Fractals

Fractals

e Beautiful designs of infinite structure and
complexity
e Qualities of Fractals:
— Fractional dimension
— Self similarity
— Complex structure at all scales
— Chaotic dynamical behavior
— Simple generation algorithms

— Capable of describing an enormous range of
natural objects

Some Objects
Representable by Fractals

e Mountains
e Clouds

e Snow flakes
e Fog

e Frost patterns
o Fire

e River basins
e Sea coasts

e Explosions and fireworks
e Plants

e Island formations

e Galaxies

e Arteries and veins

e Cells

e Rivers

e Stock market fluctuations
e Weather systems

e Many More!!

Types of Fractal-Generation
Algorithms

e Linear Replacement Mapping

e |terated Function Systems

e Random Midpoint Displacement

e Plasmas

e Escape-time algorithms

e Complex plane mapping

e Recursive, grammar-based systems

e Particle Systems

Linear Replacement Mapping

1. Define initial structure in terms of line
endpoints

2. Define a replacement mapping

— rule that replaces each line with a refined
set of lines

— defines next generation of structure
— inherently recursive

3. Iterate the refinement until desired level
achieved

Example: Koch Snowflake

THE RULE: INITIAL STRUCTURE: SUCCESSIVE
GENERATIONS:

v

(2) (b} M
(a} M =3 YNy =4 [C) N =5)Ny = 6
a} Mj =

Implementing a Koch Curve

Assume recursive function Koch(len,theta,n)
(len = length, theta = angle of line, n=recursion level)
To get next generation curve (i.e., if n >0) from a line segment, make 4
calls:

Koch (len/3, theta, n-1); -120
theta += 60;

Koch (len/3, theta, n-1); +60
theta -= 120; +60

Koch (len/3, theta, n-1); >/

theta += 60;
Koch (len/3, theta, n-1); 0

Base case: At lowest (n=0) level of recursion, so draw line:
LineTo (Ilen*cos(theta), len*sin(theta)) ;

Using the Koch() function

e 1. Assign a value to n and an initial
position (x0,y0)

e 2. Make a call to MoveTo(xO0, y0)

e 3. Assign an initial len, and theta

e 4. Make the call Koch (len, theta, n)

Fractint

e Classic free program for playing around
with many different kinds of fractals

e Originally a DOS program
e Has been extended to Windows

e Fractint home page:
— http://spanky.triumf.ca/www/fractint/fractint.html
— Has a link to a download site

Dimension of a Fractal

e Look at a non-fractal, a line (1-D)
— Subdivide into N similar pieces, e.g., 3
— Reduce by a scaling factor r, e.g., 1/3
1= N*rt
e Another: a rectangle (2-D)
1= N*r2
e Another: a rectangular solid (3-D)
1= N*3
e Evidently the exponent of r is the
“dimension” of the object

Hausdorff Dimension

e In general, assume 1 = N*rP
— where D is the “dimension” of the object
e Solve for D:
— D =log(N)/log(1/r)
e For a Koch curve
— N=4, r=1/3
— D =log(4)/log(3) = 1.2857
— Non-integer!!
e Somehow it occupies more space than a
linear object in Euclidean space

e Fractals: Hausdorff dim. > topological dim.

Iterated Function Systems

e Define a set of contractive affine transformation
matrices Mi:

| ai bi el
Mi = | ci di fil
L0 0 1]

Generate new points P’=(x",y’) from old P=(x,y):
P’ = Mi*P

i.e.:
X' = ai*x + bi*y + ei
y' = ci*x + di*y + fi

The IFS Algorithm

Select “seed point” (x,y)

Repeat many time:
Pick an i randomly
Compute x',y’ from x,y using Mi (ai,bi,ci,di,ei,fi)
Plot (x',y’) on screen
Set (x,y) to (X',y")

Accelerating the IFS
Algorithm

e Choose each Mi with a probability:
| ai*di - bi*ci |

S | ai*di - bi*ci |

Example: An IFS Fern

Matrix elements: i & bi o di e fi

1 0.00 0.00 0.00 0.16 0.0 0.0
2 0.85 0.04-0.04 0.85 0.0 1.6
3 0.20-0.26 023 022 00 186
4-0.15 0.28 026 0.2¢4 0.0 0.44

Result after Result after Result after
2000 iterations: 20,000 iterations: 200.000 iterations

Finding IFS for Arbitrary Images

e Collage Theorem (M. Barnsley)

— Any image can be represented by union of
contractive affine transformations of itself

— So cover the image with reduced replicas
of itself

* a collage
— Find transformation for each replica --> Mi
— Process can be automated
— Can be used in image compression

An IFS Square (one way)

M1={0.5 0,0,05 0), P1= .25
M2 ={0.5 0,0,05 x2, 0}, P2= 25
M3 = {0.25,0,0, 05,0, y?2), P3=.125
M4 = {0.75, 0, 0, 0.5, x/4, y/2), P4 =375

Random Midpoint Displacement ‘
e Good for mountain

New line

silhouettes N
e Recursive subdivision Displacement
1 H Midpoint
e Start with a line segment Mo T

e Find midpoint (xm,ym)

e Displace ym by a random amount proportional to
current length

e Repeat with each subdivision until sufficiently
detailed
— Repeat until we get to individual pixels
— Store computed values of y in an array y[]

e Start endpoint coordinates: (x1,yl), (x2,y2)

e Assume we have a recursive procedure
fracline(a,b)
— Computes displaced midpoint line from x=a to x=b
— Calls itself for each half of line

— Repeat until y values for all pixels between
endpoints are computed

New line
Fandom
K Displalc ement
Midpoint
New line

int y[SCREEN_WIDTH);

float rug = 0.5; /l ruggedness factor
y[x1] = y1; y[x2] =y2; [/ line endpoints
fracline (x1,x2); Il fills y array values
for (x=x1; Xx<=x2; X++)
SetPixel(x,y[X]); New line
Random
Displacement
fracline (a,b) i dpm,m\N
{ if ((b-a)>1) New line

{ xmid = (a+b)/2;
y[xmid] = (y[a]+y[b])/2 + rug*(b-a)*rand();
fracline (a, xmid); fracline (xmid, b); }

e Generalize to triangular surfaces in 3D
e Displace each triangle edge midpoint randomly in z
e --> Neat mountains!

{a) Nt =1

AT
A TR/
‘-“‘{ﬁ\

sy

{f) Nit = 7 (shaded,

(e) Nit = 7 (shaded) with sea level = 0}

Drawing Trees With Recursive
Subdivision

e A tree is a recursive structure
— Each node is a new tree

e Draw trunk (first branch)

e Draw new branches from end of parent
branch
— Each new branch length reduced by a factor f

— Each new branch goes off at an angle alpha with
respect to parent branch

— Recursive function branch(n,x,y,a,alpha)

« n=level of recursion, x,y = endpoint of current branch,
a = length of current branch, alpha = current branch
angle

Plasmas

e Extension of random midpoint
displacement

e Works with colors
e Great for generating clouds
e Easily generalized to give mountains

Plasma-generating Algorithm

Set screen black

Set current rectangle to entire screen

Set each corner pixel of current rectangle to a random color

For each edge of current rectangle

Compute color of midpoint P between edge's corner pixels by:

1. Pick a random color C
2. Compute weighting factor W proportional to distance
between corner & P
3. Set midpoint color to average of two corner colors and the
color C weighted by W

Set center of current rectangle to average of 4 edge midpoint
colors

Repeat recursively for each new rectangle determined by corner
pixel and center pixel until all pixels are colored

e Key idea--at beginning, distances are large
— So color of center pixel is mostly random
— But as rectangles become smaller,
random contribution is less...
while neighbor pixel contribution is greater
— So close points have similar colors
* Like clouds

Converting a Plasma to a Mountain

— Treat color code of each point as a height
— Plot the resulting surface
— (A cloud is a color-coded map of a mountain!)

Escape-Time Algorithms for
Generating Fractals

e Give iterative rule for generating points in the
complex plane

e Use "seed" points & determine if “orbit” of points
generated by iterative rule is finite or escapes to
infinity

e Map real (x) and imaginary (y) parts of each
seed point to a pixel on screen

e Boundary between seed points whose orbits
escape and those whose orbits do not escape is
often a very complex fractal

Example: Mandelbrot Set

Im(z) = 7y

z=rzx+i*zy

Iteration rule: z=2z2 +c sl o
Cc is the seed point: ¢ =cx + i*cy - Re(zyzx
Z = zx + i*zy is each new complex point generated
Start out with z = (0,0)

By definition z2 = (zx2 - zy?, 2*zx*zy)

Square of radius of orbit: |z|2 =zx2 + zy2

If |z] > 2, orbit will escape to infinity (can be shown
Area of complex plane containing Mandelbrot set:

-2<cx<15 and -15<cy<0.5

Nr’

Mandelbrot Set Algorithm

e Simple algorithm to generate image of
Mandelbrot set

e Points in Set are painted black
e Points outside set are painted white

e Can be generalized to paint in colors

— Depending on how quickly outside points
escape to infinity

Set N to some large maximum number of iterations
Fory = 0to SCREEN_HEIGHT
For x =0to SCREEN_WIDTH
Map (x,y) to (cx,cy) // inverse 2D viewing transformation
zx = 0; zy = 0; count = O;
While ((zx*zx + zy*zy < 4) && (count < N))

count++;

temp = zx*zx - zy*zy + cx; // real part of new z
zZy = 2*zx*zy + cy; /l imaginary part of new z
zx = temp;

If (count < N)
Setpixel(x,y,white); // orbit escaped to infinity
Else
Setpixel(x,y,black); // orbit did not escape in N iterations

Grammar-Based Systems
(Lindemayer, L-Systems)

e Objects represented by strings of letters

— Need an “Alphabet”
* used to compose strings
— Need an initial word (“Axiom”)
* successive generations of string derived from it
e “Productions” specify how new
generations of objects are obtained

— Give rewriting rules
 applied in parallel to each letter in string

L-Systems in Computer
Graphics

e Interpret each letter as a movement on
screen (turtle graphics)
e Example alphabet with interpretation:
F: Go forward (trace a line)
+: Turn left by a given angle
- Turn right by a given angle
many other possible movements

L-System for a Koch Curve

Alphabet:
F, +, -
Forward, turn +/-
Take angle as 60
Axiom:
F

Production:

F>F+F--F+F

-120

+60
+60

>

el

Deriving the System

F>F+F--F+F

Next iteration

(F+F--F+F) + (F+F--F+F) - - (F+F--F+F) +

(F+F--F+F)

Successive iterations generate the Koch

Curve

L-Systems can be extended
In many ways

e Bracketed L-Systems
— Good for modeling plants
— Anything inside brackets is a branch
—“I" means push onto stack (start branch)
—“" means pop from stack (end branch)
e Stochastic L-Systems
— Apply productions probabilistically
e Lots of other variations

Particle Systems

e Collections of particles that evolve over
time

e Used to model systems whose time
behavior is unpredictable

e Evolution determined by applying laws
of physics to each particle

e Probabilistic effects easily included

Particles can:

e Be born and die
e Generate new particles

e Change their attributes
— color, mass, etc.

e Move according to specified laws of
motion

e Interact with their environment
e Interact with each other

Particles can model:

e Fire

e Clouds

e FOgQ

e Explosions

e Moving water

e Flocking birds

e Lots of other systems

End of Course Stuff

e Final Exam
— Open books & notes
— Tuesday, May 12, 2009

—11:00 A.M-1:00 P.M.
— LH-005

Final Exam Topics

3D Geometric Transformations
— Translation; Rotation about X, y, z axes; Scaling

The 3D Modeling/Rendering Pipeline
— 3D Polygon Mesh Model Data Structures (Points, Polygon lists)
— 3D Viewing Transformation (4-parameter viewing setup)
— Projection Transformations (perspective, parallel)
— Window to Viewport Transformation

3D Modeling and Rendering with OpenGL

Back-Face Culling

Z-Buffer Hidden Surface Removal Algorithm

Illumination and Reflection (ambient, diffuse, specular)

The Phong Illumination/Reflection Model

Flat Shading

Interpolated Shading (Gouraud)

Ray Tracing & Texture Mapping

Fractals

