Computer Graphics
Hardware

Graphics Hardware

= Display Devices

— Vector Scan
» Image stored as line segments (vectors) that can be
drawn anywhere on display device
— Raster Scan

* Image stored as a 2D array of color values in a memory
area called the frame buffer

« Each value stored determines the color/intensity of an
accessible point on display device

=« Both based historically on CRT (TV)

— Electron beam accelerated toward screen
» focused
» deflected
» strikes phosphorescent material on screen
-->pixel that glows

A Cathode Ray Tube (CRT)

electron focuzing Glowing pixel
qun grid
% Phosphor-
e —— coated
@3 Electron screcn
/ T heam
accelerating horizontal
& control rertical
electrodes deflection
system

« Visible point where electron beam hits
screen
= Screen phosphors glow & fade

= Have a finite size
— Not a mathematical point

Resolution

= Maximum number of pixels that can be plotted
without overlap

« Expressed as: # horizontal X # vertical pixels

= Depends on:
— phosphor used
— focusing system (how small a point)
— Speed/precision of deflection system
— video memory size (raster scan)--as we'll see

Aspect Ratio

= Ratio of # of pixel columns to # of pixel rows
= Examples:
— SVGA VESA mode 100h: 640 X 400, AR. = 1.6
— Standard Windows: 640 X 480. A.R. =1.33
= Pixel Ratio (often called Aspect Ratio)

— Ratio of pixel height to pixel width

— Ratio of # of horizontal pixels to vertical pixels
needed to produce equal length lines

— For a square screen, A.R. =P.R.
— If Pixel Ratio != 1, figures are distorted

Dot Pitch

= Minimum distance between centers of
adjacent pixels of same color

= Should be less than 0.28 mm for sharp
images
« For fixed sized screen

— Decreasing distance between pixels ==>
Increase Resolution

— So dot pitch determines max resolution

Persistence

=« After beam leaves a phosphor, it fades
« Definition of persistence:
— Time to reduce initial intensity to 10% of original value
— Value depends on type of phosphor (10 - 100 msec.)
« Finite persistence==>screen must be redrawn
— Refresh rate determined by persistence
= Example: If persistence = 20 msec
— 1st pixel on screen invisible after that time ==>
» screen must be refreshed once every 20 msec
* so refresh rate must be > 50 Hz.

«If refresh is too slow: flicker

«|f refresh is too fast: shadowing
(ghosting)

Graphics Hardware Systems

= CPU--Runs program in main memory
— specifies what is to be drawn
= CRT--does the actual display

=« Display Controller--Provides analog voltages needed to
move beam and vary its intensity

« DPU—generates digital signals that drive display controllef
— (offloads task of video control to separate processor)

= VRAM--Stores data needed to draw the picture
— Dual-ported (written to by CPU, read from by DPU)
— Fast (e.g., 1000X1000, 50 Hz ==> 20 nsec access time
— Also called Refresh Buffer or Frame Buffer

« 1/0 devices--interface CPU with user

A Computer Graphics Hardware System (General)

I/D. —cou DU Display T
Devices Controller
| L‘ |
Main VRAM
Memory

Flat-Panel Displays

« Technologies to replace CRT monitors
= Reduced volume, weight, power needs
— Thinner: can hang on a walll
= TWO categories
— Emissive and non-emissive

Flat Panel Displays: Emissive
Devices

— Convert electrical energy to light

— Plasma panels (gas-discharge displays)
» Voltages fired to intersecting vertical/horizontal
conductors cause gas to glow at that pixel

» Resolution determined by density of conductors

» Pixel selected by x-y coordinates of conductors
» These are “raster” devices

— Other technologies
 All require storage of x-y coordinates of pixels
» Examples:
— Thin-film electroluminescent dipslays
— LEDs
— Flat CRTs

Conductors

Glass Plate

Glass Plate

Figure 2-11

Basic design of a plasma-panel display device.

i
[ERN {1734}

freapdrion with Cpen (8, Thnd Lidliiom, by Donald Dewrn and M Parline Dakor,
-
i,

SAD0-F 43 200 Pearsom Edvueation, loe., Upper Saddle Rivar, NI &l rights reservesd.

Flat Panel Displays:
Non-emissive Devices

— Use optical effects to convert ambient light to
pixel patterns

— Example: LCDs
» Pass polarized light from surroundings through liquid
crystal material that can be aligned to block or transmit
the light
» Voltage applied to 2 intersecting conductors
determines whether the liquid crystal blocks or
transmits the light
— Like emissive devices, require storage of x-y
coordinates of pixel to be illuminated

Vector Scan Systems

= Also called random, stroke, calligraphic displays
= Images drawn as line segments (vectors)
= Beam can be moved to any position on screen
=« Refresh Buffer stores plotting commands

— So Frame Buffer often called "Display File”

— provides DPU with needed endpoint
coordinates

— Pixel size independent of frame buffer
» ==> very high resolution

Vector Scan SYSt&l‘ﬂ Intr.rlmlr 17 I:l.l OO
Man el timengenls] l(lmeuclm (1M

R . Display
WOVE - 7| proctwes

F 3

L —

HAriresh bufler mamary

Daa tabier

. Typical l_efresh display cavice. Diapiay list in memory shows symbolic repre-
sﬁmatnun }ol‘ ptotting commands followsd by velues (8.g.. X, y coordinates o
charactars). .

Advantages of Vector Scan

& High resolution (good for detailed line
drawings)

& Crisp lines (no "jaggies")

&« High contrast (beam can dwell on a
pixel==>very intense)

=« Selective erase (remove commands from
display file)

= Animation (change line endpoints slightly
after each refresh)

Disadvantages of Vector Scan

= Complex drawings can have flicker
— Many lines
* so if time to draw > refresh time ==> flicker
— High cost--very fast deflection system needed
— Hard to get colors
— No area fill
* so it's difficult to use for realistic (shaded) images

— 1960s Technology, only used for special purpose stuff
today

Raster Scan Systems
(TV Technology)

= Beam continually traces a raster pattern

« Intensity adjusted as raster scan takes place
— In synchronization with beam
— Beam focuses on each pixel
— Each pixels intensity is stored in frame buffer
— So resolution determined by size of frame buffer

= Each pixel on screen visited during each scan
— Scan rate must be >= 30 Hz to avoid flicker

Raster Scan Interizce 10 hoAT ZOMpUTL

+ t

Diant - 1 board
P

SEyvastem
[Diyplay mmInnwm dawad

L
L]
i ..Eim
A
BT s efresh b For

ithe 17y are sccaviuated CAT
for conuzast)

EOCO0O0I ICTFEEEEY Yy
B n m o ot 5313
o e o b i AT
e EED
=

[

Typical raster graphics display showing housa and iree.

Simplest system: one bit per pixel
—frame buffer called a bitmap

Gray Scale: N bits/pixel
—2"N intensities possible

—memory intensive

» Example:1000 X 1000 X 256 shades of gray
==> 8 Mbits

Scan Conversion

=« Process of determining which pixels need
to be turned on in the frame buffer to draw
a given graphics primitive

= Need algorithms to efficiently scan convert
graphics primitives like lines, circles, etc.

Advantages of Raster Scan
Systems

= Low cost (TV technology)
« Area fill (entire screen painted on each scan)
= Colors

= Selective erase (just change contents of
frame buffer)

= Bright display, good contrast
— but not as good as vector scan can be:
— can't make beam dwell on a pixel

Disadvantages

« Large memory requirement for high
resolution
— (but cost of VRAM has decreased a lot!)

& Aliasing (due to finite size of frame buffer)
— Finite pixel size
— Jagged lines (staircase effect)
— Moire patterns, scintillation, "creep” in
animations

=« Raster scan is the principal “now”
technology for graphics displays!

Tektronix Direct View
Storage Tube

= 1st "inexpensive" graphics display
device
« Extension of vector scan technique

= Two electron guns
—writing gun
— flood gun

= Writing gun beam knocks electrons out
leaves + charges behind (constitute image)
=« Flood gun supplies continuous source of
unfocused electrons
— migrate toward the + charges on grid
— pass through grid and strike screen phosphors
--> lighted dots
— electrons continue to hit + charges
— continuous light (Up to an hour)

Erasure of DVST image

1. Plus charge applied to entire grid
— Attracts electrons to entire grid
— Entire screen flashes (Image gone)
2. Minus charge applied to entire grid
— Provides electrons that can be knocked out
by writing gun
— Ready to draw next image with writing gun

Advantages to DVST

« No refresh needed
— unlimited image complexity possible

& High resolution
& Crisp lines
« LOow cost
—no fast refresh circuitry needed

Disadvantages to DVST

« NO selective erase
— whole image or nothing
= NO animation
&« Low light output
— poor contrast
— must use in subdued light

=« No color
« No area fill

Interlaced Displays

« All even then all odd screen lines scanned

= Typically 1/60 second each
— Same image presented twice in 1/30 second
— Image changed at 1/2 nontinterlaced frequency
* less demands on image generation system
» can be less expensive
* 30 Hz is borderline for flicker
» lower quality image (seeing half the image at a time)

Color Display Hardware (raster)

« Each pixel composed of 3 phosphors
—glow red, green, and blue

« 3 electron guns shoot their beams through
a shadow mask

— S0 beams hit the sensitive phosphors

& Intensity of 3 beams determines how bright
each phosphor glows

= Human eye detects an additive color mix
—e.g., max red, green, & blue perceived as white

Section

Electron of

Guns Shadow Mask

Magnified
Phosphor-Dot
Triangle

Green' Blye

Screen

Figure 2-10

Operation of a delta-delta, shadow-mask CRT. Three electron guns, aligned
with the triangular color-dot patterns on the screen, are directed to each dot
triangle by a shadow mask

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker.
ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Direct color systems

= Frame buffer divided into bit planes

= A bit plane contributes one bit to the color of
each pixel on the screen

« |f resolution of the screen is W x H pixels:
— abitplaneisa W x H x 1 bit memory

Bit planes can be organized into 3 sets
— Each called acolor channel (R, G, B)

— Bit planes of a color channel provide the intensity
values fed to that channel's electron gun

= A system with N bit planes per color channel:
— 2"N red, 2”N green, & 2”N blue shades
— 23N different colors displayable simultaneously

Direct Color
An Example
12 bit planes

n
|||||||

YULRES
A ARRAN|
.w Y

True Color & High Color
Systems

& True color: direct color system with:
N=8
S0 2724 = 16,777,216 different colors
possible for each pixel on screen
More colors than discernable by human eye
& High color: direct color system with:
Nr=5, Ng=6, Nb=5
2716 = 65, 536 different colors possible

Indirect Color Systems

=« Values stored in bit planes are indices
into one or more color lookup tables
(CLUTSs)
— CLUT stores R, G, B intensity values

— # of bit planes determines # of colors
displayable simultaneously on screen

—width of CLUTs determines # of possible
colors.

H bit planes _—
per Py P 2 2 colors

|
-~

L o 2
e e s

3
THT
AL AR RS
Y
\,

£

28 table
—— — A e
i

Indirect Color Systems, continued

& If system has N bit planes per color channel

= And each set of bit planes indexes a CLUT of
width w,
— Then number of entries in each CLUT = 2N

— We say there are 23N colors displayable chosen from a
total of 23" possible colors

— Each set of 23N colors often called a palette
— CLUTs often called palette registers

Advantages to Indirect Color

= Wide CLUTSs (large w) ==>huge number of
possible colors

= Modest # of bitplanes (small N) ==>
VRAM not excessive in size

&z Also, number CLUT entries is modest

— So we get lots of possible colors with
relatively little memory expense

« Fast animation for certain effects
— just change contents of CLUTS

Down Side to Indirect Color

& Ultimately number of colors on screen is
limited by number of bit planes (N)
— Even if large number of possible colors

(large CLUT w), only a small fraction of them
are usable at one time

— So graphics applications must set up CLUTs
with values corresponding to most frequently
occurring colors in scene

« Different scenes might require different
combinations of colors in the CLUTs

= Can be slower: 2nd memory access

Color Graphics on a PC

=« Graphics capabilities depend on display
adapter (video card) in the system
& Historical development:
— CGA (Color Graphics Adapter)
— EGA (Enhanced Graphics Adapter)
—VGA (Video Graphics Array)
— Many different types of SVGA cards

— Each display adapter can function in many
different text and graphics modes

— Backwards compatibility

SVGA Adapters

= Many manufacturers

« Each designed differently
— Each programmed differently at the pixel
level
— No compatibility
— Most compliant with VESA standards

» so VESA SVGA modes can be programmed
with relative ease

» often at the expense of performance

Setting the PC Graphics
Mode of Operation

« Easiest way: use the BIOS VGA Services
— via video interrupt 0x10
— set AH register to 0 (set mode)
— set AL to desired mode
— make call to INT 0x10

« INT 0x10 can be used for many other
graphics/video functions
— usually very slow

VGA Graphics Modes

« Support all CGA and EGA modes
640 X 480 X 16 colors

320 X 200 X 256 colors (mode 13h)
« Also other modes

VGA Mode 13h--A Simple

Example of Indirect Color
= One byte of VRAM controls one pixel
— Row major ordered

= VRAM starts at address 0xa000:0000

&« T0 set pixel at (x,y) to a given color:

— Set a segment register (ES) to start of video
RAM

— Compute pixel offset = 320 *y + x
— Load offset into a pointer register

— Set pixel by loading location with a color
(byte), e.g., MOV ES:[SI], color

VGA Mode 13h, continued

& Indirect color control thru 256 X 18 CLUT

= Color written to VRAM is a byte-size index
into this CLUT

« Table entries: 6 bits red, 6 green, 6 blue
(O=no intensity, 63=maximum intensity)

= T0O change an entry in the VGA CLUT

— use the video interrupt (10h):
* AH=10h, AL=10h, BX=CLUT position (0-255)
* DH, CH, CL =R, G, B intensity: (0-63 each)

VESA SVGA BIOS
Extension (VBE)

& Using high resolution, high color SVGA
display modes in a standard way
« Documentation available at:

— http://www.vesa.org/public/VBE/vbe3.pdf

—entire document with example program in
Adobe pdf format

Graphics under Microsoft

Windows

= Windows GDI does not permit direct
access to Display Adapter

= Must use GDI calls to do graphics
— SLOW!

= Or Special Libraries giving some access
to frame buffer
— OpenGL
— DirectX

Color Under Windows

« Direct or Indirect

&« Direct Modes:
— 16 bit “high color”
— 24 bit “true color”’
* R, G, B: 8 bits each
224 different colors
— Use RGB() macro to get a COLORREF

« If used in low color modes, result is color
dithering

Windows Indirect Color Modes

= 256 entry CLUT (8 bits)
= 16 entry CLUT (4 bits)
= CLUTS called palettes

=« Controlled by Windows “Palette Manager”
— A part of the GDI

=« Using a color in the CLUT:
— PALETTEINDEX(i) instead of RGB()

= We’'ll look at the 256-color palette

The System Palette

=« Maintained by Palette Manager

= Sort of like the physical CLUT

= Entries contain 8 bits per color channel
=« 20 “static” colors initially defined

= Contents determine colors displayed

= Used by all applications
— Shared between all windows

& Arbitrary changing it could mess up color of
other windows

Changing the Palette

=« Create a “logical palette”

— Use CPalette::CreatePalette()

— Set up with desired colors
« Select into a Device Context
«“Realize” it

—i.e., map it to the system palette

— done by calling CDC::RealizePalette()

Color Mapping with
RealizePalette()

= Causes Palette Manager to compare colors in
logical palette with system palette

— exact match==>

* log. palette entry mapped to phys. palette entry
— no exact match==>

« if available free entry, copy and map

* if not, map to closest existing entry

= Active foreground application mapped first
= S0 background window colors can change

Sy¥s. Pal. App 1 App 2
Black Log. Pal. Log . Pa{
White Black Black
Emptvy BRed Gold
Emptvy Cvan Pink
Empty Yellow Blue
Empty

App 1 mapped

App 2 mapped

{ foreground) (background)

App 1 Sys. Pal. App ?
Log. Pal. L . pal.
9 #’J#FJ;ﬁJﬂBlackmﬁhhaﬁhhmﬁ o9 a
Black] White lBlack
Red Red — Gold
Cyan Cyan-——| rPink
Yellow Yellow Blue
Empty =
Gold

Details in Changing System
Palette

1. Set up a logical palette structure:

Windows LOGPALETTE structure:
WORD palVersion; /1 0x300
WORD palNumEntries; // # colors to change
PALETTEENTRY palPalEntry[1] //new colors
- you may want to define & use your own
logical palette struct for more colors

PALETTEENTRY structure:

BYTE
BYTE
BYTE
BYTE

peRed; /I new color’s red intensity
peGreen; // green intensity

peBlue // blue intensity

peFlags; // usually O

2. Create the palette:
CPalette::CreatePalette(LPLOGPALETTE pLP);
— Member function of CPalette
— Takes ptr to desired logical palette structure
— Should be typecast
— Returns nonzero if successful

3. Select it into the DC:
CDC::SelectPalette(pLP,FALSE);
— pLP is a pointer to the logical palette structure created

above

4. Map current logical palette to system

palette:

CDC::RealizePalette();

Indirect Color in OpenGL

« First tell system you're using indexed color

— wgl: set PIXELFORMATDESCRIPTOR's iPixelType
field to PFD_TYPE_COLORINDEX instead of
PFD_TYPE_RGBA

— GLUT: glutinitDisplayMode(GLUT_SINGLE,CLUT_INDEXED);
« May not work on some systems

= Set entries in window's CLUT

— WAqgl: Use logical palette structure as described above

— GLUT: use glutSetColor(int color_index, r, g, b) to set
an entry in the CLUT

« Selecting a color
— GIndexi(index_value instead of glColor3f(r,g,b);

