm (Steep positive slope)

```

If (x1>x2) swap endpoints;
del_x = x2-x1; del_y = y2-y1;
P = 2*del_x - del_y;
cleft = 2*delx; cright = 2*del_x - 2*del_y;
x = x1; y = y1; num_pts = |del_y| + 1;
Repeat num_pts times
  SetPixel(x,y); y = y + 1;
  If (P < 0)
    P = P + cleft;
  Else
    {P = P + cright; x = x + 1;}
  
```

- Can be generalized to handle Case-C (steep negative slope) lines
- Compute $sdy = \text{sign}(\Delta y)$
 - = 1 if $y2 > y1$
 - = -1 if not
- Then, in definition of P and $cright$:
 - Replace Δy with $sdy * \Delta y$
 - Replace $y = y + 1$ with $y = y + sdy$
- Then both Case-A and Case-C lines are handled

More Info on Bresenham Line-drawing Algorithm

- See Hearn & Baker Text Book
- Section 3-1 (pages 88-95)
- Specifically Case-B lines

Speeding Up Bresenham

- Bresenham's algorithm calls SetPixel()
- Not optimized
 - SetPixel(x,y) must work for any pixel
 - For $W \times H$ screen, Address = $W \cdot y + x$
 - Multiply involved (even though hidden)
- Bresenham: We know next pixel is one of two choices
- Faster to access frame buffer directly using addresses -- not values of x and y

- Assume Row major order
- Take advantage of symmetry
- Store addresses instead of coordinates (x,y)
- Example: $W \times H \times 256$ direct color mode
 - One byte per pixel
 - Byte Address = $W \cdot y + x$
 - Look at Case A (gradual $+m$)
 - Only integer add needed

Case A Line (gradual +m)

Aliasing (Jaggies)

- Inherent in Raster Scan systems
- Anti-aliasing technique for grayscale:
 - Consider broad line covering several pixels
 - Border pixels
 - Set intensity proportional to % of pixel inside line
 - Produces blurring
 - Looks less jagged
 - But must compute areas (compute intensive)
 - Can use statistical sampling instead

Polyline Algorithm

```
Polyline (POINT *p, int n)
{
    int xo, yo, xn, yn;
    if (n==0) return;
    xo=p[0].x; yo=p[0].y;
    if (n==1) {SetPixel(xo, yo); return;}
    for (i=1; i<n; i++)
        {xn=p[i].x; yn=p[i].y;
        Line(xo,yo,xn,yn);
        xo=xn; yo=yn;}
}
```

Calling the Polyline Algorithm

```
POINT pt[3];
pt[0].x=50; pt[0].y=10;
pt[1].x=250; pt[1].y=50;
pt[2].x=125; pt[2].y=130;
Polyline(pt,3);
```

Scan Converting Circles

Given:

Center: (h,k)

Radius: r

Equation:

$$(x-h)^2 + (y-k)^2 = r^2$$

To simplify we'll translate origin to center

Simplified Equation:

$$x^2 + y^2 = r^2$$

Translate to origin

8-fold symmetry

Circle has 8-fold symmetry

So only need to plot points in 1st octant

$\Delta x > \Delta y$ so step in x direction

Brute Force Circle Algorithm

Suppose we have a Set8pixel() routine

$x_{fin} = 0.707 * r$

For ($x=0$; $x \leq x_{fin}$; $x++$)

```
{  
    y = SQRT(r*r - x*x);  
    Set8Pixel(round(x), round(y));  
}
```

TOO SLOW!!

The Set8Pixel(x,y) routine

```
SetPixel(x,y);
SetPixel(x,-y);
SetPixel(-x,y);
SetPixel(-x,-y);
SetPixel(y,x);
SetPixel(y,-x);
SetPixel(-y,x);
SetPixel(-y,-x);
```

Could Use Parametric Equations

```
for (theta=90; theta>=45; theta- -)
{
    x = r*cos(theta);
    y = r*sin(theta);
    Set8Pixel(round(x), round(y));
}
```

EVEN SLOWER!

DDA Circle Approximation

$$x^2 + y^2 = r^2$$

Take Derivative:

$$2*x + 2*y*(dy/dx) = 0$$

$$dy = (-x/y)*dx$$

Step in x direction ($dx=1$)

$$dy = -x/y$$

$y = y + dy$ (approximation)

DDA Circle Algorithm

$x=0; y=r;$

$x_{fin}=0.707*r;$

while ($x \leq x_{fin}$)

{

Set8Pixel(round(x), round(y));

$y = y - (x/y);$

$x = x + 1;$

}

Floating Pt. Divide--STILL TOO SLOW!

Midpoint Circle Algorithm

- Extension of Bresenham ideas
- Circle equation: $x^2 + y^2 = r^2$
- Define a circle function:
$$f = x^2 + y^2 - r^2$$
- $f=0 \implies (x,y)$ is on circle
- $f<0 \implies (x,y)$ is inside circle
- $f>0 \implies (x,y)$ is outside circle

- We've just plotted (x_k, y_k)
- $(\Delta x > \Delta y)$, so we're stepping in x
- Next pixel is either:
 $(x_k + 1, y_k)$ -- the "top" case or
 $(x_k + 1, y_k - 1)$ -- the "bottom" case
- Look at midpoint

Midpoint Circle Choices

Inside: $f < 0 \implies$ choose upper pixel
Outside: $f > 0 \implies$ choose lower pixel

- Evaluate f at midpoint
($x=x_k+1$, $y=y_k-1/2$)
- Define Predictor: $P_k = f(x_k+1, y_k-1/2)$
 $P_k < 0 \implies$ inside (choose top pixel)
 $P_k > 0 \implies$ outside (choose bottom pixel)
$$P_k = (x_k+1)^2 + (y_k-1/2)^2 - r^2$$
- $P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2$
- As for Bresenham, try to get a recurrence relation for P

- Top Case ($x_{k+1} = x_k + 1$, $y_{k+1} = y_k$):

$$P_{k+1} = f(x_{k+1} + 1, y_{k+1} - 1/2)$$

But $x_{k+1} = x_k + 1$ and $y_{k+1} = y_k$

$$\text{So } P_{k+1} = ((x_k + 1) + 1)^2 + (y_k - 1/2)^2 - r^2$$

$$P_{k+1} = (x_k + 2)^2 + (y_k - 1/2)^2 - r^2$$

$$P_{k+1} = x_k^2 + 4x_k + 4 + y_k^2 - y_k + 1/4 - r^2$$

$$\text{But, } P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2$$

$$\Delta P_k = P_{k+1} - P_k$$

$$\text{So } \Delta P_k = 2x_k + 3, \quad \text{But } x_{k+1} = x_k + 1$$

$$\text{So } \Delta P_k = 2x_{k+1} + 1$$

- Bottom Case ($x_{k+1} = x_k + 1$, $y_{k+1} = y_k - 1$):

$$P_{k+1} = f(x_{k+1} + 1, y_{k+1} - 1/2)$$

- $P_{k+1} = ((x_k + 1) + 1)^2 + ((y_k - 1) - 1/2)^2 - r^2$

$$= (x_k + 2)^2 + ((y_k - 3/2)^2 - r^2)$$

$$= x_k^2 + 4x_k + 4 + y_k^2 - 3y_k + 9/4 - r^2$$

$$\text{But } P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2$$

$$\Delta P_k = P_{k+1} - P_k$$

$$\text{So } \Delta P_k = 2x_k - 2y_k + 5$$

$$\Delta P_k = 2(x_{k+1} - y_{k+1}) + 1$$

- Initial P:

$P_0 (x_0=0, y_0=r)$

$P_0 = (x_0 + 1)^2 + (y_0 - 1/2)^2 - r^2$

$P_0 = 5/4 - r \rightarrow 1-r$ (rounding to integer)

Midpoint Circle Algorithm

```
x=0; y=r;  P=1-r;  
Set8Pixel(x,y);  
while (x<y)  
{  
    x = x + 1; Set8Pixel(x,y);  
    if (P < 0)  
        P = P + x<<1 + 1;  
    else  
        { y = y - 1; P = P + (x-y)<<1 + 1; }  
}
```