Scan Conversion
Algorithms for 2D OQutput
Primitives

Types of Primitives to be
Scan Converted

e Straight Lines

e Polygons

e Circles

e Ellipses and Other 2-D Curves
e Text (Characters)

Scan Conversion Algorithms
for Drawing Straight Lines

e Task

— Given pixel coordinates of endpoints

« P1(x1,yl) and P2 (x2,y2)

— Determine which pixels need to be painted
e Criteria

— Straight as possible between endpoints

— Constant density (no gaps or bunching)

— Density independent of orientation

— Must be fast

Line Equations

e Differential equation:
dy/dx =m (m=constant: the slope)
e Integrate (indefinite)
y = m*X + constant
The constant (b) is called y intercept
(value of y when x=0)
ey=m*xX+Db
e “slope-intercept” form

e Integrate between endpoints (definite)-->
(y2-y1l) = m*(x2-x1)
m = (y2-y1)/(x2-x1)
(an operational definition of slope)
e Integrate between endpoint (x1,yl) and arbitrary
point to be plotted (x,y) -->
y - y1 = m*(x-x1)
y = m*(x-x1) +y1
This is the “point-slope” form

— Compute points (x,y) given a point (x1,y1) and the
slope of the line

Parametric Form

Express x and y linearly in terms of a paramter, t
X = ax*t + bx
y = ay*t + by
ax, bx, ay, by are constants to be determined

Let t range between t=0, endpoint (x1,yl) and t=1,
endpoint (x2,y2)

Determining the constants: Use endpoint values
x1 =ax*0 + bx ==> bx=x1
X2 = ax*1l + bx ==> ax = x2-x1
So x=(x2-x1)*t + x1, O<=t<=1
And y = (y2-yl)*t +yl

Brute Force Line-Drawing
Algorithm

Use “point-slope” form
Step in x direction, assume x2 > x1
(if x1 > x2, swap the points)

Compute m = (y2-y1)/(x2-x1)
num-pts = x2-x1+1
X =x1
Repeat num-pts times

y = m*(x-x1) +y1

SetPixel(x, round(y))

X=x+1

Problem if [y2-y1| > [x2-x1| --> gaps

(1.0) to (6,4) (1,0) to (3,6)

n = 6-1+1 = 6 n = 3-1+1 =3
6 H
4 5
3 4
2 3| |
1 2
0 1
01 23 46545 U:.
x2-x1 = 5 0123
y2-y1 = 4 x?2-x1=2
no gapsl y2-yl=6
gaps|

Solution: Step in y direction

Stepping in y direction

If [y2-y1| > [x2-x1]|, step in y, assume y2 >yl
(if y1 > y2, swap the points):
Compute inv_m = (x2-x1)/(y2-y1)
num-pts = y2-yl+1
y=yl
Repeat num-pts times
X =inv_m*(y-yl) + x1
SetPixel(round(x), y)
y=y+l

Brute Force line algorithm,
continued

e Vertical lines (x2 = x1)
y = y+1 for each new pixel
x doesn’t change

e Horizontal lines (y2 = y1)
Xx=x+1
y doesn’t change

Brute Force Method is
Too Slow

e Each iteration has:
—floating point multiply
—floating point add
—round() operations

Incremental Methods--The
Digital Differential Analyzer
(DDA)

e |[dea: get new point from previous point
o dy/dx =m = Ay/Ax = m = Ay=m*Ax

e But Ay = ynew - yold

e And Ax = xnew-xold
— So xnew = xold + Ax
—and ynew = yold + Ay
—i.e., ynew = yold + m*Ax

DDA, continued

e Choose Ax =1
— stepping in x direction
— Pixel by pixel
e Then compute each new y value
ynew = yold + m

DDA Algorithm
stepping in x, X2 > x1
(If x1 > x2, swap the points)
Compute m = (y2-y1)/(x2-x1)
num-pts = x2-x1+1
X =x1
y=yl
Repeat num-pts times
SetPixel(x,round(y))
X =x+1
y=y+tm

e As for the Brute force method,
if [Im|>1 and we step in x, we get gaps
—So we can step iny
e DDA Algorithm, stepping iny, y2 >yl
— (if yl > y2, swap the points):
Compute inv_m = (x2-x1)/(y2-y1)
num-pts = y2-y1+1
x=x1
y=yl
Repeat num-pts times
SetPixel(round(x),y)
y=y+l
X = X+inv_m

DDA is Better, but Still Not
Fast Enough

e Floating point multiply gone from loop
e But loop still has a floating point add
e And a round()

e WE CAN DO BETTER!

e Best performance:
— Only integer adds/subtracts inside loop

Bresenham's Line-drawing
Algorithm

Used in most graphics packages
Often implemented in hardware

Incremental (new pixel from old)
Uses only integer operations

e Basic Idea of Bresenham Algorithm:

—All lines can be placed in one of four
categories:
A. Steep positive slope (m > 1)
B. Gradual positive slope (0 <m <=1)
C. Steep negative slope (m <-1)
D. Gradual negative slope (0 >=m >=-1)

—In each case, there are only 2 choices for the
next pixel to be plotted!

The Four Bresenham Cases

Pixel just plotted Pos
at (x,¥)

le choices
for next pixel

x x+1

A. steep +m B. gradual +m c

. steep -m D. gradual -m

next point: next point: next point: next point:
(x,y+1) (x+1,v) (x,y-1) (x+1,y)

or or or or
(x+1,y+1) (x+1,y+1) (x+1,y-1) (x+1,y-1)

e Look at Case-A (Steep positive slope)

e Also assume P1 is to the left of P2 (x1<x2)
— If not true, points can be swapped

e delta_y > delta_x ==> stepping in y

v—axis

P1 P' Pr
e | ax

v [ede
A

X—axis

e If di<dr,
— Plis closer to actual point than Pr

e i.e., if dl-dr<0, choose "left" pixel
e Criterion for choosing “left” pixel (Pl) is:
di-dr =r"-r- (r+1-r)<0
or Tl
dl-dr = 2*r - 2*r -1 <0 = on o

s .

—axis

But from the equation for a straight line:

y-axis

P1 P' Pr

y=mx +b oe
Newy =s+1 S 0;-
s+1 = (Ay/AX)*r' + b s - .

r' = (s+1-b)*Ax/Ay
So: L
Criterion for choosing P!I: P orr el
dl-dr=2*"-2*-1<0

dl-dr = 2%(s+1-b)*Ax/Ay - 2*r -1 <0

x-axis

Result:
dl-dr = 2*(s* + 1 - b)*Ax /Ay -2*r-1 <0
If dI-dr is negative, choose "left" pixel
Multiply by Ay to get rid of divide operation
(always positive for Case-A lines)
Call result the "predictor”, P
P = Ay*(dl-dr)
Result:
P=2*Ax*(s+1-b) - 2*r*Ay - Ay
Divide is gone--but it's still too complex

Bresenham's Contribution

— Try to find a recurrence relation for P
— Call Pn the new value, and Po the old

value
e Then Pn =Po + AP

— Call sn & so the new & old values of s
— Call rn & ro the new & old values of r

Predictor P:
P=2*Ax*(s+1-b) - 2*r*Ay - Ay

Change in Predictor:

AP = Pn - Po, so:
Pn=Po + AP

Point just plotted: (ro,so)

Two cases for new point:
Left case (rn=ro and sn=so+1)
Right case (rn=ro+1 and sn=so+1)
For both cases:
Po = 2*Ax*(so+1-b) - 2*ro*Ay - Ay

Xx-axis

Predictor P: P=2*Ax*(s+1-b) - 2*r*Ay — Ay

New Point Left Case (ro,so+1):

Pn = 2*Ax*((so+1)+1-b) - 2*ro*Ay - Ay " iy
Po = 2*Ax*(so+1-b) - 2*ro*Ay - Ay wal ede
Subtracting Po from Pn gives AP e
Result:

AP = 2*Ax o

New Point Right Case (ro+1,so+1):
Pn = 2*Ax*((so+1)+1-b) - 2*(ro+1)*Ay - Ay
Po = 2*Ax*(so+1-b) - 2*ro*Ay - Ay
Again subtracting Po from Pn gives AP:
AP = 2*(AX - Ay)

e Both results are very simple (Integers!!)

e Look at current value of the predictor:
If (P <0) /lleftcase

P = P + 2*Ax
X=X y-axis
y = y + 1 F1 P' Pr
If (P>0) // right case 2 o
s+1—4— [] L
P = P + 2*(Ax-Ay)
X=x+1 T .

y=y+1

x-axis

H
H]
[
+
=

e But to start things off, we need an initial value PO
of the predictor

e Substitute left-hand endpoint (x1,yl) into
predictor definition:
P = 2*Ax*(s+1-b) - 2*r*Ay - Ay ==>
PO = 2*Ax*(y1+1-b) -2*x1*Ay - Ay
e And use fact that (x1,y1) is on line:
i.e.,, yl=(Ay/AX)*x1 + b
PO= 2*Ax*((Ay/AX)*X1 + b +1 - b) -2*x1*Ay - Ay
PO=2*Ay*x1 + 2*Ax -2*x1*Ay - Ay
e Result: PO =2*Ax - Ay

Case-A Bresenham Algorithm
(Steep positive slope)

If (x1>x2) swap endpoints;
del x =x2-x1; del_y=y2-y1;
P = 2*del_x - del_y;
cleft = 2*delx; cright = 2*del_x - 2*del_y;
x=x1; y=yl;, num_pts = |del_y| + 1;
Repeat num_pts times
SetPixel(x,)y); y=y + 1,
If (P<0)
P =P + cleft;
Else
{P =P +cright; x=x+1;}

e Can be generalized to handle Case-C
(steep negative slope) lines

e Compute sdy = sign(Ay)
=1 ify2>yl
=-1 ifnot

e Then, in definition of P and cright:
— Replace Ay with sdy*Ay
— Replacey =y + 1 with y =y + sdy

e Then both Case-A and Case-C lines are
handled

More Info on Bresenham
Line-drawing Algorithm

e See Hearn & Baker Text Book
e Section 3-1 (pages 88-95)
e Specifically Case-B lines

Speeding Up Bresenham

e Bresenham'’s algorithm calls SetPixel()

e Not optimized
— SetPixel(x,y) must work for any pixel
—For W x H screen, Address = W*y + x
— Multiply involved (even though hidden)

e Bresenham: We know next pixel is one of
two choices

e Faster to access frame buffer directly using
addresses -- not values of x and y

e Assume Row major order
e Take advantage of symmetry
e Store addresses instead of coordinates
(x,y)
e Example: W x H x 256 direct color mode
— One byte per pixel
Byte Address = W*y + x
Look at Case A (gradual +m)
— Only integer add needed

Case A Line (gradual +m)

X

. Pixel just
plotted

Hext pixel
candidate

address + 1
address + W + 1

Case 1. address
¥ Case 2. address

Aliasing (Jaggies)

e Inherent in Raster Scan systems

e Anti-aliasing technique for grayscale:
— Consider broad line covering several pixels

— Border pixels
 Set intensity proportional to % of pixel inside line
* Produces blurring
* Looks less jagged
» But must compute areas (compute intensive)
» Can use statistical sampling instead

“

Polyline Algorithm

Polyline (POINT *p, int n)
{
int xo, yo, xn, yn;
if (n==0) return;
x0=p[0].x; yo=p[Ol.y;
if (n==1) {SetPixel(xo, yo); return;}
for (i=1; i<n; i++)
{xn=p[i].x; yn=p[i].y;
Line(xo,yo,xn,yn);
X0=Xn; yo=yn;}

Calling the Polyline
Algorithm

POINT pt[3];

pt[0].x=50; pt[0].y=10;
pt[1].x=250; pt[1].y=50;
pt[2].x=125; pt[2].y=130;
Polyline(pt,3);

Scan Converting Circles

Given:
Center: (h,k)
Radius: r
Equation:
(x-h)2 + (y-k)2 = 12
To simplify we’ll translate origin to center
Simplified Equation:
X2 + yz =r2

Translate to origin 8-fold symmetry

1 TR X, ¥
) B %Yﬁ(

AR

Circle has 8-fold symmetry
So only need to plot points in 1st octant

Ax > Ay so step in x direction

Brute Force Circle Algorithm

Suppose we have a Set8pixel() routine
xfin = 0.707*r
For (x=0; x<=xfin ; x++)
{
y = SQRT(r*r - x*x);
Set8Pixel(round(x), round(y));

}
TOO SLOW!

The Set8Pixel(x,y) routine

SetPixel(x,y);
SetPixel(x,-y);
SetPixel(-x,y);
SetPixel(-x,-y);
SetPixel(y,x);
SetPixel(y,-x);
SetPixel(-y,x);
SetPixel(-y,-x);

Could Use Parametric
Equations

for (theta=90; theta>=45; theta- -)
{
X = r*cos(theta);
y = r*sin(theta);
Set8Pixel(round(x), round(y));
}
EVEN SLOWER!

DDA Circle Approximation

X2 + y2 = 2
Take Derivative:
2*x+2*y*(dy/dx) = 0

dy = (-x/y)*dx
Step in x direction (dx=1)
dy = -xly

y =y + dy (approximation)

DDA Circle Algorithm

x=0; y=r;
xfin=0.707*r;
while (x<=xfin)

;et8Pier(round(x), round(y));

y =y - (xfy);

X=X+1;

}
Floating Pt. Divide--STILL TOO SLOW!

Midpoint Circle Algorithm

e Extension of Bresenham ideas

e Circle equation: x? +y? =12

e Define a circle function:
f=x2+y2-r2

e =0 ==> (X,y) is on circle

e <0 ==> (X,y) is inside circle

e >0 ==> (X,y) is outside circle

e \We've just plotted (X,,Y,)
e (Ax > Ay), so we’re stepping in X
e Next pixel is either:

(X, +1,y,) -- the “top” case or

(X, +1,y,-1) -- the “bottom” case

e Look at midpoint
m__

—

Midpoint Circle Choices

xk xk+1 jh-:[idpoint

vk H __.% & Upper Pixel
vk-1/2 @ H‘\<
vk-1------- . . \\f———Lower Pixel

T T
I I
Inside Outside

Case .
Case B Current pixel

Inside: £<0 ==> choose upper pixel
Qutside: £>0 ==> choose lower pixel

e Evaluate f at midpoint
(x=x,+1, y=y,-1/2)
e Define Predictor: P, = f(x,+1,y,-1/2)
P.<0 ==> inside (choose top pixel)
P,>0 ==> outside (choose bottom pixel)
Py = (X+1)2 + (Y- 1/2)% - 2
o P, = X2+ 2x, +5/4 +y,2 -y, - I?
e As for Bresenham, try to get a recurrence
relation for P

e Top Case (X = X+ 1, Yier = Vi

I:)k+1 = f(Xk+1 +1, Yi+1 - 1/2)

BUE X4y = X +1 @nd Yy,q = Yy

SO Ppyy = (%cH1) + 1)2 + (y, - 1/2)2 - 12
Pier = (%+2)2 + (Y - 1/2)2 - 12

Pir =X +4X + 4+ Y2 -y +1/4 - 12

But, P, = x,2 + 2x, + 5/4 +y,2 -y, - r?

AP, =Py, - Py

So AP, =2x,+3, Butx,,;=X+1

So AP, =2x,; +1

e Bottom Case (X1 = X + 1, Yiu1 = Yi- 1):

I:)k+1 = f(Xk+1 +1, Y1 - 1/2)
® Py = ((Xct1) + 1) + ((yi1) - 1/2)* - r?

= (}H+2)% + ((yi- 3/2)% - 2
= X2 + 4x, + 4 +y,2 - 3, + 9/4 - r2

But P, = x2 + 2x, +5/4 +y,2 -y, - I?

APy = Py.q - Py

So AP, = 2%, - 2y, +5

AI:)k = 2(Xk+1 - yk+1)+ 1

e |nitial P:

PO (x0=0, y0=r)
PO = (x0 + 1) + (y0 - 1/2)2 - r?
PO =5/4-r --> 1-r (rounding to integer)

Midpoint Circle Algorithm

x=0; y=r; P=1-r;
Set8Pixel(x,y);
while (x<y)
{
X =X + 1; Set8Pixel(x,y);
if (P <0)
P=P+x<<1+1,
else
{y=y-LP=P+(xy)<<l+1}
}

