
Computer Graphics
Hardware

Graphics Hardware
? Display Devices

– Vector Scan
• Image stored as line segments (vectors) that can be

drawn anywhere on display device

– Raster Scan
• Image stored as a 2D array of color values in a memory

area called the frame buffer
• Each value stored determines the color/intensity of an

accessible point on display device

? Both based historically on CRT (TV)
– Electron beam accelerated toward screen

• focused
• deflected
• strikes phosphorescent material on screen

-->pixel that glows

A Pixel

?Visible point where electron beam hits
screen

?Screen phosphors glow & fade
?Have a finite size

– Not a mathematical point

Resolution
? Maximum number of pixels that can be plotted

without overlap
? Expressed as: # horizontal X # vertical pixels
? Depends on:

– phosphor used
– focusing system (how small a point)
– Speed/precision of deflection system
– video memory size (raster scan)--as we'll see

Aspect Ratio
? Ratio of # of pixel columns to # of pixel rows
? Examples:

– SVGA VESA mode 100h: 640 X 400, A.R. = 1.6
– Standard Windows: 640 X 480. A.R. = 1.33

? Pixel Ratio (often called Aspect Ratio)
– Ratio of pixel height to pixel width
– Ratio of # of horizontal pixels to vertical pixels

needed to produce equal length lines
– For a square screen, A.R. = P.R.
– If Pixel Ratio != 1, figures are distorted

Dot Pitch

? Minimum distance between centers of
adjacent pixels of same color

? Should be less than 0.28 mm for sharp
images

? For fixed sized screen
– Decreasing distance between pixels ==>

Increase Resolution
– So dot pitch determines max resolution

Persistence
? After beam leaves a phosphor, it fades
? Definition of persistence:

– Time to reduce initial intensity to 10% of original value
– Value depends on type of phosphor (10 - 100 msec.)

? Finite persistence==>screen must be redrawn
– Refresh rate determined by persistence

? Example: If persistence = 20 msec
– 1st pixel on screen invisible after that time ==>

• screen must be refreshed once every 20 msec
• so refresh rate must be > 50 Hz.

?If refresh is too slow: flicker
?If refresh is too fast: shadowing

(ghosting)

Graphics Hardware Systems
? CPU--Runs program in main memory

– specifies what is to be drawn
? CRT--does the actual display
? Display Controller--Provides analog voltages needed to

move beam and vary its intensity
? DPU—generates digital signals that drive display controller

– (offloads task of video control to separate processor)
? VRAM--Stores data needed to draw the picture

– Dual-ported (written to by CPU, read from by DPU)
– Fast (e.g., 1000X1000, 50 Hz ==> 20 nsec access time!)
– Also called Refresh Buffer or Frame Buffer

? I/O devices--interface CPU with user

Flat-Panel Displays
?Technologies to replace CRT monitors
?Reduced volume, weight, power needs

– Thinner: can hang on a wall

?Two categories
– Emissive and non-emissive

Flat Panel Displays: Emissive
Devices

– Convert electrical energy to light
– Plasma panels (gas-discharge displays)

• Voltages fired to intersecting vertical/horizontal
conductors cause gas to glow at that pixel

• Resolution determined by density of conductors
• Pixel selected by x-y coordinates of conductors
• These are “raster” devices

– Other technologies
• All require storage of x-y coordinates of pixels
• Examples:

– Thin-film electroluminescent dipslays
– LEDs
– Flat CRTs

Flat Panel Displays:
Non-emissive Devices

– Use optical effects to convert ambient light to
pixel patterns

– Example: LCDs
• Pass polarized light from surroundings through liquid

crystal material that can be aligned to block or transmit
the light

• Voltage applied to 2 intersecting conductors
determines whether the liquid crystal blocks or
transmits the light

– Like emissive devices, require storage of x-y
coordinates of pixel to be illuminated

Vector Scan Systems

? Also called random, stroke, calligraphic displays
? Images drawn as line segments (vectors)
? Beam can be moved to any position on screen
? Refresh Buffer stores plotting commands

– So Frame Buffer often called "Display File”
– provides DPU with needed endpoint

coordinates
– Pixel size independent of frame buffer

• ==> very high resolution

Advantages of Vector Scan
?High resolution (good for detailed line

drawings)
?Crisp lines (no "jaggies")
?High contrast (beam can dwell on a

pixel==>very intense)
?Selective erase (remove commands from

display file)
?Animation (change line endpoints slightly

after each refresh)

? Complex drawings can have flicker
– Many lines

• so if time to draw > refresh time ==> flicker
– High cost--very fast deflection system needed
– Hard to get colors
– No area fill

• so it’s difficult to use for realistic (shaded) images
– 1960s Technology, only used for special purpose stuff

today

Disadvantages of Vector Scan

Raster Scan Systems
(TV Technology)

? Beam continually traces a raster pattern
? Intensity adjusted as raster scan takes place

– In synchronization with beam
– Beam focuses on each pixel
– Each pixel’s intensity is stored in frame buffer
– So resolution determined by size of frame buffer

? Each pixel on screen visited during each scan
– Scan rate must be >= 30 Hz to avoid flicker

Simplest system: one bit per pixel
– frame buffer called a bitmap

Gray Scale: N bits/pixel
– 2^N intensities possible
– memory intensive

• Example:1000 X 1000 X 256 shades of gray
==> 8 Mbits

Scan Conversion
?Process of determining which pixels need

to be turned on in the frame buffer to draw
a given graphics primitive

?Need algorithms to efficiently scan convert
graphics primitives like lines, circles, etc.

Advantages of Raster Scan
Systems

? Low cost (TV technology)
? Area fill (entire screen painted on each scan)
? Colors
? Selective erase (just change contents of

frame buffer)
? Bright display, good contrast

– but not as good as vector scan can be:
– can’t make beam dwell on a pixel

Disadvantages
?Large memory requirement for high

resolution
– (but cost of VRAM has decreased a lot!)

?Aliasing (due to finite size of frame buffer)
– Finite pixel size
– Jagged lines (staircase effect)
– Moire patterns, scintillation, "creep" in

animations
?Raster scan is the principal “now”

technology for graphics displays!

Tektronix Direct View
Storage Tube

?1st "inexpensive" graphics display
device

?Extension of vector scan technique
?Two electron guns

– writing gun
– flood gun

?Writing gun beam knocks electrons out
leaves + charges behind (constitute image)

?Flood gun supplies continuous source of
unfocused electrons
– migrate toward the + charges on grid
– pass through grid and strike screen phosphors

--> lighted dots
– electrons continue to hit + charges
– continuous light (Up to an hour)

Erasure of DVST image

1. Plus charge applied to entire grid
– Attracts electrons to entire grid
– Entire screen flashes (Image gone)

2. Minus charge applied to entire grid
– Provides electrons that can be knocked out

by writing gun
– Ready to draw next image with writing gun

Advantages to DVST

?No refresh needed
– unlimited image complexity possible

?High resolution
?Crisp lines
?Low cost

– no fast refresh circuitry needed

Disadvantages to DVST

?No selective erase
– whole image or nothing

?No animation
?Low light output

– poor contrast
– must use in subdued light

?No color
?No area fill

Interlaced Displays
? All even then all odd screen lines scanned
? Typically 1/60 second each

– Same image presented twice in 1/30 second
– Image changed at 1/2 non-interlaced frequency

• less demands on image generation system
• can be less expensive
• 30 Hz is borderline for flicker
• lower quality image (seeing half the image at a time)

Color Display Hardware (raster)
?Each pixel composed of 3 phosphors

– glow red, green, and blue

?3 electron guns shoot their beams through
a shadow mask
– so beams hit the sensitive phosphors

? Intensity of 3 beams determines how bright
each phosphor glows

?Human eye detects an additive color mix
– e.g., max red, green, & blue perceived as white

Direct color systems
? Frame buffer divided into bit planes
? A bit plane contributes one bit to the color of

each pixel on the screen
? If resolution of the screen is W x H pixels:

– a bit plane is a W x H x 1 bit memory
? Bit planes can be organized into 3 sets

– Each called a color channel: (R, G, B)
– Bit planes of a color channel provide the intensity

values fed to that channel’s electron gun
? A system with N bit planes per color channel:

– 2^N red, 2^N green, & 2^N blue shades
– 2^3N different colors displayable simultaneously

True Color & High Color
Systems

?True color: direct color system with:
N=8

so 2^24 = 16,777,216 different colors
possible for each pixel on screen

More colors than discernable by human eye
?High color: direct color system with:

Nr=5, Ng=6, Nb=5
2^16 = 65, 536 different colors possible

?Values stored in bit planes are indices
into one or more color lookup tables
(CLUTs)
– CLUT stores R, G, B intensity values
– # of bit planes determines # of colors

displayable simultaneously on screen
– width of CLUTs determines # of possible

colors.

Indirect Color Systems

Indirect Color Systems, continued

? If system has N bit planes per color channel
? And each set of bit planes indexes a CLUT of

width w,
– Then number of entries in each CLUT = 2 N

– We say there are 23N colors displayable chosen from a
total of 23w possible colors

– Each set of 23N colors often called a palette
– CLUTs often called palette registers

Advantages to Indirect Color
?Wide CLUTs (large w) ==>huge number of

possible colors
?Modest # of bitplanes (small N) ==>

VRAM not excessive in size
?Also, number CLUT entries is modest

– So we get lots of possible colors with
relatively little memory expense

?Fast animation for certain effects
– just change contents of CLUTS

Down Side to Indirect Color
?Ultimately number of colors on screen is

limited by number of bit planes (N)
– Even if large number of possible colors

(large CLUT w), only a small fraction of them
are usable at one time

– So graphics applications must set up CLUTs
with values corresponding to most frequently
occurring colors in scene

• Different scenes might require different
combinations of colors in the CLUTs

?Can be slower: 2nd memory access

Color Graphics on a PC
?Graphics capabilities depend on display

adapter (video card) in the system
?Historical development:

– CGA (Color Graphics Adapter)
– EGA (Enhanced Graphics Adapter)
– VGA (Video Graphics Array)
– Many different types of SVGA cards
– Each display adapter can function in many

different text and graphics modes
– Backwards compatibility

SVGA Adapters

?Many manufacturers
?Each designed differently

– Each programmed differently at the pixel
level

– No compatibility
– Most compliant with VESA standards

• so VESA SVGA modes can be programmed
with relative ease

• often at the expense of performance

Setting the PC Graphics
Mode of Operation

? Easiest way: use the BIOS VGA Services
– via video interrupt 0x10
– set AH register to 0 (set mode)
– set AL to desired mode
– make call to INT 0x10

? INT 0x10 can be used for many other
graphics/video functions
– usually very slow

VGA Graphics Modes

?Support all CGA and EGA modes
?640 X 480 X 16 colors
?320 X 200 X 256 colors (mode 13h)
?Also other modes

?One byte of VRAM controls one pixel
– Row major ordered

?VRAM starts at address 0xa000:0000
?To set pixel at (x,y) to a given color:

– Set a segment register (ES) to start of video
RAM

– Compute pixel offset = 320 * y + x
– Load offset into a pointer register
– Set pixel by loading location with a color

(byte), e.g., MOV ES:[SI], color

VGA Mode 13h--A Simple
Example of Indirect Color

VGA Mode 13h, continued
? Indirect color control thru 256 X 18 CLUT
?Color written to VRAM is a byte-size index

into this CLUT
?Table entries: 6 bits red, 6 green, 6 blue

(0=no intensity, 63=maximum intensity)

?To change an entry in the VGA CLUT
– use the video interrupt (10h):

• AH=10h, AL=10h, BX=CLUT position (0-255)
• DH, CH, CL = R, G, B intensity: (0-63 each)

VESA SVGA BIOS
Extension (VBE)

?Using high resolution, high color SVGA
display modes in a standard way

?Documentation available at:
– http://www.vesa.org/public/VBE/vbe3.pdf

– entire document with example program in
Adobe pdf format

Graphics under Microsoft
Windows

?Windows GDI does not permit direct
access to Display Adapter

?Must use GDI calls to do graphics
– SLOW!

?Or Special Libraries giving some access
to frame buffer
– OpenGL
– DirectX

Color Under Windows

?Direct or Indirect
?Direct Modes:

– 16 bit “high color”
– 24 bit “true color”

• R, G, B: 8 bits each
• 224 different colors

– Use RGB() macro to get a COLORREF
• If used in low color modes, result is color

dithering

Windows Indirect Color Modes

? 256 entry CLUT (8 bits)
? 16 entry CLUT (4 bits)
? CLUTS called palettes
? Controlled by Windows “Palette Manager”

– A part of the GDI

? Using a color in the CLUT:
– PALETTEINDEX(i) instead of RGB()

? We’ll look at the 256-color palette

The System Palette

? Maintained by Palette Manager
? Sort of like the physical CLUT
? Entries contain 8 bits per color channel
? 20 “static” colors initially defined
? Contents determine colors displayed
? Used by all applications

– Shared between all windows
? Arbitrary changing it could mess up color of

other windows

Changing the Palette

?Create a “logical palette”
– Use CPalette::CreatePalette()
– Set up with desired colors

?Select into a Device Context
? “Realize” it

– i.e., map it to the system palette
– done by calling CDC::RealizePalette()

Color Mapping with
RealizePalette()

? Causes Palette Manager to compare colors in
logical palette with system palette
– exact match==>

• log. palette entry mapped to phys. palette entry
– no exact match==>

• if available free entry, copy and map
• if not, map to closest existing entry

? Active foreground application mapped first
? So background window colors can change

Details in Changing System
Palette

1. Set up a logical palette structure:
Windows LOGPALETTE structure:

WORD palVersion; // 0x300
WORD palNumEntries; // # colors to change
PALETTEENTRY palPalEntry[1] //new colors
- you may want to define & use your own

logical palette struct for more colors
PALETTEENTRY structure:

BYTE peRed; // new color’s red intensity
BYTE peGreen; // green intensity
BYTE peBlue // blue intensity
BYTE peFlags; // usually 0

2. Create the palette:
CPalette::CreatePalette(LPLOGPALETTE pLP);
– Member function of CPalette
– Takes ptr to desired logical palette structure
– Should be typecast
– Returns nonzero if successful

3. Select it into the DC:
CDC::SelectPalette(pLP,FALSE);
– pLP is a pointer to the logical palette structure created

above

4. Map current logical palette to system
palette:

CDC::RealizePalette();

Indirect Color in OpenGL
? First tell system you’re using indexed color

– wgl: set PIXELFORMATDESCRIPTOR’s iPixelType
field to PFD_TYPE_COLORINDEX instead of
PFD_TYPE_RGBA

– GLUT: glutInitDisplayMode(GLUT_SINGLE,CLUT_INDEXED);
• May not work on some systems

? Set entries in window’s CLUT
– Wgl: Use logical palette structure as described above
– GLUT: use glutSetColor(int color_index, r, g, b) to set

an entry in the CLUT
? Selecting a color

– Glndexi(index_value instead of glColor3f(r,g,b);

