
Windows Programming
with MFC

MFC Programming

?MFC: The Microsoft Foundation Class
Library

?Additional Notes:
http://www.cs.binghamton.edu/~reckert/360/class14.htm
http://www.cs.binghamton.edu/~reckert/360/class15.htm
http://www.cs.binghamton.edu/~reckert/360/10.html

MFC

?The Microsoft Foundation Class (MFC)
Library--
– A Hierarchy of C++ classes designed to

facilitate Windows programming
– An alternative to using Win32 API functions
– A Visual C++ Windows app can use either

Win32 API, MFC, or both

Some Characteristics of MFC
? Offers convenience of REUSABLE CODE

– Many tasks in Windows apps are provided by MFC
– Programs can inherit and modify this functionality as

needed
– MFC handles many clerical details in Windows pgms
– Functionality encapsulated in MFC Classes

? Produce smaller executables
? Can lead to faster program development
? MFC Programs must be written in C++ and

require the use of classes
– Programmer must have good grasp of OO concepts

Help on MFC Classes
? See Online Help (Index) on:

“MFC”
“Hierarchy”

“Hierarchy Chart”
“MFC Reference”

? On the Web:
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx

Base MFC Class
? CObject: At top of hierarchy ("Mother” of almost

all MFC classes)
? Provides features like:

– Serialization
– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes
derived from it

Some Important Derived Classes

?CFile
?CDC
?CGdiObject
?CMenu

?CCmdTarget: Encapsulates message passing
process and is parent of:
– CWnd

• Base class from which all windows are derived
• Encapsulates many important windows functions and

data members
• Examples:

– m_hWnd stores the window’s handle
– Create(…) creates a window

– Most common subclasses:
• CFrameWindow
• CView
• CDialog

?CCmdTarget also parent of:
– CWinThread: Defines a thread of execution and

is the parent of:
• CWinApp

– Encapsulates an MFC application
– Controls following aspects of Windows programs:

– Startup, initialization, execution, the message
loop, shutdown

– An application should have one CWinApp
object

– When instantiated, application begins to run
– CDocument

Primary task in writing an MFC
program

?To create/modify classes
?Most will be derived from MFC library

classes

MFC Class Member Functions
?Most functions called by an application will

be members of an MFC class
?Examples:

– ShowWindow()--a member of CWnd class
– TextOut()--a member of CDC
– LoadBitmap()--a member of CBitmap

?Applications can also call API functions
directly
– Use “global scope resolution” operator ::

• Example ::UpdateWindow(hWnd);

MFC Global Functions

?Not members of any MFC class
? Independent of or span MFC class

hierarchy
?Example:

– AfxMessageBox()

Message Processing under MFC
? API mechanism: switch/case statement in app’s WndProc
? Under MFC, WndProc is buried in MFC framework
? Message handling mechanism: “Message Maps "

– lookup tables the MFC WndProc searches

? A Message Map contains:
– A Message number
– A Pointer to a message-processing function

• These are members of CWnd
• You override the ones you want your app to respond to

• Like virtual functions
– “Message-mapping macros” set these up

MFC Windows Programming
(App/Window Approach)

? Simplest MFC programs must contain two classes
derived from the hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from
CWnd or CFrameWnd

• Defines the application's main window
? To use these & other MFC classes you must have:

#include <Afxwin.h> in the .cpp file

MFC Windows Programming
(Document/View Approach)
?Frequently need to have different views

of same data
?Doc/View approach achieves this

separation:
– Encapsulates data in a CDocument class

object
– Encapsulates data display mechanism &

user interaction in a CView class object

Relationship between Documents,
Views, and Windows

Document/View Programs
? Almost always have at least four classes derived

from:
– CFrameWnd
– CDocument
– CView
– CWinApp

? Usually put into separate declaration (.h) and
implementation (.cpp) files

?Lots of initialization code
? Could be done by hand, but nobody does it that

way

Microsoft Developer Studio
AppWizard and ClassWizard

Tools

AppWizard
? Tool that generates a Doc/View MFC program

framework automatically
? Can be built on and customized by programmer
? Fast, efficient way of producing Windows Apps
? Creates functional CFrameWnd, CView,

CDocument, CWinApp classes
? After AppWizard does it's thing:

– Application can be built and run
– Full-fledged window with all common menu items,

tools, etc.

Other Visual Studio Wizards
? Dialog boxes that assist in generating code

– Generate skeleton message handler functions
• Set up the message map

– Connect resources & user-generated events to
program response code

– Insert code into appropriate places in program
• Code then can then be customized by hand

– Create new classes or derive classes from MFC base
classes

– Add new member variables/functions to classes
? In .NET many wizards available through

‘Properties window’

SKETCH Application
?Example of Using AppWizard and

ClassWizard
?User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

?Left mouse button up:
– sketching stops

?User clicks "Clear" menu item
– window client area is erased

? Sketch data (points) won't be saved
– So leave document (CSketchDoc) class

created by AppWizard alone
? Base functionality of application (CSketchApp)

and frame window (CMainFrame) classes are
adequate
– Leave them alone

? Use ClassWizard to add sketching to
CSketchView class

Sketching Requirements

?Each time mouse moves:
– If left mouse button is down:

• Get a DC
• Create a pen of drawing color
• Select pen into DC
• Move to old point
• Draw a line to the new point
• Make current point the old point
• Select pen out of DC

Variables

?BOOLEAN m_butdn
?CPoint m_pt, m_ptold
?COLORREF m_color
?CDC* pDC

Steps in Preparing SKETCH
1. “File” / “New” / “Project”

– Project Type: “Visual C++ Projects”
– Template: “MFC Application”
– Enter name: Sketch

2. In “Welcome to MFC Application Wizard”
– Application type: “Single Document” Application
– Take defaults for all other screens

3. Build Application --> Full-fledged SDI App with
empty window and no functionality

4. Add member variables to CSketchView
– Can do manually in .h file
– Easier to:

• Select Class View pane
• Click on SketchView class

– Note member functions & variables
• Right click on CSketchView class

– Choose “Add / Variable”
– Launches “Add Member Variable Wizard”

– Variable Type: enter CPoint
– Name: m_pt
– Access: Public (default)

– Note after “Finish” that it’s been added to the .h file
• Repeat for other variables (or add directly in .h file):

– CPoint m_ptold
– bool m_butdn
– COLORREF m_color
– CDC* pDC

5. Add message handler functions:
– Select CSketchView in Class View
– Select “Messages” icon in Properties window

• Results in a list of WM_ messages

– Scroll to WM_LBUTTONDOWN & select it
– Add the handler by clicking on down arrow and

“<Add> OnLButtonDown”
• Note that the function is added in the edit window and the

cursor is positioned over it:
– After “TODO…” enter following code:

m_butdn = TRUE;
m_ptold = point;

?Repeat process for WM_LBUTTONUP
handler:
– Scroll to WM_LBUTTONUP
– Click: “<Add> OnLButtonUp”,
– Edit Code by adding:

m_butdn = FALSE;

? Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE
– Click: “<Add> OnMouseMove”
– Edit by adding code:

if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

}

6. Initialize variables in CSketchView
constructor
– Double click on CSketchView constructor

• CSketchView(void) in Class View

– After “TODO…”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

7. Changing Window’s Properties
– Use window’s SetWindowXxxxx() functions

• In CWinApp-derived class before window is
shown and updated

– Example: Changing the default window title
m_pMainWnd->SetWindowTextW(

TEXT(“Sketching Application”));

– There are many other SetWindowXxxxx()
functions that can be used to change other
properties of the window

8. Build and run the application

Menus and Command Messages

? User clicks on menu item
? WM_COMMAND message is sent
? ID_XXX identifies which menu item (its ID)
? No predefined handlers

– We write the OnXxx() handler function
– Must be declared in .h file and defined in .cpp file

? Event handler wizard facilitates this

Adding Color and Clear Menu
Items to SKETCH App

? Resource View (sketch.rc folder)
– Double click Menu folder
– Double click IDR_MAINFRAME menu
– Add: “Drawing Color” popup menu item with items:

• “Red”, ID_DRAWING_COLOR_RED (default ID)
• “Blue”, ID_DRAWINGCOLOR_BLUE

• “Green”, ID_DRAWINGCOLOR_GREEN
• “Black”, ID_DRAWINGCOLOR_BLACK

– Add another main menu item:
• “Clear Screen”, ID_CLEARSCREEN

– Set Popup property to False

Add Menu Item Command
Handler Function

– One way: Use “Event Handler Wizard”
– In “Resource View” bring up menu editor
– Right click on “Red” menu item
– Select “Add Event Handler” ? “Event Handler Wizard”

dialog box
• Class list: CSketchView
• Message type: COMMAND
• Function handler name: accept default

– OnDrawingcolorRed
• Click on “Add and edit”
• After “TODO…” in editor enter following code:

m_color = RGB(255,0,0);

– In Class View Select CSketchView
– In Properties window select Events (lightning

bolt icon)
– Scroll down to: ID_DRAWINGCOLOR_RED
– Select “COMMAND”
– Click “<Add> OnDrawingcolorRed” handler
– Edit code by adding:

m_color = RGB(255,0,0);

Another Method of Adding a
Menu Item Command Handler

Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

Destroying the Window

? Just need to call DestroyWindow()
– Do this in the CMainFrame class – usually

in response to a “Quit” menu item

Build and Run the Application

