
Scan Conversion 
Algorithms for 2D Output 

Primitives

Types of Primitives to be 
Scan Converted

� Straight Lines
� Polygons
� Circles
� Ellipses and Other 2-D Curves
� Text (Characters)



Scan Conversion Algorithms 
for Drawing Straight Lines

� Task
– Given pixel coordinates of endpoints

• P1 (x1,y1)  and  P2 (x2,y2)

– Determine which pixels need to be painted
� Criteria

– Straight as possible between endpoints
– Constant density (no gaps or bunching)
– Density independent of orientation
– Must be fast

Line Equations
� Differential equation:

dy/dx = m    (m=constant: the slope)
� Integrate (indefinite)

y = m*x + constant
The constant (b) is called y intercept 
(value of y when x=0)

� y = m*x + b   
� “slope-intercept” form



� Integrate between endpoints (definite)-->
(y2-y1) = m*(x2-x1)
m = (y2-y1)/(x2-x1)
(an operational definition of slope)

� Integrate between endpoint (x1,y1) and arbitrary 
point to be plotted (x,y) -->
y - y1 = m*(x-x1)
y = m*(x-x1) + y1
This is the “point-slope” form
– Compute points (x,y) given a point (x1,y1) and the  

slope of the line

Parametric Form
Express x and y linearly in terms of a paramter, t

x = ax*t + bx
y = ay*t + by
ax, bx, ay, by are constants to be determined
Let t range between t=0, endpoint  (x1,y1) and t=1, 

endpoint (x2,y2)
Determining the constants: Use endpoint values

x1 = ax*0 + bx  ==>  bx = x1
x2 = ax*1 + bx  ==>  ax = x2-x1
So     x = (x2-x1)*t + x1,       0<=t<=1
And  y = (y2-y1)*t + y1



Brute Force Line-Drawing 
Algorithm

Use “point-slope” form
Step in x direction, assume x2 > x1

(if x1 > x2, swap the points)
Compute m = (y2-y1)/(x2-x1)
num-pts = x2-x1+1
x = x1
Repeat num-pts times

y = m*(x-x1) + y1
SetPixel(x, round(y))
x = x+1

Problem if |y2-y1| > |x2-x1|   -->  gaps

Solution: Step in y direction



Stepping in y direction
If |y2-y1| > |x2-x1|, step in y, assume y2 > y1

(if y1 > y2, swap the points):
Compute inv_m = (x2-x1)/(y2-y1)
num-pts = y2-y1+1
y = y1
Repeat num-pts times

x = inv_m*(y-y1) + x1
SetPixel(round(x), y)
y = y+1

Brute Force line algorithm, 
continued

� Vertical lines (x2 = x1)
y = y+1 for each new pixel
x doesn’t change

� Horizontal lines (y2 = y1)
x = x + 1
y doesn’t change



Brute Force Method is 
Too Slow

� Each iteration has:
– floating point multiply
– floating point add
– round() operations

Incremental Methods--The 
Digital Differential Analyzer 

(DDA)
� Idea:  get new point from previous point
� dy/dx = m  � ∆y/∆x = m � ∆y=m*∆x
� But ∆y = ynew - yold 
� And  ∆x = xnew-xold

– So xnew = xold + ∆x
– and ynew = yold + ∆y
– i.e., ynew = yold + m*∆x



� Choose ∆x = 1 
– stepping in x direction
– Pixel by pixel

� Then compute each new y value
ynew = yold + m

DDA, continued

DDA Algorithm 
stepping in x, x2 > x1
(If x1 > x2, swap the points)

Compute m = (y2-y1)/(x2-x1)
num-pts = x2-x1+1
x = x1
y = y1
Repeat num-pts times

SetPixel(x,round(y))
x = x+1
y = y+m



� As for the Brute force method,                 
if |m|>1 and we step in x, we get gaps 
– So we can step in y

� DDA Algorithm, stepping in y, y2 > y1
– (if y1 > y2, swap the points):
Compute inv_m = (x2-x1)/(y2-y1)
num-pts = y2-y1+1
x = x1
y = y1
Repeat num-pts times

SetPixel(round(x),y)
y = y+1
x = x+inv_m

DDA is Better, but Still Not 
Fast Enough

� Floating point multiply gone from loop
� But loop still has a floating point add 
� And a round()
� WE CAN DO BETTER!
� Best performance:

– Only integer adds/subtracts inside loop



Bresenham's Line-drawing 
Algorithm

� Used in most graphics packages
� Often implemented in hardware
� Incremental (new pixel from old)
� Uses only integer operations

� Basic Idea of Bresenham Algorithm:
– All lines can be placed in one of four 

categories:
A. Steep positive slope (m > 1)
B. Gradual positive slope (0 < m <= 1)
C. Steep negative slope (m < -1)
D. Gradual negative slope (0 >= m >= -1)

– In each case, there are only 2 choices for the 
next pixel to be plotted!



The Four Bresenham Cases

� Look at Case-A (Steep positive slope)
� Also assume P1 is to the left of P2 (x1<x2)

– If not true, points can be swapped
� delta_y > delta_x ==> stepping in y



� If dl<dr,
– Pl is closer to actual point than Pr

� i.e., if dl-dr<0, choose "left" pixel
� Criterion for choosing “left” pixel (Pl) is:

dl-dr = r’-r - (r+1-r’) < 0
or:    
dl-dr = 2*r’ - 2*r -1 < 0



But from the equation for a straight line:

y = m*x + b
New y = s+1
s+1 = (∆y/∆x)*r’ + b
r’ = (s+1-b)*∆x/∆y
So:
Criterion for choosing Pl:
dl-dr = 2*r’ - 2*r -1 < 0
dl-dr = 2*(s+1-b)*∆x/∆y - 2*r -1 <0

Result:
dl-dr = 2*(s* + 1 - b)*∆x /∆y -2*r -1 < 0

If dl-dr is negative, choose "left" pixel
Multiply by ∆y to get rid of divide operation 

(always positive for Case-A lines)
Call result the "predictor", P

P = ∆y*(dl-dr)
Result:

P=2*∆x*(s+1-b) - 2*r*∆y - ∆y
Divide is gone--but it's still too complex



Bresenham's Contribution
– Try to find a recurrence relation for P
– Call Pn the new value, and Po the old 

value
• Then Pn = Po + ∆P

– Call sn & so the new & old values of  s
– Call rn & ro the new & old values of  r

Predictor P:
P=2*∆x*(s+1-b) - 2*r*∆y - ∆y

Change in Predictor:
∆P = Pn - Po, so:
Pn = Po + ∆P
Point just plotted: (ro,so)
Two cases for new point:

Left case (rn=ro and sn=so+1)
Right case (rn=ro+1 and sn=so+1)

For both cases:
Po = 2*∆x*(so+1-b) - 2*ro*∆y - ∆y



Predictor P:  P=2*∆x*(s+1-b) - 2*r*∆y – ∆y

New Point Left Case (ro,so+1):
Pn = 2*∆x*((so+1)+1-b) - 2*ro*∆y - ∆y
Po = 2*∆x*(so+1-b) - 2*ro*∆y - ∆y
Subtracting Po from Pn gives ∆P
Result:

∆P = 2*∆x
New Point Right Case (ro+1,so+1):

Pn = 2*∆x*((so+1)+1-b) - 2*(ro+1)*∆y - ∆y
Po = 2*∆x*(so+1-b) - 2*ro*∆y - ∆y
Again subtracting Po from Pn gives ∆P:

∆P = 2*(∆x - ∆y)

� Both results are very simple (Integers!!)
� Look at current value of the predictor:

If (P < 0)    // left case
P = P + 2*∆x
x = x
y = y + 1

If (P>0)     // right case
P = P + 2*(∆x-∆y)
x = x + 1
y = y + 1



� But to start things off, we need an initial value P0 
of the predictor

� Substitute left-hand endpoint (x1,y1) into 
predictor definition:
P = 2*∆x*(s+1-b) - 2*r*∆y - ∆y ==>

P0 = 2*∆x*(y1+1-b) -2*x1*∆y - ∆y
� And use fact that (x1,y1) is on line:

i.e.,   y1 = (∆y/∆x)*x1 + b
P0= 2*∆x*( (∆y/∆x)*x1 + b +1 - b) -2*x1*∆y - ∆y
P0=2*∆y*x1 + 2*∆x  -2*x1*∆y - ∆y

� Result:   P0 = 2*∆x - ∆y

Case-A Bresenham Algorithm
(Steep positive slope)

If  (x1>x2) swap endpoints;
del_x = x2-x1;   del_y = y2-y1;
P = 2*del_x - del_y;
cleft = 2*delx;   cright = 2*del_x - 2*del_y;
x = x1;   y = y1;   num_pts = |del_y| + 1;
Repeat num_pts times

SetPixel(x,y);  y = y + 1;
If (P < 0)

P = P + cleft;
Else

{P = P + cright;  x = x + 1;}



� Can be generalized to handle Case-C 
(steep negative slope) lines

� Compute sdy = sign(∆y) 
=  1   if y2>y1
= -1   if not

� Then, in definition of P and cright:
– Replace ∆y with sdy*∆y
– Replace y = y + 1 with  y = y + sdy

� Then both Case-A and Case-C lines are 
handled

More Info on Bresenham         
Line-drawing Algorithm

� See Hearn & Baker Text Book
� Section 3-1 (pages 88-95)
� Specifically Case-B lines



Speeding Up Bresenham
� Bresenham’s algorithm calls SetPixel()
� Not optimized

– SetPixel(x,y) must work for any pixel
– For W x H screen, Address = W*y + x
– Multiply involved (even though hidden)

� Bresenham: We know next pixel is one of 
two choices

� Faster to access frame buffer directly using 
addresses -- not values of x and y

� Assume Row major order
� Take advantage of symmetry
� Store addresses instead of coordinates 

(x,y)
� Example: W x H x 256 direct color mode

– One byte per pixel
Byte Address = W*y + x
Look at Case A (gradual +m)

– Only integer add needed



Case A Line (gradual +m)

Aliasing (Jaggies)
� Inherent in Raster Scan systems
� Anti-aliasing technique for grayscale:

– Consider broad line covering several pixels
– Border pixels

• Set intensity proportional to % of pixel inside line
• Produces blurring
• Looks less jagged
• But must compute areas (compute intensive)
• Can use statistical sampling instead



Polyline Algorithm
Polyline (POINT *p, int n)
{
int xo, yo, xn, yn;
if (n==0) return;
xo=p[0].x; yo=p[0].y;
if (n==1) {SetPixel(xo, yo); return;}
for (i=1; i<n; i++)

{xn=p[i].x; yn=p[i].y;
Line(xo,yo,xn,yn);
xo=xn; yo=yn;}

}



Calling the Polyline 
Algorithm

POINT pt[3];
pt[0].x=50; pt[0].y=10;
pt[1].x=250; pt[1].y=50;
pt[2].x=125; pt[2].y=130;
Polyline(pt,3);

Scan Converting Circles

Given:
Center: (h,k)
Radius: r

Equation:
(x-h)2 + (y-k)2 = r2

To simplify we’ll translate origin to center
Simplified Equation:

x2 + y2 = r2



Circle has 8-fold symmetry

So only need to plot points in 1st octant

∆x > ∆y  so step in x direction

Brute Force Circle Algorithm
Suppose we have a Set8pixel() routine
xfin = 0.707*r
For (x=0; x<=xfin ; x++)

{
y = SQRT(r*r - x*x);
Set8Pixel(round(x), round(y));
}
TOO SLOW!!



The Set8Pixel(x,y) routine

SetPixel(x,y);
SetPixel(x,-y);
SetPixel(-x,y);
SetPixel(-x,-y);
SetPixel(y,x);
SetPixel(y,-x);
SetPixel(-y,x);
SetPixel(-y,-x);

Could Use Parametric 
Equations

for (theta=90; theta>=45; theta- -)
{
x = r*cos(theta);
y = r*sin(theta);
Set8Pixel(round(x), round(y));
}

EVEN SLOWER!



DDA Circle Approximation

x2 + y2 = r2

Take Derivative:
2*x+2*y*(dy/dx) = 0
dy = (-x/y)*dx
Step in x direction (dx=1)
dy = -x/y
y = y + dy (approximation)

DDA Circle Algorithm
x=0; y=r;
xfin=0.707*r;
while (x<=xfin)

{
Set8Pixel(round(x), round(y));
y = y - (x/y);
x = x + 1;
}

Floating Pt. Divide--STILL TOO SLOW!



Midpoint Circle Algorithm
� Extension of Bresenham ideas
� Circle equation:  x2 + y2 = r2

� Define a circle function:
f = x2 + y2 - r2

� f=0 ==> (x,y) is on circle
� f<0 ==> (x,y) is inside circle
� f>0 ==> (x,y) is outside circle

� We’ve just plotted (xk,yk)
� (∆x > ∆y), so we’re stepping in x
� Next pixel is either:

(xk + 1, yk)   -- the “top” case or
(xk + 1, yk -1)  -- the “bottom” case

� Look at midpoint



Midpoint Circle Choices

� Evaluate f at midpoint
(x=xk+1, y=yk-1/2)

� Define Predictor:  Pk= f(xk+1,yk-1/2)
Pk<0 ==> inside (choose top pixel)
Pk>0 ==> outside (choose bottom pixel)
Pk = (xk+1)2 + (yk-1/2)2 - r2

� Pk =  xk
2 + 2xk +5/4 +yk

2 -yk - r2

� As for Bresenham, try to get a recurrence 
relation for P



� Top Case (xk+1 = xk + 1,  yk+1 = yk):

Pk+1 = f(xk+1 + 1,  yk+1 - 1/2)
But xk+1 = xk +1 and yk+1 = yk
So Pk+1 = ((xk+1) + 1)2 + (yk - 1/2)2  - r2

Pk+1 = (xk+2)2 + (yk - 1/2)2  - r2

Pk+1 = xk
2 + 4xk + 4 + yk

2 - yk +1/4 - r2

But, Pk = xk
2 + 2xk + 5/4 +yk

2 - yk - r2

∆Pk = Pk+1 - Pk
So  ∆Pk = 2xk + 3,      But xk+1= xk+1 
So  ∆Pk = 2x k+1 +1 

� Bottom Case (xk+1 = xk + 1,  yk+1 = yk - 1):

Pk+1 = f(xk+1 + 1,  yk+1 - 1/2)
� Pk+1 = ((xk+1) + 1)2 + ((yk-1) - 1/2)2  - r2

= (xk+2)2 + ((yk - 3/2)2  - r2

= xk
2 + 4xk + 4 +yk

2 - 3xk + 9/4 - r2

But Pk = xk
2 + 2xk +5/4 +yk

2 - yk - r2

∆Pk = Pk+1 - Pk
So  ∆Pk = 2xk - 2yk + 5
∆Pk = 2(xk+1 - yk+1)+ 1



� Initial P:

P0 (x0=0, y0=r)
P0 = (x0 + 1)2 + (y0 - 1/2)2 - r2

P0 = 5/4 - r  -->  1-r  (rounding to integer)

Midpoint Circle Algorithm
x=0; y=r;   P=1-r;
Set8Pixel(x,y);
while (x<y) 

{
x = x + 1; Set8Pixel(x,y);
if (P < 0)

P = P + x<<1 + 1;
else

{ y = y - 1; P = P + (x-y)<<1 + 1;}
}


