
Components of a
Graphics Software

System

Introduction to OpenGL

Basic Components of a
Graphics Software System

?Examples from: Windows GDI and
OpenGL

? Building blocks for drawing pictures
? Plotting a pixel--most primitive
? Windows CDC:

COLORREF colref;
SetPixel(x,y,colref); // Windows--plots pixel
colref = GetPixel(x,y); // returns pixel color

? OpenGL:
glBegin (GL_POINTS); // OpenGL

glVertex2f (x, y); // 2==>2D, f==>floating pt
glEnd(); // current drawing is color used

– In general:
glVertex{234}{sifd} (TYPE coords,…); or
glVertex{234}{sifd}v (TYPE *coords);

1. Output Primitives

?Lines

Windows CDC:
MoveTo(x1,y1); // Set Curr. Pos., one endpoint
LineTo(x2,y2); // line from CP to (x2,y2)

// current pen is used

OpenGL:
glBegin (GL_LINES); // OpenGL

glVertex2f(x1,y1); // 2D endpoint vertices
glVertex2f(x2,y2); // appear in pairs

glEnd() // current glLineWidth & glColor

?Polylines and Polygons

– Windows CDC:
Polyline(lppts,num_pts); // Windows
Polygon(lppts,num_pts);

// parameters: POiNT array, number of points

– OpenGL:
glBegin (GL_POLYGON); // OpenGL

glVertex2f(x1,y1); // first polygon vertex
glVertex2f(x2,y2); // second polygon vertex
… // more vertices

glEnd(); // current glColor & glPolygonMode are used

?Other primitives

– Windows CDC:
• Lots of other primitives
• See prior notes on Windows programming

– Especially Help on CDC class

– OpenGL:
• GL_TRIANGLES, GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN, GL_LINE_STRIP,
GL_QUADS, etc. ---- lots more

?Text

? Windows CDC:
TextOut(x,y,lpszStr,cStrLngth);

? OpenGL:
– Design a font set using bitmap functions in the core

library
– Use GLUT character-generation library functions

char* str = “abcde”;

glRasterPos2i(10,10);
for (int k=0; k<5; k++)

glutBitmapCharacter(GLUT_BITMAP_9_BY_15, str[k]);

3-D primitives

?Windows has nothing
?OpenGL:

– GLU graphics library
• sphere, cube, cone, etc.

2. Attributes (State Variables)
?Properties of primitives

– how they appear
– e.g., color, line style, text style, fill patterns

?Usually modal
– values retained until changed

? Windows –
– see prior notes (e.g., pens, brushes)

? OpenGL-- glProperty();
– ‘Property’ is state variable to set, e.g.

glColor3f (1.0, 0.0, 0.0); // bright red
glLineWidth(3.0); // 3 pixels wide
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);

?Done with matrix math
?Setting windows/viewports

– Window-to-viewport transformation
?Moving objects

– Geometric Transformations
– e.g., translation, rotation, scaling

?Changing coordinate system
?Changing viewpoint
?Different types of projections

3. Transformations

?Windows
– window-to-viewport transformation

• done with Mapping Modes

– programmer must implement others

?OpenGL is very rich
– glLoadMatrix(), glRotatef(), glTranslatef(),

glScalef(), glViewport(), glFrustum(),
glOrtho2D(), gluPerspective(), etc.

4. Segmentation
?Dividing scene into component parts for

(later) manipulation
?Windows: GDI strictly immediate mode

– But there are Metafiles (can be played back)

?OpenGL has Display lists:
– Groups of OpenGL commands that have

been stored for later execution
– Can be hierarchical

? PHIGS uses hierarchical segments

5. Input/Interaction

?Obtain data from input devices or graphics
system
– So user can manipulate scene interactively

?Windows:
– Built into event-driven, message-based

paradigm

? Obtain data from input devices/system and
respond to events

? Auxiliary libraries (GLX, WGL, AGL)
– All use the underlying windowing system

? Or GLUT callback functions
– All take pointers to an event handler function, e.g.

• Window must be redrawn: glutDisplayFunc (mydisplay)
– Then write: mydisplay () function;

• Keyboard: glutKeyboardFunc (mykey)
– Then write: mykey (key, xmouse, ymouse) function

• Mouse events: glutMouseFunc (mymouse)
– Then write: mymouse (button, action, xmouse, ymouse)

• Mouse motion: glutMotionFunc (mymotion)
– Then write: mymotion (xmouse, ymouse)

5. Input/Interaction in OpenGL

? Initialize system, create window, etc.
? Windows: Extensive support

– RegisterClass(), CreateWindow(), etc.
– Mostly hidden in MFC framework

? OpenGL:
– Use GLUT library functions

• glutInit(&argc,argv); glutInitDisplayMode(mode);
glutInitWindowSize(w,h); glutInitWindowPosition(x,y);
glutCreateWindow(“Title”); glutMainLoop();

– Or use WGL functions under Windows

6. Control/Housekeeping

7. Storing/retrieving/manipulating
bitmapped Images

?BitBLT -- Bit Block Transfer
?Windows:

– Device Dependent Bitmaps
• BitBlt(), StretchBlt(), StretchDIBits()etc.

– But very slow
– Device Independent Bitmaps--faster
– DirectX-- flipping surfaces--fastest!

?OpenGL:
– glReadPixels(); glDrawPixels(); glCopyPixels();

8. Rendering/Photorealism
?Hidden surfaces, lighting, shading,

reflection properties, etc.
?Windows GDI: Very little support

– DirectX (Direct3D)--Quite a bit of support
?OpenGL: A lot of support!

– e.g., light sources, lighting models, material
properties, blending, antialiasing, fog,
depth buffer (hidden surface removal),
texturing, etc.

Introduction to
OpenGL

The OpenGL API
? A basic library of functions for specifying 2-D

and 3-D graphics primitives, attributes,
transformations, viewing setups, and many
other operations

? Hardware and platform independent
– All functions in OpenGL library are device

independent
– So many operations (windowing, I/O, etc.) are not

included in basic core library
– Many auxiliary libraries for these

? Close enough to hardware so that programs
written in OpenGL run efficiently

? Easy to learn and use

Three Views of OpenGL
?Programmer’s view

– Specify a set of output primitives to render
– Describe properties (attributes) of these

objects
– Define how these objects should be viewed

?OpenGL state machine with functions to:
– Specify inputs to state machine
– Change the state of the machine
– Both determine the machine’s outputs

?The OpenGL Pipeline

The OpenGL Pipeline

Related Libraries

?GLU: utility library provides routines for
working with viewing/projection
matrices, approximating complex 3D
objects with polygons, displaying
quadrics & splines, surface rendering,
and much more
– GLU functions begin with glu
– All OpenGL implementations include the

GLU library

Windowing Support Libraries
? Windowing systems are platform dependent
? Support libraries:

– GLX: OpenGL Extension to the X Window System,
functions begin with glX

– WGL: Microsoft Windows-to-OpenGL interface,
functions begin with wgl

• Comes with Microsoft Visual Studio

– AGL: Apple GL, functions begin with agl
– GLUT: OpenGL Utility Toolkit

• A library of functions for interacting with screen-
windowing system, functions begin with glut

• Works with many different platforms
• Doesn’t come with Visual Studio, but easily obtained

OpenGL for Microsoft Windows

? Industry standard for high-quality 3-D graphics
applications

? Available on many HW and OS platforms
? “Thin” software interface to underlying graphics

HW
– Implies very good performance

? Implementing on Windows brings workstation-
class graphics to PC

? Real 3-D graphics for Windows

Using OpenGL from Microsoft
Windows

? Two approaches:
– WGL

• Underlying Windows functionality does most of the work
• Easy to use from either Win32 API or MFC

– GLUT
• Contains functions to create and manage windows
• Others to set up handler functions for user-initiated

events

• Applications more easily ported to other platforms

Using the GLUT in OpenGL
Windows Applications

-Visual Studio 2005-
?Download the Windows version from:

– http://www.xmission.com/~nate/glut.html

?Copy files to following directories:
– glut32.dll to: Windows\system32
– glut32.lib to: Program Files\Microsoft Visual

Studio 8\VC\PlatformSDK\lib
– glut.h to: Program Files\Microsoft Visual

Studio 8\VC\PlatformSDK\include\gl

? Could download the GLUT libraries and header files
? But it’s more complex to put them in the correct

directories
? Easier to go to the following website and download

an installer which will get the libraries and install them
in the right places:
– http://tempvariable.blogspot.com/2008/02/installing-freeglut-

on-visual-studio.html

? Click on the package link in the fourth paragraph
– And download the freeglut glut.zip file (229.4 KB)

– After unzipping it, run the install.bat file

Using GLUT from VS 2008

Creating a GLUT-based
Win32 API Application

?Create a Win32 API Application
(Empty)
– Under Project Properties:

• Configuration Properties / Linker / Input /
Additional Dependencies, add:

– opengl32.lib glu32.lib glut32.lib

• Under Linker / Advanced / Entry Point,
set to:

– mainCRTStartup

Header Files

?#include <GL/glut.h>
– gl.h and glu.h not needed if we’re using the

GLUT
– May need other C/C++ standard header

files:
• stdio.h, stdlib.h, math.h, time.h, etc.

Main Program
? Just like regular C/C++ app -- entry point is:

– void main(int &argc, char** argv)
? In main() do following:

– 1. Initialize the GLUT with
• glutInit(&argc, argv);

– 2. Set the display mode
• Specify kind of buffering, color mode, etc:

– glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

– 3. Set initial window position on screen:
• glutInitWindowPosition(x,y);

– 4. Set initial window size on screen
• glutInitWindowSize(w,h);

– 5. Create the window:
• glutCreateWindow(“title”);

Setting the Background Color

?Set background color for display
window
– glClearColor(1.0,1.0,1.0,0.0); //white

• Assigns a color, but does not paint it, Use:
• glClear(GL_COLOR_BUFFER_BIT);

– Causes values in color buffer to be set to values
given in glClearColor()

More Initiazlization: Projection Type,
Viewing Transformation, Clipping
? OpenGL designed for 3D graphics
? Must project onto a 2D window
? Also do window-to-viewport transformation

– with clipping
? For 2D graphics, use an orthogonal projection

– gluOrtho2D(xmin,xmax,ymin,ymax)
• Evquivalent to taking z=0 & setting a “window” with

clipping boundaries: xmin<=x<=xmax, ymin<=y<=ymax
– Will be mapped to entire client area of physical window

• Since projection transformations are done with matrices,
must first set the matrix mode and initialize the matrix:

– glMatarixMode(GL_PROJECTION);
– glLoadIdentity();

Projections: orthogonal/perspective

After Initialization
? Specify what to display in display window

– Create the picture in a display “callback” function
using OpenGL drawing functions

– Pass the address of that callback function to the
GLUT routine glutDisplayFunc(callback_ftn);

– Subsequently callback_ftn gets called any time
client area of display window is exposed

• Like MFC OnDraw(), callback_ftn is called in response to
WM_PAINT messages

• Place code there that specifies what is to be displayed
• End with glFlush() to force buffered commands to execute

? Finally start the message loop in main():
– glutMainLoop();
– Must be last statement in main()

Example GLUT Windows
Application

?See Section 2-9 of the text book (Hearn
and Baker)

?Modified Program listing on page 80
– See First OpenGL program using GLUT

(ogl-pgm1-cc) link on “Example Programs”
web page

– Just draws two diagonal red straight lines
– And some text

Using OpenGL with
Microsoft Windows:

WGL Approach

Steps in Using OpenGL in Windows
Applications – WGL Approach

? Get a DC for a rendering location (window)
? Choose & set a “pixel format” for the DC

– Describes desired HW capabilities
? Create a Rendering Context (RC) for the DC

– Links OpenGL calls to the DC associated with
a window client area

? Associate (bind) the RC with the DC
? Draw using OpenGL function calls
? Release the RC & DC

Rendering Context (RC)
? OpenGL equivalent of Windows GDI Device

Context
? Mechanism by which OpenGL calls are

rendered to the device via a DC
? Links OpenGL calls to a window client area

through the associated DC
– RC Must be compatible with a window’s DC

? Keeps track of current values of OpenGL state
variables
– Just like DC does for GDI state variables

• Attributes, drawing objects, etc.

Pixel Format
Translation layer between OpenGL ftn. calls

& Windows physical rendering operation
Describe things like:

– If using single or double buffering
– If direct or indirect color
– If drawing to a window or offscreen bitmap
– Color depth (# of bit planes)
– ZBuffer depth
– Lots of others

PIXELFORMATDESCRIPTOR
? Data structure used to set the Pixel Format
? Some fields:

– dwFlags: “OR” of properties constants, e.g.
• doublebuffered, stereo, window or bitmap, etc.

– iPixelType
• color type (RGBA or indexed)

– cColorBits: # of bitplanes
– cRedBits: # of bits in red color channel
– cRedShift: where red bits are
– cDepthBits: depth of Z-buffer (hidden surface removal)
– etc.

? See online help: PIXELFORMATDESCRIPTOR

Choosing and Setting the
Pixel Format

?Set up a PIXELFORMATDESCRIPTOR
variable (e.g., pfd)

?pf_index=ChoosePixelFormat(hDC,&pfd)
– gets DC’s pixel format that’s the closest match

to the desired PFD
– returns an integer (e.g., pf_index)

?SetPixelFormat(hDC, pf_index, &pfd)
– Set that pixel format into the DC

Creating and Using a
Rendering Context

? Use WGL function to create an RC:
– hRC = wglCreateContext(hDC);
– Returns a handle to an OpenGL Rendering Context:

• HGLRC hRC

– Will have all capabilities of selected pfd
? Make the RC “Current” [bind RC to DC]

– wglMakeCurrent(hDC, hRC);
– Binds the RC to the window’s DC and the current

thread of execution

? Now we can draw with OpenGL calls

Cleanup
?Make RC non-current (Unbind RC from

DC)
– wglMakeCurrent(hDC, NULL);

?Get rid of the DC
– ReleaseDC() in a Win32 API app.
– Done automatically in MFC when OnDraw()

returns

?Get rid of the RC
– wglDeleteContext(hRC);

Building a Windows/OpenGL
App using the WGL Interface

? Includes in .h file:
– <gl\gl.h> // OpenGL interface
– <gl\glu.h> // OpenGL utility library interface

• Note we’re not using the GLUT

?Must add opengl32.lib & glu32.lib to
Linker's Object library modules
– Under .NET:

• 'Project’ | ‘Properties’ | ‘Configuration Properties’ |
'Linker’ | ‘ Input’ | ‘Additional Dependencies’

• Type in: opengl32.lib glu.lib

MINOGL Example Program
?Displays a rectangle in different shades

of red
?See online listing of CView class of

minogl example OpenGL program
– Look on CS-460/560 “Sample Programs”

Page
– Link:

• MINOGL: A Simple OpenGL Example Program
for Windows MFC (minoglView.cpp)

