
Photorealism

�Ray Tracing
�Texture Mapping
�Radiosity

Photorealism -- Taking into 
Account Global Illumination

� Light can arrive at surfaces indirectly
� This light called global illumination
� To now we’ve approximated it with a constant, 

diffuse ambient term
– This is wrong

� Need to take into account all the multiply reflected 
light in the scene

� Two different approaches:
• Ray Tracing -- specularly reflected light
• Radiosity -- diffusely reflected light



Photorealism: Ray Tracing

� See CS-460/560 Notes at:
http://www.cs.binghamton.edu/~reckert/460/raytrace.htm
http://www.cs.binghamton.edu/~reckert/460/texture.htm

� Persistence of Vision Ray Tracer (free):
http://povray.org/

Ray Tracing
� What is seen by viewer depends on:

– rays of light that arrive at his/her eye
� So to get “correct” results:

– Follow all rays of light from all light sources
– Each time one hits an object, compute the 

reflected color/intensity
– Store results for those that go through projection 

plane pixels into observer’s eye
– Paint each pixel in the resulting color



Forward Ray Tracing

� Infinite number of rays from each 
source

� At each intersection with an object
– could have an infinite number of reflected 

rays
� Completely intractable
� Would take geological times to compute



Backward Ray Tracing
� Look only at rays observer sees
� Follow rays backwards from eye point 

through pixels on screen
– “Eye” rays

� Check if they intersect objects
– If so, can intersection point see a light source?

• If so, compute intensity of reflected light
• If not, point is in the shadow

– If object has reflectivity/transparency
• Follow reflected/transmission rays
• Treat these rays as “eye” rays
• So it’s a recursive algorithm



Recursive Ray Tracing Algorithm
depth = 0
for each pixel (x,y)

Calculate direction from eyepoint to pixel
TraceRay (eyepoint, direction, depth, *color)
FrameBuf [x,y] = color

TraceRay (start_pt, direction_vector, recur_depth, *color)
if (recur_depth > MAXDEPTH)    color = Background_color
else

// Intersect ray with all objects 
// Find int. point that is closest to start_point

// Hidden surface removal is built in
if (no intersection)    color = Background_color
else

// Send out shadow rays toward light sources
local_color = contribution of illumination model at int. pt.

// Calculate direction of reflection ray
TraceRay (int_pt, refl_dir., depth+1, *refl_color)

// Calculate direction of transmitted ray
TraceRay (int_pt., trans_dir., depth+1, *trans_color)

color = Combine (local_color, refl_color, trans_color)



Combining Color from 
Reflection Ray

� Add attenuated reflected color intensity to local 
color intensity:
color = local_color + k * refl_color

• here refl_color is I(r,g,b) - color returned by reflection ray
• local_color is I(r,g,b) - color computed by illumination model 

at intersection point
• k is an attenuation factor (<1) 

Combining Color from Transmission Ray
� Observer sees a mixture of light reflected off 

surface and light transmitted through surface
� So combine colors (interpolate)

I(r,g,b) = k’*Ilocal(r,g,b) + (1 - k’)*Itransmitted(r,g,b)
k’ is opacity factor coefficient
k’=0 => perfectly transparent, k’=1 ==> perfectly opaque



Ray Tracing Intersection 
Calculations

Parametric Equations for 
Eye Ray:

x = x0 + (x1-x0)*t
x = x0 + ∆x*t

y = y0 + (y1-y0)*t
y = y0 + ∆y*t

z = z0 + (z1-z0)*t
z = z0 + ∆z*t



Equation of a sphere of 
radius r, centered at (a,b,c)

(x-a)2 + (y-b)2 + (z-c)2 = r2

Substitute ray parametric equations:
(x0+∆x*t-a)2 + (y0+∆y*t-b)2 + (z0+∆z*t-c)2 = r2

Rearrange terms:
(∆x2+∆y2+∆z2)t2 + 2[∆x(x0-a)+∆y(y0-b)+∆z(z0-c)]t
+(x0-a)2 + (y0-b)2 + (z0-c)2 - r2 = 0

This is a quadratic in 
parameter t

� Solution(s): value(s) of t where ray 
intersects sphere

� Three cases
– No real roots ==> no intersection point
– 1 real root ==> ray grazes sphere
– 2 real roots ==> ray passes thru sphere

• Select smaller t (closer to source)



Sphere Normal Computation
� To apply illumination model at intersection 

point P, need surface normal
� Can show: N = ( (x-a)/r, (y-b)/r, (z-c)/r )

Intersections with other 
Objects

� Handled in similar fashion
� May be difficult to come up with 

equations for their surfaces
� Sometimes approximation methods 

must be used to compute intersections 
of rays with surfaces



A Ray-Traced Image

Disadvantages of Ray Tracing
� Computationally intensive

– But there are several acceleration techniques
� Bad for scenes with lots of diffuse reflection

– But can be combined with other algorithms that 
handle diffuse reflection well

� Prone to aliasing
– One sample per pixel

• can give ugly artifacts
– But there are anti-aliasing techniques



Persistence of Vision Ray 
Tracer

� POVRay free software
� Lots of capabilities
� Great for playing around with ray tracing

– http://povray.org/

An Algorithm Animation of a 
Ray Tracer

Ray Tracing Algorithm Animator in VC++ 
(with David Goldman)

See:
http://www.cs.binghamton.edu/~reckert/3daape_paper.htm

Ray Tracing Algorithm Animation Java 
Applet and Paper (with Brian Maltzan)

See:
http://www.cs.binghamton.edu/~reckert/brian/index.html



Pattern/Texture Mapping
� Adding details or features to surfaces

– (variations in color or texture)

General Texture Mapping

� Pattern Mapping Technique
– Modulate surface color calculated by 

reflection model according to a pattern 
defined by a texture function

• (“wrap” pattern around surface)
• 2-D Texture function: T(u,v)

– Define in a 2-D texture space (u,v)
– Could be a digitized image 
– Or a procedurally-defined pattern



Inverse Pixel Mapping (Screen 
Scanning)

For each pixel on screen (xs, ys)
Compute pt (x,y,z) on closest surface projecting to pixel

(e.g., ray tracing)
Determine color (e.g., apply illumination/reflection model)
Compute (u,v) corresponding to (x,y,z) (inverse mapping)
Modulate color of ( xs,ys ) according to value of T(u,v) at 
(u,v)

Inverse Mapping a Sphere
� Lines of longitude: constant u, corresponds to theta
� Lines of latitude: constant v, corresponds to phi



Ex: Inverse Mapping a Polygon
� Choose axis S (unit vector) along a polygon edge

– will align with u-axis in texture space

� Choose a polygon vertex Po(xo,yo,zo)
– will correspond to origin in texture space

� Choose a scaling factor k
– k = max dimension of polygon

• 0-k in object space --> 0-1 in texture space
� Want to map point P(x,y,z) on polygon to (u,v)

� Construct vector V = P - Po
� V.S = k*u,  projection of P onto S
� So  u = V.S/k
� Choose orthogonal axis T in polygon plane 

(T=NxS)
� v=V.T/k



There are lots of other 
Texture Mapping 

Techniques
See Section 10-17 of your text book

Radiosity  Methods
� Alternative to ray tracing for handling 

global illumination
� Two kinds of illumination at each 

reflective surface
– Local: from point sources
– Global: light reflected from other surfaces 

in scene (multiple reflections)
– Ray tracing handles specularly reflected 

global illumination
• But not diffusely reflected global illumination



Radiosity Approach
� Compute global illumination
� All light energy coming off a surface is the 

sum of:
– Light emitted by the surface
– Light from other surfaces reflected off the surface
– Divide scene into patches that are perfect diffuse 

reflectors...
• Reflected light is non-directional

– and/or emitters

Definitions
� Radiosity  (B):

– Total light energy per unit area leaving a 
surface patch per unit time--sum of emitted 
and reflected energy (Brightness)

� Emission (E):
– Energy per unit area emitted by the surface 

itself per unit time  (Surfaces having 
nonzero E are light sources)



� Reflectivity  ( ρ ):
– Fraction of light reflected from a surface  (a 

number between 0 and 1)

� Form Factor (Fij):
– Fraction of light energy leaving patch i which 

arrives at patch j
• Function only of geometry of environment

� Conservation of energy for patch i:
– Total energy out  =  Energy emitted  +   Sum of 

energy from other patches reflected by patch i:

Bi*Ai  =  Ei*Ai   +  ρi∗Σ Bj*Aj*Fji

Bi  =  Ei   +  ρi∗Σ (Bj*Aj/Ai)*Fji
j



� Principle of Reciprocity for Form Factors
– Reversing role of emitters and receivers:

• Fraction of energy emitted by one and received 
by other would be same as fraction of energy 
going the other way

• Fij*Ai  =  Fji*Aj    ==>    Fji = (Ai/Aj) Fij
• So:

Bi  =  Ei  +  ρi∗ Σ Bj*Fij

Bi  - ρi∗ Σ Bj*Fij  =  Ei

• Need to solve this system of equations for 
the radiosities Bi



Gauss-Seidel Solution

Problem: getting form factors

Computing Form Factors

∆FF = Σ (cos φi cos φj ∆Aj) / (πr2), approximately



Hemicube Approximation

Hemicube Pixel Computations
∆F = cosθi*cosθp*∆A / (π∗ r2)  

a. (top) ∆F = ∆A / [π*(x2 + y2 + 1)2]
b. (sides) ∆F = z*∆A / [π*(y2 + z2 + 1)2]



Hemicube Form Factor Algorithm
Compute & strore all hemicube delta Form Factors:  ∆FF[k]
Zero all the Form Factors: Fij
For all patches i

Place unit hemicube at center of patch i
For each cell k on hemicube

dist[k] = infinity
For each patch j (j != i)

If  line from origin through cell k intersects patch j
compute distance d to intersection point
if d < dist[k]

dist[k] = d
store j in item_buf [k]

For each cell k on hemicube
j = item_buf [k]
Fij = Fij + ∆FF[k]

Video of Radiosity Form 
Factor Computation



Steps in Applying Radiosity 
Method

Three Simple Radiosity 
Images

No Gouraud Shading Gouraud ShadingAfter 1
st

Gauss-
Seidel Iteration



Radiosity Summary
� Good for scenes with lots of diffuse reflection
� Not good for scenes with lots of specular reflection

– Complementary to Ray Tracing
– But can be combined with Ray Tracing

� Very computationally intensive
– Can take very long times for complex scenes

• but once patch intensities are computed, scene “walkthroughs”
are fast

– Gauss-Seidel is very memory intensive
– There are other approaches

• Progressive Refinement


