Photorealism

e Ray Tracing
e Texture Mapping
e Radiosity

Photorealism -- Taking into

Account Global Illumination

e Light can arrive at surfaces indirectly
e This light called global illumination

e To now we’ve approximated it with a constant,
diffuse ambient term
— This is wrong
e Need to take into account all the multiply reflected
light in the scene
e Two different approaches:
 Ray Tracing -- specularly reflected light
* Radiosity -- diffusely reflected light

Photorealism: Ray Tracing

e See CS-460/560 Notes at:
http://www.cs.binghamton.edu/~reckert/460/raytrace.htm
http://www.cs.binghamton.edu/~reckert/460/texture.htm

e Persistence of Vision Ray Tracer (free):
http://povray.org/

Ray Tracing

e What is seen by viewer depends on:
— rays of light that arrive at his/her eye

e SO to get “correct” results:
— Follow all rays of light from all light sources

— Each time one hits an object, compute the
reflected color/intensity

— Store results for those that go through projection
plane pixels into observer’'s eye

— Paint each pixel in the resulting color

Forward Ray Tracing--Follow ray from source to viewpoint

Diffuse 1 A
Surface
A

Diffuse
Surface B

Forward Ray Tracing

e Infinite number of rays from each
source

e At each intersection with an object

— could have an infinite number of reflected
rays

e Completely intractable
e Would take geological times to compute

Backward Ray Tracing

e Look only at rays observer sees

e Follow rays backwards from eye point
through pixels on screen
— “Eye” rays

e Check if they intersect objects
— If so, can intersection point see a light source?

« If so, compute intensity of reflected light
« If not, point is in the shadow

— If object has reflectivity/transparency
» Follow reflected/transmission rays
« Treat these rays as “eye” rays
¢ Soit's a recursive algorithm

Backward Ray Tracing--Follow Ray from Eye of viewer and
determine its path backwards through the scene until it hits

a light source or escapes. \(')/
< - Surface C
Surface A
53
Screen

Glass Ball

/%7
- Eyve Ray

View /

Point Surface B

Recursive Ray Tracing Algorithm

depth =0

for each pixel (x,y)
Calculate direction from eyepoint to pixel
TraceRay (eyepoint, direction, depth, *color)
FrameBuf [x,y] = color

Example Ray Intersection Calculation:
An Eye Ray with a Sphere

P1 (x1,ylzl)

Sphere

PO: Center of Projection
P1: Current Screen Pixel
P: Desired Intersectoin Pt.

TraceRay (start_pt, direction_vector, recur_depth, *color)
if (recur_depth > MAXDEPTH) color = Background color

Backward Ray Tracing-Follow Ray from Eye of viewer and

else iT?;LTLZﬁi‘:&‘fSi‘:SZ.‘"""h’°”ffé",f"‘"‘ s
/I Intersect ray with all objects ﬂ . tace ¢
/I Find int. point that is closest to start_point

/I Hidden surface removal is built in O s

else o
/I Send out shadow rays toward light sources
local_color = contribution of illumination model at int. pt.
/I Calculate direction of reflection ray
TraceRay (int_pt, refl_dir., depth+1, *refl_color)
/I Calculate direction of transmitted ray
TraceRay (int_pt., trans_dir., depth+1, *trans_color)
color = Combine (local_color, refl_color, trans_color)

if (no intersection) color = Background_color /%// E

Combining Color from
Reflection Ray

e Add attenuated reflected color intensity to local
color intensity:
color = local_color + k * refl_color

* here refl_color is I(r,g,b) - color returned by reflection ray

* local_color is I(r,g,b) - color computed by illumination model
at intersection point

Backward Ray Tracing--Follow Ray from Eye of viewer and

* k is an attenuation factor (<1) determine its path backwards through the scene until it hits
* o

The Ray Tree for the above Scene alight source or escapes.

Eye Ray

Combining Color from Transmission Ray

e Observer sees a mixture of light reflected off
surface and light transmitted through surface
e S0 combine colors (interpolate)

I(r,g,b) = k’*llocal(r’g!b) + (1 - k’)*ltransmitted(r’g’b)
Kk’ is opacity factor coefficient
k’=0 => perfectly transparent, k’=1 ==> perfectly opaque

. Ltransmitted

I-lol_i;:/ \\

Light Source ~ Viewpoini

Ray Tracing Intersection
Calculations

Example Ray Intersection Calculation:
An Eye Ray with a Sphere

Fl (x1,¥1;z1)
Sphere

PO: Center of Projection
Pl: Cwrrent Screen Pixel
P: Desired Intersectoin Pt.

Parametric Equations for
Eye Ray:

X = X0 + (x1-x0)*t
X = X0 + Ax*t

y =y0 + (y1-y0)*t
y =Yy0 + Ay*t

z =20 + (z1-z0)*t
z =20 + Az*t

Equation of a sphere of
radius r, centered at (a,b,c)

(x-2)? + (y-b)? + (z-)? =
Substitute ray parametric equations:

(X0+Ax*t-a)? + (yO+Ay*t-b)? + (z0+Az*t-c)? = r2
Rearrange terms:

(Ax2+Ay2+AZ2)12 + 2[Ax(x0-a)+Ay(y0-b)+Az(z0-c)]t
+(x0-a)? + (y0-b)? + (z0-c)2-r2=0

This is a quadratic in
parameter t

e Solution(s): value(s) of t where ray
Intersects sphere

e Three cases
—No real roots ==> no intersection point
—1 real root ==> ray grazes sphere

—2 real roots ==> ray passes thru sphere
» Select smaller t (closer to source)

Sphere Normal Computation

e To apply illumination model at intersection
point P, need surface normal

e Can show: N = ((x-a)/r, (y-b)/r, (z-c)Ir)

Sphere
Radius r
Center: {ah,c)

P: Intersection Point
N: Normal vector
L: Light vector

Intersections with other
Objects

e Handled in similar fashion

e May be difficult to come up with
equations for their surfaces

e Sometimes approximation methods
must be used to compute intersections
of rays with surfaces

A Ray-Traced Image |

Disadvantages of Ray Tracing

e Computationally intensive

— But there are several acceleration techniques
e Bad for scenes with lots of diffuse reflection

— But can be combined with other algorithms that

handle diffuse reflection well

e Prone to aliasing

— One sample per pixel

* can give ugly artifacts
— But there are anti-aliasing techniques

Persistence of Vision Ray
Tracer

e POVRay free software
e Lots of capabilities

e Great for playing around with ray tracing
— http://povray.org/

An Algorithm Animation of a
Ray Tracer

Ray Tracing Algorithm Animator in VC++
(with David Goldman)

See:

http://www.cs.binghamton.edu/~reckert/3daape_paper.htm

Ray Tracing Algorithm Animation Java
Applet and Paper (with Brian Maltzan)

See:
http://www.cs.binghamton.edu/~reckert/brian/index.html

Pattern/Texture Mapping

e Adding details or features to surfaces
— (variations in color or texture)

General Texture Mapping

e Pattern Mapping Technique

— Modulate surface color calculated by
reflection model according to a pattern
defined by a texture function

 (“wrap” pattern around surface)

» 2-D Texture function: T(u,v)
— Define in a 2-D texture space (u,v)
— Could be a digitized image
— Or a procedurally-defined pattern

Inverse Pixel Mapping (Screen
Scanning)

For each pixel on screen (xs, ys)
Compute pt (x,y,z) on closest surface projecting to pixel
(e.g., ray tracing)
Determine color (e.g., apply illumination/reflection model)
Compute (u,v) corresponding to (x,y,z) (inverse mapping)
Modulate color of (xs,ys) according to value of T(u,v) at
uv)

Texture Space Object Space [x,v.2) Screen Space

Inverse Mapping a Sphere
e Lines of longitude: constant u, corresponds to theta

e Lines of latitude: constant v, corresponds to phi

v

x=R sin(phi) cos(theta)
v=R sin(phi) sin(theta)
z=R cos(phi)

phi = arccos(z/R) = arccos(N.z)
theta = arccos(x/R sin(phi))
theta = (arccos(N.x/sin(phi))

. . . phi=0, North Pole, v=1
v = (pi-phi)/pi phi=pi, South Pole, v=0

u=theta/2*pi if N.y is + theta=0, u=0; theta=pi, u=0.5 (+y side)
u = 1-theta/2*pi if N.y is - theta=pi, u=0.5; theta=0, u=1.0 (y side)

Ex: Inverse Mapping a Polygon

Choose axis S (unit vector) along a polygon edge
— will align with u-axis in texture space

Choose a polygon vertex Po(xo,y0,z0)

— will correspond to origin in texture space

Choose a scaling factor k

— k = max dimension of polygon
* 0-k in object space --> 0-1 in texture space
Want to map point P(x,y,z) on polygon to (u,v)

e Construct vector V=P - Po

e V'S = k*u, projection of P onto S

e So u=V-S/k

e Choose orthogonal axis T in polygon plane
(T=NxS)

e v=V-T/k

There are lots of other
Texture Mapping
Techniques

See Section 10-17 of your text book

Radiosity Methods

e Alternative to ray tracing for handling
global illumination

e Two kinds of illumination at each
reflective surface
— Local: from point sources

— Global: light reflected from other surfaces
in scene (multiple reflections)
— Ray tracing handles specularly reflected
global illumination
 But not diffusely reflected global illumination

Radiosity Approach

e Compute global illumination

e All light energy coming off a surface is the
sum of:
— Light emitted by the surface
— Light from other surfaces reflected off the surface

— Divide scene into patches that are perfect diffuse
reflectors...
» Reflected light is non-directional

— and/or emitters

Definitions

e Radiosity (B):

— Total light energy per unit area leaving a
surface patch per unit time--sum of emitted
and reflected energy (Brightness)

e Emission (E):

— Energy per unit area emitted by the surface
itself per unit time (Surfaces having
nonzero E are light sources)

e Reflectivity (p):

— Fraction of light reflected from a surface (a
number between 0 and 1)

e Form Factor (Fij):

— Fraction of light energy leaving patch i which
arrives at patch j
 Function only of geometry of environment

e Conservation of energy for patch i:

— Total energy out = Energy emitted + Sum of
energy from other patches reflected by patch i:

Bi*Ai = Ei*Ai + pX Bj*Aj*Fiji

S B.F. = Light energy arrivin
ity £ gy g

Bi = Ei + pl[z (BJ*AJ/AI)*FjI at this surface from

othar surfaces

J Surfaces j make
up the rest af
the scene

BF. =Th B, = Emiited Bght energy
7285, ¢ of this surface

reflected light
energy of this
surface

e Principle of Reciprocity for Form Factors

— Reversing role of emitters and receivers:

* Fraction of energy emitted by one and received
by other would be same as fraction of energy
going the other way

« Fij*Ai = Fji*Aj ==> Fji = (Ai/A)) Fij
* So:
Bi = Ei + p,[& Bj*Fij
Bi - p[X Bj*Fij = Ei
* Need to solve this system of equations for
the radiosities Bi

Radiocsgity -- lation and ion

Azsume N patches

Fii= 0 = Patch | recelves no snargy from Kself

Rearranging and writing out the Radiosity equation:

1 p1Fiz -pFla .. By Ey
-pzFay i PoF2 Bz Ez
PNFNT NN PPN e Bn En

This [s the matrix equation: MB=E

The E; andﬂ are known, and the torm factors Fjj can ba calculated so that
the matrix elements M;) can be defermined. Since theg and Fyj are all less

than or equal to zero, matrix M is diagonally deminant, so the Gauss-Seldal
itaration methed Is guaranteed to convergs after a few iterations.

Gauss-Seidel Solution

B1 L M1282 L T - M1NBN = E]
M21B1 + Bz [R MQNBN = Ez

Mj By + MiBy+ . + B+ ... + MiyBy = E|

Initial guess: B9 = E;
Next iteration B|U? - Ei - M“ Bl{m * o+ Mi.H Bi—! O s+ M1.k1(°) +...+ MiNBN’)
Continue iterating until all the difierence between 8%+ and B is small enough for all patches

Notice that for each patch | we arg "gathering” radioslty from all the other
patches

Thus the scane is not finished untll we have processed all patches--very time
consuming.

Problem: getting form factors

Computing Form Factors

Form Factor Determination

The form factor F;; from patch i to
patch j is obtained in principle by
by integrating over both patches:

Fup= = J -1 LF N
1 Ay

Y
A A 4 oo

But this is very difficult.

AFF = % (cos @ cos @ AA) / (1r?), approximately

Hemicube Approximation

The Hemicube Approximation
Hemicube
(divided into pixels)
placed at the centre

frpii Calculate and store the delta
form factors for each element
of the hemicube.

Paich |

Fy =% AF,

Prajection of patch
on to hemicube

To calculate the form factor F
build a hemicube centered on
patch 1 and sum the deita form
factors for those elements of
the hemicube to which patch j
projects.

Hemicube Pixel Computations
AF = cosB*cosB,*AA / (Tt(1?)

a. (top) AF = AA [[T*(x2 + y2 + 1)?]

b. (sides) AF = z*AA [[Tt*(y? + z2 + 1)?]

z F
¥ Hemncube cell p
yp
Hemicube
; cellp
p
X

{a)

Hemicube Form Factor Algorithm

Compute & strore all hemicube delta Form Factors: AFF[K]
Zero all the Form Factors: Fij
For all patches i
Place unit hemicube at center of patch i
For each cell k on hemicube
dist[K] = infinity
For each patchj (j !=1)
If line from origin through cell k intersects patch j

compute distance d to intersection point

if d < dist[K]
dISt[k] =d \mtersectzon?
store j in item_buf [K] :

For each cell k on hemicube
j = item_buf [K]
Fij = Fij + AFF[K]

Video of Radiosity Form
Factor Computation

Box Bax
Paich 1 Patch 2

Here are four patches from various paris of the scene.

Total Farm Factars
Room to Light:
Room w Box 12

Rowom o Box 2:

Steps in Applying Radiosity
Method

Simmmary of Steps:
Define a scene
Divide scene into distingt palches

Build a hemicube on each patch and calcwlate the delta
form factors for cell on every hemicube.
Calculate a form factor for every pair of patches in
Calcuiate the red, green, and blue radiosities for cach paich.
wdiosit "-l'!ll'il yloagll-2 color st 1l

R ' ; it =
Map all rad 55

Apply Gouraud shading.

Three Simple Radiosity
Images

st
After 1 Gauss-
Seidel Iteration

No Gouraud Shading Gouraud Shading

Radiosity Summary

e Good for scenes with lots of diffuse reflection

e Not good for scenes with lots of specular reflection
— Complementary to Ray Tracing
— But can be combined with Ray Tracing

e Very computationally intensive

— Can take very long times for complex scenes

« but once patch intensities are computed, scene “walkthroughs”
are fast

— Gauss-Seidel is very memory intensive

— There are other approaches
* Progressive Refinement

