Components of a
Graphics Software
System

Introduction to OpenGL

Basic Components of a
Graphics Software System

= Examples from: Windows GDI and
OpenGL

1. Output Primitives

« Building blocks for drawing pictures
= Plotting a pixel--most primitive

= Windows CDC:
COLORREF caolref;
SetPixel(x,y,colref); // Windows--plots pixel
colref = GetPixel(x,y); // returns pixel color

= OpenGL:
glBegin (GL_POINTS); // OpenGL
glVertex2f (x, y); // 2==>2D, f==>floating pt
glEnd(); // current drawing is color used

—In general:

glVertex{234}sifd} (TYPE coords,...); or
glVertex{234}{sifd}v (TYPE *coords);

«Lines

Windows CDC:
MoveTo(x1,yl); /I Set Curr. Pos., one endpoint
LineTo(x2,y2); /l'line from CP to (x2,y2)

/l current pen is used

OpenGL.:

glBegin (GL_LINES); // OpenGL
glVertex2f(x1,yl); // 2D endpoint vertices
glVertex2f(x2,y2); // appear in pairs

glEnd() /Il current glLineWidth & glColor

« Polylines and Polygons

— Windows CDC:
Polyline(lppts,num_pts); // Windows
Polygon(lppts,num_pts);
/I parameters: POINT array, number of points

— OpenGL:
glBegin (GL_POLYGON); // OpenGL
glVertex2f(x1,y1); // first polygon vertex
glVertex2f(x2,y2); // second polygon vertex
/I more vertices
glEnd(); Il current glColor & glPolygonMode are used

=Q0ther primitives

—Windows CDC:
* Lots of other primitives

* See prior notes on Windows programming
— Especially Help on CDC class

—OpenGL:

* GL_TRIANGLES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_LINE_STRIP,
GL_QUADS, etc. ---- lots more

= lext

= Windows CDC:
TextOut(x,y,lpszStr,cStrLngth);

= OpenGL:

— Design a font set using bitmap functions in the core
library

— Use GLUT character-generation library functions

char* str = “abcde”;

glRasterP0s2i(10,10);

for (int k=0; k<5; k++)
glutBitmapCharacter(GLUT_BITMAP_9 BY_15, str[k]);

3-D primitives

= Windows has nothing
= OpenGL:

— GLU graphics library
 sphere, cube, cone, etc.

2. Attributes (State Variables)

« Properties of primitives
— how they appear
—e.g., color, line style, text style, fill patterns

=« Usually modal
— values retained until changed
= Windows —
— see prior notes (e.g., pens, brushes)
= OpenGL-- glProperty();
— ‘Property’ is state variable to set, e.g.
glColor3f (1.0, 0.0, 0.0); // bright red
glLineWidth(3.0); /I 3 pixels wide
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);

3. Transformations

=« Done with matrix math

=« Setting windows/viewports
— Window-to-viewport transformation

« Moving objects
— Geometric Transformations
— e.g., translation, rotation, scaling

« Changing coordinate system
= Changing viewpoint
« Different types of projections

=Windows

— window-to-viewport transformation
» done with Mapping Modes

— programmer must implement others

«=0penGL is very rich

— glLoadMatrix(), glRotatef(), glTranslatef(),
glScalef(), glViewport(), glFrustum(),
glOrtho2D(), gluPerspective(), etc.

4. Segmentation

& Dividing scene into component parts for
(later) manipulation

= Windows: GDI strictly immediate mode
— But there are Metafiles (can be played back)
= OpenGL has Display lists:

— Groups of OpenGL commands that have
been stored for later execution

— Can be hierarchical
= PHIGS uses hierarchical segments

5. Input/Interaction

=« Obtain data from input devices or graphics
system

— S0 user can manipulate scene interactively
= Windows:

— Built into event-driven, message-based
paradigm

5. Input/Interaction in OpenGL

= Obtain data from input devices/system and
respond to events

= Auxiliary libraries (GLX, WGL, AGL)
— All use the underlying windowing system
= Or GLUT callback functions

— All take pointers to an event handler function, e.g.
* Window must be redrawn: glutDisplayFunc (mydisplay)
— Then write: mydisplay () function;
» Keyboard: glutKeyboardFunc (mykey)
— Then write: mykey (key, xmouse, ymouse) function
* Mouse events: glutMouseFunc (mymouse)
— Then write: mymouse (button, action, xmouse, ymouse)
¢ Mouse motion: glutMotionFunc (mymotion)
— Then write: mymotion (xmouse, ymouse)

6. Control/Housekeeping

« Initialize system, create window, etc.

= Windows: Extensive support
— RegisterClass(), CreateWindow(), etc.
— Mostly hidden in MFC framework

= OpenGL:

— Use GLUT library functions
* glutlnit(&argc,argv); glutinitDisplayMode(mode);
glutinitWindowsSize(w,h); glutinitWindowPosition(x,y);
glutCreateWindow(“Title”); glutMainLoop();

— Or use WGL functions under Windows

7. Storing/retrieving/manipulating
bitmapped Images
= BItBLT -- Bit Block Transfer

= Windows:

— Device Dependent Bitmaps
« BitBIt(), StretchBIlt(), StretchDIBits()etc.

— But very slow
— Device Independent Bitmaps--faster
— DirectX -- flipping surfaces--fastest!

= OpenGL:
— glReadPixels(); glDrawPixels(); glCopyPixels();

8. Rendering/Photorealism

=« Hidden surfaces, lighting, shading,
reflection properties, etc.

= Windows GDI: Very little support
— DirectX (Direct3D)--Quite a bit of support

= OpenGL: A lot of support!

—e.g., light sources, lighting models, material
properties, blending, antialiasing, fog,
depth buffer (hidden surface removal),
texturing, etc.

Introduction to
OpenGL

The OpenGL API

« A basic library of functions for specifying 2-D
and 3-D graphics primitives, attributes,
transformations, viewing setups, and many
other operations

« Hardware and platform independent

— All functions in OpenGL library are device
independent

— So many operations (windowing, /O, etc.) are not
included in basic core library

— Many auxiliary libraries for these

« Close enough to hardware so that programs
written in OpenGL run efficiently

« Easy to learn and use

Three Views of OpenGL
« Programmer’s view
— Specify a set of output primitives to render

— Describe properties (attributes) of these
objects

— Define how these objects should be viewed
= OpenGL state machine with functions to:
— Specify inputs to state machine
— Change the state of the machine
— Both determine the machine’s outputs
= The OpenGL Pipeline

The OpenGL Pipeline

Vertices H Transformer

4

Clipper

4
Projector

Rasterizer ﬁ Pixels

Related Libraries

« GLU: utility library provides routines for
working with viewing/projection
matrices, approximating complex 3D
objects with polygons, displaying
guadrics & splines, surface rendering,
and much more
— GLU functions begin with glu

— All OpenGL implementations include the
GLU library

Windowing Support Libraries

= Windowing systems are platform dependent
= Support libraries:

— GLX: OpenGL Extension to the X Window System,
functions begin with gIX
— WGL: Microsoft Windows-to-OpenGL interface,
functions begin with wgl
» Comes with Microsoft Visual Studio

— AGL: Apple GL, functions begin with agl
— GLUT: OpenGL Utility Toolkit

* A library of functions for interacting with screen-
windowing system, functions begin with glut

» Works with many different platforms
» Doesn’'t come with Visual Studio, but easily obtained

OpenGL for Microsoft Windows

& Industry standard for high-quality 3-D graphics
applications

« Available on many HW and OS platforms

=« “Thin” software interface to underlying graphics
HW

— Implies very good performance

= Implementing on Windows brings workstation-
class graphics to PC

= Real 3-D graphics for Windows

Using OpenGL from Microsoft
Windows

= TWO approaches:
— WGL
» Underlying Windows functionality does most of the work
» Easy to use from either Win32 APl or MFC

— GLUT
» Contains functions to create and manage windows
» Others to set up handler functions for user-initiated
events
» Applications more easily ported to other platforms

Using the GLUT in OpenGL
Windows Applications
-Visual Studio 2005-

= Download the Windows version from:
— http://www.xmission.com/~nate/glut.html

= Copy files to following directories:
— glut32.dll to: Windows\system32
— glut32.lib to: Program Files\Microsoft Visual
Studio 8\VC\PlatformSDK\lib

— glut.h to: Program Files\Microsoft Visual
Studio 8\VC\PlatformSDK\include\gl

Using GLUT from VS 2008

= Could download the GLUT libraries and header files

= Butit's more complex to put them in the correct
directories

=« Easier to go to the following website and download
an installer which will get the libraries and install them
in the right places:

— http://tempvariable.blogspot.com/2008/02/installing-freeglut-
on-visual-studio.html

& Click on the package link in the fourth paragraph
— And download the freeglut glut.zip file (229.4 KB)
— After unzipping it, run the install.bat file

Creating a GLUT-based

Win32 APl Application
«Create a Win32 API Application
(Empty)
—Under Project Properties:

» Configuration Properties / Linker / Input /
Additional Dependencies, add:
—opengl32.lib glu32.lib glut32.lib
» Under Linker / Advanced / Entry Point,
set to:
—mainCRTStartup

Header Files

&« #include <GL/glut.h>

—gl.h and glu.h not needed if we're using the
GLUT

— May need other C/C++ standard header
files:
* stdio.h, stdlib.h, math.h, time.h, etc.

Main Program
& Just like regular C/C++ app -- entry point is:
— void main(int &argc, char** argv)
« In main() do following:
— 1. Initialize the GLUT with
* glutlnit(&argc, argv);
— 2. Set the display mode

» Specify kind of buffering, color mode, etc:
— glutlnitDisplayMode(GLUT_SINGLE | GLUT_RGB);

— 3. Set initial window position on screen:
* glutlnitWindowPosition(x,y);

— 4. Set initial window size on screen
* glutlnitWindowsSize(w,h);

— 5. Create the window:
* glutCreateWindow(‘title”);

Setting the Background Color

&« Set background color for display
window

— glClearColor(1.0,1.0,1.0,0.0); //white

* Assigns a color, but does not paint it, Use:

« glClear(GL_COLOR_BUFFER_BIT);

— Causes values in color buffer to be set to values
given in glClearColor()

More Initiazlization: Projection Type,

Viewing Transformation, Clipping
= OpenGL designed for 3D graphics
= Must project onto a 2D window
= Also do window-to-viewport transformation
— with clipping
= For 2D graphics, use an orthogonal projection

- quOrthoZD(xmln Xmax,ymin,ymax)

» Evquivalent to taking z=0 & setting a “window” with

clipping boundaries: xmin<=x<=xmax, ymin<=y<=ymax
— Will be mapped to entire client area of physical window

» Since projection transformations are done with matrices,

must first set the matrix mode and initialize the matrix:
— gIMatarixMode(GL_PROJECTION);
— glLoadldentity();

Projections: orthogonal/perspective

Parallelpiped
View Volume

Plane
Frustum

View Valume

Front
Plane

Parallel Projection
(a}

i

After Initialization

= Specify what to display in display window
— Create the picture in a display “callback” function
using OpenGL drawing functions
— Pass the address of that callback function to the
GLUT routine glutDisplayFunc(callback_ftn);
— Subsequently callback_ftn gets called any time

client area of display window is exposed

+ Like MFC OnDraw(), callback_ftn is called in response to
WM_PAINT messages

» Place code there that specifies what is to be displayed
« End with glFlush() to force buffered commands to execute

« Finally start the message loop in main():
— glutMainLoop();
— Must be last statement in main()

Example GLUT Windows
Application

= See Section 2-9 of the text book (Hearn
and Baker)
= Modified Program listing on page 80

— See First OpenGL program using GLUT
(ogl-pgm1-cc) link on “Example Programs”
web page

— Just draws two diagonal red straight lines

— And some text

Using OpenGL with
Microsoft Windows:
WGL Approach

Steps in Using OpenGL in Windows
Applications — WGL Approach

« Get a DC for a rendering location (window)

« Choose & set a “pixel format” for the DC
— Describes desired HW capabilities

« Create a Rendering Context (RC) for the DC

— Links OpenGL calls to the DC associated with
a window client area

= Associate (bind) the RC with the DC
=« Draw using OpenGL function calls
« Release the RC & DC

Rendering Context (RC)

= OpenGL equivalent of Windows GDI Device
Context

= Mechanism by which OpenGL calls are
rendered to the device via a DC

= Links OpenGL calls to a window client area
through the associated DC
— RC Must be compatible with a window's DC

= Keeps track of current values of OpenGL state
variables

— Just like DC does for GDI state variables
 Attributes, drawing objects, etc.

Pixel Format

Translation layer between OpenGL ftn. calls

& Windows physical rendering operation
Describe things like:

— If using single or double buffering

— If direct or indirect color

— If drawing to a window or offscreen bitmap

— Color depth (# of bit planes)

— ZBuffer depth

— Lots of others

PIXELFORMATDESCRIPTOR

= Data structure used to set the Pixel Format
= Some fields:

— dwFlags: “OR” of properties constants, e.g.
¢ doublebuffered, stereo, window or bitmap, etc.

— iPixelType
« color type (RGBA or indexed)
— cColorBits: # of bitplanes
— cRedBits: # of bits in red color channel
— cRedShift: where red bits are
— cDepthBits: depth of Z-buffer (hidden surface removal)
— etc.

= See online help: PIXELFORMATDESCRIPTOR

Choosing and Setting the
Pixel Format

= Set up a PIXELFORMATDESCRIPTOR
variable (e.g., pfd)
= pf_index=ChoosePixelFormat(hDC,&pfd)

— gets DC'’s pixel format that's the closest match
to the desired PFD

— returns an integer (e.g., pf_index)
= SetPixelFormat(hDC, pf_index, &pfd)
— Set that pixel format into the DC

Creating and Using a

Rendering Context
= Use WGL function to create an RC:
— hRC = wglCreateContext(hDC);

— Returns a handle to an OpenGL Rendering Context:
+ HGLRC hRC

— Will have all capabilities of selected pfd
= Make the RC “Current” [bind RC to DC]

— wglMakeCurrent(hDC, hRC);

— Binds the RC to the window's DC and the current
thread of execution

= Now we can draw with OpenGL calls

Cleanup

= Make RC non-current (Unbind RC from
DC)
—wglMakeCurrent(hDC, NULL);

« Get rid of the DC
— ReleaseDC() in a Win32 API app.

— Done automatically in MFC when OnDraw()
returns

« Get rid of the RC
—wglDeleteContext(hRC);

Set Pixel Format
Create RC from DC
Release DC

Windows
Message
Loop

G
Make RC Current from DC
Make OpenGL Calls
Make RC Noncurrent
Release DC

Delete RC

Building a Windows/OpenGL
App using the WGL Interface

& Includes in .h file:
—<gli\gl.h> // OpenGL interface
—<gl\glu.h> // OpenGL utility library interface
* Note we're not using the GLUT
« Must add opengl32.lib & glu32.lib to
Linker's Object library modules

— Under .NET:;

* 'Project’ | ‘Properties’ | ‘Configuration Properties’ |
‘Linker’ | *Input’ | ‘Additional Dependencies’
* Type in: opengl32.lib glu.lib

MINOGL Example Program

= Displays a rectangle in different shades
of red

= See online listing of CView class of
minogl example OpenGL program
— Look on CS-460/560 “Sample Programs”
Page
— Link:

 MINOGL.: A Simple OpenGL Example Program
for Windows MFC (minoglView.cpp)

