
Photorealism

�Ray Tracing
�Texture Mapping
�Radiosity

Photorealism -- Taking into
Account Global Illumination

� Light can arrive at surfaces indirectly
� This light called global illumination
� To now we’ve approximated it with a constant,

diffuse ambient term
– This is wrong

� Need to take into account all the multiply reflected
light in the scene

� Two different approaches:
• Ray Tracing -- specularly reflected light
• Radiosity -- diffusely reflected light

Photorealism: Ray Tracing

� See CS-460/560 Notes at:
http://www.cs.binghamton.edu/~reckert/460/raytrace.htm
http://www.cs.binghamton.edu/~reckert/460/texture.htm

� Persistence of Vision Ray Tracer (free):
http://povray.org/

Ray Tracing
� What is seen by viewer depends on:

– rays of light that arrive at his/her eye
� So to get “correct” results:

– Follow all rays of light from all light sources
– Each time one hits an object, compute the

reflected color/intensity
– Store results for those that go through projection

plane pixels into observer’s eye
– Paint each pixel in the resulting color

Forward Ray Tracing

� Infinite number of rays from each
source

� At each intersection with an object
– could have an infinite number of reflected

rays
� Completely intractable
� Would take geological times to compute

Backward Ray Tracing
� Look only at rays observer sees
� Follow rays backwards from eye point

through pixels on screen
– “Eye” rays

� Check if they intersect objects
– If so, can intersection point see a light source?

• If so, compute intensity of reflected light
• If not, point is in the shadow

– If object has reflectivity/transparency
• Follow reflected/transmission rays
• Treat these rays as “eye” rays
• So it’s a recursive algorithm

Recursive Ray Tracing Algorithm
depth = 0
for each pixel (x,y)

Calculate direction from eyepoint to pixel
TraceRay (eyepoint, direction, depth, *color)
FrameBuf [x,y] = color

TraceRay (start_pt, direction_vector, recur_depth, *color)
if (recur_depth > MAXDEPTH) color = Background_color
else

// Intersect ray with all objects
// Find int. point that is closest to start_point

// Hidden surface removal is built in
if (no intersection) color = Background_color
else

// Send out shadow rays toward light sources
local_color = contribution of illumination model at int. pt.

// Calculate direction of reflection ray
TraceRay (int_pt, refl_dir., depth+1, *refl_color)

// Calculate direction of transmitted ray
TraceRay (int_pt., trans_dir., depth+1, *trans_color)

color = Combine (local_color, refl_color, trans_color)

Combining Color from
Reflection Ray

� Add attenuated reflected color intensity to local
color intensity:
color = local_color + k * refl_color

• here refl_color is I(r,g,b) - color returned by reflection ray
• local_color is I(r,g,b) - color computed by illumination model

at intersection point
• k is an attenuation factor (<1)

Combining Color from Transmission Ray
� Observer sees a mixture of light reflected off

surface and light transmitted through surface
� So combine colors (interpolate)

I(r,g,b) = k’*Ilocal(r,g,b) + (1 - k’)*Itransmitted(r,g,b)
k’ is opacity factor coefficient
k’=0 => perfectly transparent, k’=1 ==> perfectly opaque

Ray Tracing Intersection
Calculations

Parametric Equations for
Eye Ray:

x = x0 + (x1-x0)*t
x = x0 + ∆x*t

y = y0 + (y1-y0)*t
y = y0 + ∆y*t

z = z0 + (z1-z0)*t
z = z0 + ∆z*t

Equation of a sphere of
radius r, centered at (a,b,c)

(x-a)2 + (y-b)2 + (z-c)2 = r2

Substitute ray parametric equations:
(x0+∆x*t-a)2 + (y0+∆y*t-b)2 + (z0+∆z*t-c)2 = r2

Rearrange terms:
(∆x2+∆y2+∆z2)t2 + 2[∆x(x0-a)+∆y(y0-b)+∆z(z0-c)]t
+(x0-a)2 + (y0-b)2 + (z0-c)2 - r2 = 0

This is a quadratic in
parameter t

� Solution(s): value(s) of t where ray
intersects sphere

� Three cases
– No real roots ==> no intersection point
– 1 real root ==> ray grazes sphere
– 2 real roots ==> ray passes thru sphere

• Select smaller t (closer to source)

Sphere Normal Computation
� To apply illumination model at intersection

point P, need surface normal
� Can show: N = ((x-a)/r, (y-b)/r, (z-c)/r)

Intersections with other
Objects

� Handled in similar fashion
� May be difficult to come up with

equations for their surfaces
� Sometimes approximation methods

must be used to compute intersections
of rays with surfaces

A Ray-Traced Image

Disadvantages of Ray Tracing
� Computationally intensive

– But there are several acceleration techniques
� Bad for scenes with lots of diffuse reflection

– But can be combined with other algorithms that
handle diffuse reflection well

� Prone to aliasing
– One sample per pixel

• can give ugly artifacts
– But there are anti-aliasing techniques

Persistence of Vision Ray
Tracer

� POVRay free software
� Lots of capabilities
� Great for playing around with ray tracing

– http://povray.org/

An Algorithm Animation of a
Ray Tracer

Ray Tracing Algorithm Animator in VC++
(with David Goldman)

See:
http://www.cs.binghamton.edu/~reckert/3daape_paper.htm

Ray Tracing Algorithm Animation Java
Applet and Paper (with Brian Maltzan)

See:
http://www.cs.binghamton.edu/~reckert/brian/index.html

Pattern/Texture Mapping
� Adding details or features to surfaces

– (variations in color or texture)

General Texture Mapping

� Pattern Mapping Technique
– Modulate surface color calculated by

reflection model according to a pattern
defined by a texture function

• (“wrap” pattern around surface)
• 2-D Texture function: T(u,v)

– Define in a 2-D texture space (u,v)
– Could be a digitized image
– Or a procedurally-defined pattern

Inverse Pixel Mapping (Screen
Scanning)

For each pixel on screen (xs, ys)
Compute pt (x,y,z) on closest surface projecting to pixel

(e.g., ray tracing)
Determine color (e.g., apply illumination/reflection model)
Compute (u,v) corresponding to (x,y,z) (inverse mapping)
Modulate color of (xs,ys) according to value of T(u,v) at
(u,v)

Inverse Mapping a Sphere
� Lines of longitude: constant u, corresponds to theta
� Lines of latitude: constant v, corresponds to phi

Ex: Inverse Mapping a Polygon
� Choose axis S (unit vector) along a polygon edge

– will align with u-axis in texture space

� Choose a polygon vertex Po(xo,yo,zo)
– will correspond to origin in texture space

� Choose a scaling factor k
– k = max dimension of polygon

• 0-k in object space --> 0-1 in texture space
� Want to map point P(x,y,z) on polygon to (u,v)

� Construct vector V = P - Po
� V.S = k*u, projection of P onto S
� So u = V.S/k
� Choose orthogonal axis T in polygon plane

(T=NxS)
� v=V.T/k

There are lots of other
Texture Mapping

Techniques
See Section 10-17 of your text book

Radiosity Methods
� Alternative to ray tracing for handling

global illumination
� Two kinds of illumination at each

reflective surface
– Local: from point sources
– Global: light reflected from other surfaces

in scene (multiple reflections)
– Ray tracing handles specularly reflected

global illumination
• But not diffusely reflected global illumination

Radiosity Approach
� Compute global illumination
� All light energy coming off a surface is the

sum of:
– Light emitted by the surface
– Light from other surfaces reflected off the surface
– Divide scene into patches that are perfect diffuse

reflectors...
• Reflected light is non-directional

– and/or emitters

Definitions
� Radiosity (B):

– Total light energy per unit area leaving a
surface patch per unit time--sum of emitted
and reflected energy (Brightness)

� Emission (E):
– Energy per unit area emitted by the surface

itself per unit time (Surfaces having
nonzero E are light sources)

� Reflectivity (ρ):
– Fraction of light reflected from a surface (a

number between 0 and 1)

� Form Factor (Fij):
– Fraction of light energy leaving patch i which

arrives at patch j
• Function only of geometry of environment

� Conservation of energy for patch i:
– Total energy out = Energy emitted + Sum of

energy from other patches reflected by patch i:

Bi*Ai = Ei*Ai + ρi∗Σ Bj*Aj*Fji

Bi = Ei + ρi∗Σ (Bj*Aj/Ai)*Fji
j

� Principle of Reciprocity for Form Factors
– Reversing role of emitters and receivers:

• Fraction of energy emitted by one and received
by other would be same as fraction of energy
going the other way

• Fij*Ai = Fji*Aj ==> Fji = (Ai/Aj) Fij
• So:

Bi = Ei + ρi∗ Σ Bj*Fij

Bi - ρi∗ Σ Bj*Fij = Ei

• Need to solve this system of equations for
the radiosities Bi

Gauss-Seidel Solution

Problem: getting form factors

Computing Form Factors

∆FF = Σ (cos φi cos φj ∆Aj) / (πr2), approximately

Hemicube Approximation

Hemicube Pixel Computations
∆F = cosθi*cosθp*∆A / (π∗ r2)

a. (top) ∆F = ∆A / [π*(x2 + y2 + 1)2]
b. (sides) ∆F = z*∆A / [π*(y2 + z2 + 1)2]

Hemicube Form Factor Algorithm
Compute & strore all hemicube delta Form Factors: ∆FF[k]
Zero all the Form Factors: Fij
For all patches i

Place unit hemicube at center of patch i
For each cell k on hemicube

dist[k] = infinity
For each patch j (j != i)

If line from origin through cell k intersects patch j
compute distance d to intersection point
if d < dist[k]

dist[k] = d
store j in item_buf [k]

For each cell k on hemicube
j = item_buf [k]
Fij = Fij + ∆FF[k]

Video of Radiosity Form
Factor Computation

Steps in Applying Radiosity
Method

Three Simple Radiosity
Images

No Gouraud Shading Gouraud ShadingAfter 1
st

Gauss-
Seidel Iteration

Radiosity Summary
� Good for scenes with lots of diffuse reflection
� Not good for scenes with lots of specular reflection

– Complementary to Ray Tracing
– But can be combined with Ray Tracing

� Very computationally intensive
– Can take very long times for complex scenes

• but once patch intensities are computed, scene “walkthroughs”
are fast

– Gauss-Seidel is very memory intensive
– There are other approaches

• Progressive Refinement

