Photorealism

- Ray Tracing
- Texture Mapping
- Radiosity

Photorealism -- Taking into Account Global Illumination

- Light can arrive at surfaces indirectly
- This light called global illumination
- To now we’ve approximated it with a constant, diffuse ambient term
 - This is wrong
- Need to take into account all the multiply reflected light in the scene
- Two different approaches:
 - Ray Tracing -- specularly reflected light
 - Radiosity -- diffusely reflected light
Photorealism: Ray Tracing

- See CS-460/560 Notes at:
 http://www.cs.binghamton.edu/~reckert/460/raytrace.htm
 http://www.cs.binghamton.edu/~reckert/460/texture.htm

- Persistence of Vision Ray Tracer (free):
 http://povray.org/

Ray Tracing

- What is seen by viewer depends on:
 - rays of light that arrive at his/her eye

- So to get “correct” results:
 - Follow all rays of light from all light sources
 - Each time one hits an object, compute the reflected color/intensity
 - Store results for those that go through projection plane pixels into observer’s eye
 - Paint each pixel in the resulting color
Forward Ray Tracing

- Infinite number of rays from each source
- At each intersection with an object
 - could have an infinite number of reflected rays
- Completely intractable
- Would take geological times to compute
Backward Ray Tracing

- Look **only** at rays observer sees
- Follow rays backwards from eye point through pixels on screen
 - “Eye” rays
- Check if they intersect objects
 - If so, can intersection point see a light source?
 - If so, compute intensity of reflected light
 - If not, point is in the shadow
 - If object has reflectivity/transparency
 - Follow reflected/transmission rays
 - Treat these rays as “eye” rays
 - So it's a recursive algorithm
Recursive Ray Tracing Algorithm

depth = 0
for each pixel (x,y)
 Calculate direction from eyepoint to pixel
 TraceRay (eyepoint, direction, depth, *color)
 FrameBuf [x,y] = color

Example Ray Intersection Calculation: An Eye Ray with a Sphere

TraceRay (start_pt, direction_vector, recur_depth, *color)
if (recur_depth > MAXDEPTH) color = Background_color
else
 // Intersect ray with all objects
 // Find int. point that is closest to start_point
 // Hidden surface removal is built in
 if (no intersection) color = Background_color
 else
 // Send out shadow rays toward light sources
 local_color = contribution of illumination model at int. pt.
 // Calculate direction of reflection ray
 TraceRay (int_pt, refl_dir., depth+1, *refl_color)
 // Calculate direction of transmitted ray
 TraceRay (int_pt, trans_dir., depth+1, *trans_color)
 color = Combine (local_color, refl_color, trans_color)
Combining Color from Reflection Ray

- Add attenuated reflected color intensity to local color intensity:
 \[\text{color} = \text{local_color} + k \times \text{refl_color} \]
 - here refl_color is \(I(r,g,b) \) - color returned by reflection ray
 - local_color is \(I(r,g,b) \) - color computed by illumination model at intersection point
 - \(k \) is an attenuation factor (<1)

Combining Color from Transmission Ray

- Observer sees a mixture of light reflected off surface and light transmitted through surface
- So combine colors (interpolate)
 \[I(r,g,b) = k' \times I_{\text{local}}(r,g,b) + (1 - k') \times I_{\text{transmitted}}(r,g,b) \]
 - \(k' \) is opacity factor coefficient
 - \(k' = 0 \) => perfectly transparent, \(k' = 1 \) => perfectly opaque
Ray Tracing Intersection Calculations

Example Ray Intersection Calculation: An Eye Ray with a Sphere

Parametric Equations for Eye Ray:

\[x = x_0 + (x_1-x_0)t \]
\[x = x_0 + \Delta x^*t \]
\[y = y_0 + (y_1-y_0)t \]
\[y = y_0 + \Delta y^*t \]
\[z = z_0 + (z_1-z_0)t \]
\[z = z_0 + \Delta z^*t \]
Equation of a sphere of radius r, centered at (a,b,c)

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Substitute ray parametric equations:

$$(x_0+\Delta x^*t-a)^2 + (y_0+\Delta y^*t-b)^2 + (z_0+\Delta z^*t-c)^2 = r^2$$

Rearrange terms:

$$((\Delta x^2+\Delta y^2+\Delta z^2)t^2 + 2[\Delta x(x_0-a)+\Delta y(y_0-b)+\Delta z(z_0-c)]t
+(x_0-a)^2 + (y_0-b)^2 + (z_0-c)^2 - r^2 = 0$$

This is a quadratic in parameter t

- **Solution(s):** value(s) of t where ray intersects sphere
- **Three cases**
 - No real roots ==> no intersection point
 - 1 real root ==> ray grazes sphere
 - 2 real roots ==> ray passes thru sphere
 - Select smaller t (closer to source)
Sphere Normal Computation

- To apply illumination model at intersection point P, need surface normal
- Can show: $N = \left(\frac{x-a}{r}, \frac{y-b}{r}, \frac{z-c}{r} \right)$

Intersections with other Objects

- Handled in similar fashion
- May be difficult to come up with equations for their surfaces
- Sometimes approximation methods must be used to compute intersections of rays with surfaces
Disadvantages of Ray Tracing

- Computationally intensive
 - But there are several acceleration techniques
- Bad for scenes with lots of diffuse reflection
 - But can be combined with other algorithms that handle diffuse reflection well
- Prone to aliasing
 - One sample per pixel
 - can give ugly artifacts
 - But there are anti-aliasing techniques
Persistence of Vision Ray Tracer

- POVRay free software
- Lots of capabilities
- Great for playing around with ray tracing
 - http://povray.org/

An Algorithm Animation of a Ray Tracer

Ray Tracing Algorithm Animator in VC++
(with David Goldman)
See:
http://www.cs.binghamton.edu/~reckert/3daape_paper.htm

Ray Tracing Algorithm Animation Java Applet and Paper (with Brian Maltzan)
See:
http://www.cs.binghamton.edu/~reckert/brian/index.html
Pattern/Texture Mapping

- Adding details or features to surfaces
 - (variations in color or texture)

General Texture Mapping

- Pattern Mapping Technique
 - Modulate surface color calculated by reflection model according to a pattern defined by a texture function
 - (“wrap” pattern around surface)
 - 2-D Texture function: \(T(u,v) \)
 - Define in a 2-D texture space \((u,v)\)
 - Could be a digitized image
 - Or a procedurally-defined pattern
Inverse Pixel Mapping (Screen Scanning)

For each pixel on screen \((xs, ys)\)
- Compute \(pt (x, y, z)\) on closest surface projecting to pixel (e.g., ray tracing)
- Determine color (e.g., apply illumination/reflection model)
- Compute \((u, v)\) corresponding to \((x, y, z)\) (inverse mapping)
- Modulate color of \((xs, ys)\) according to value of \(T(u, v)\) at \((u, v)\)

Inverse Mapping a Sphere
- Lines of longitude: constant \(u\), corresponds to \(\theta\)
- Lines of latitude: constant \(v\), corresponds to \(\phi\)

\[
x = R \sin(\phi) \cos(\theta)
\]
\[
y = R \sin(\phi) \sin(\theta)
\]
\[
z = R \cos(\phi)
\]

\[
\phi = \arccos(z/R) = \arccos(N_x, N_z)
\]
\[
\theta = \arccos(x/R \sin(\phi))
\]

\[
v = (p \cdot \phi)/\pi
\]
\[\phi = 0, \text{ North Pole, } v = 1\]
\[\phi = \pi, \text{ South Pole, } v = 0\]

\[
u = \theta/2\pi \text{ if } N_y > 0 \quad \theta > 0, \text{ if } N_x = 0\]
\[
u = 1 - \theta/2\pi \text{ if } N_y < 0 \quad \theta < 0, \text{ if } N_x = 0\]
Ex: Inverse Mapping a Polygon

- Choose axis S (unit vector) along a polygon edge
 - will align with u-axis in texture space
- Choose a polygon vertex Po(x₀,y₀,z₀)
 - will correspond to origin in texture space
- Choose a scaling factor k
 - k = max dimension of polygon
 - 0-k in object space → 0-1 in texture space
 - Want to map point P(x,y,z) on polygon to (u,v)

 ![Diagram of inverse mapping a polygon](image)

- Construct vector \(V = P - Po \)
- \(V \cdot S = k\cdot u \), projection of P onto S
- So \(u = \frac{V \cdot S}{k} \)
- Choose orthogonal axis T in polygon plane (T=NxS)
- \(v = \frac{V \cdot T}{k} \)

![Diagram of inverse mapping with equations](image)
There are lots of other Texture Mapping Techniques

See Section 10-17 of your text book

Radiosity Methods

- Alternative to ray tracing for handling global illumination
- Two kinds of illumination at each reflective surface
 - Local: from point sources
 - Global: light reflected from other surfaces in scene (multiple reflections)
- Ray tracing handles specularly reflected global illumination
 - But not diffusely reflected global illumination
Radiosity Approach

- Compute global illumination
- All light energy coming off a surface is the sum of:
 - Light emitted by the surface
 - Light from other surfaces reflected off the surface
 - Divide scene into patches that are perfect diffuse reflectors...
 - Reflected light is non-directional
 - and/or emitters

Definitions

- **Radiosity (B):**
 - Total light energy per unit area leaving a surface patch per unit time—sum of emitted and reflected energy (Brightness)

- **Emission (E):**
 - Energy per unit area emitted by the surface itself per unit time (Surfaces having nonzero E are light sources)
• **Reflectivity** (ρ):
 – Fraction of light reflected from a surface (a number between 0 and 1)

• **Form Factor** (Fij):
 – Fraction of light energy leaving patch i which arrives at patch j
 • Function only of geometry of environment

• **Conservation of energy for patch i:**
 – Total energy out = Energy emitted + Sum of energy from other patches reflected by patch i:

\[
B_i A_i = E_i A_i + \rho_i \sum B_j A_j F_{ji} \\
B_i = E_i + \rho_i \sum (B_j A_j / A_i) F_{ji}
\]
Principle of Reciprocity for Form Factors

- Reversing role of emitters and receivers:
 - Fraction of energy emitted by one and received by other would be same as fraction of energy going the other way
 - \(F_{ij} \cdot A_i = F_{ji} \cdot A_j \implies F_{ji} = \frac{A_i}{A_j} F_{ij} \)
 - So:
 \[
 B_i = E_i + \rho_i \cdot \sum B_j \cdot F_{ij}
 \]
 \[
 B_i - \rho_i \cdot \sum B_j \cdot F_{ij} = E_i
 \]
- Need to solve this system of equations for the radiosities \(B_i \)

Radiosity -- Matrix Formulation and Solution

Assume \(N \) patches

\(F_{ii} = 0 \) -- Patch \(i \) receives no energy from itself

Rearranging and writing out the Radiosity equation:

\[
\begin{bmatrix}
1 & \rho_1 F_{12} & \rho_1 F_{13} & \cdots & \rho_1 F_{1N} \\
\rho_2 F_{21} & 1 & \rho_2 F_{23} & \cdots & \rho_2 F_{2N} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\rho_N F_{N1} & \rho_N F_{N2} & \cdots & 1 \\
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_N \\
\end{bmatrix}
=
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N \\
\end{bmatrix}
\]

This is the matrix equation: \(M \cdot B = E \)

The \(E_i \) and \(\rho_i \) are known, and the form factors \(F_{ij} \) can be calculated so that the matrix elements \(M_{ij} \) can be determined. Since the \(\rho_i \) and \(F_{ij} \) are all less than or equal to zero, matrix \(M \) is diagonally dominant, so the Gauss-Seidel iteration method is guaranteed to converge after a few iterations.
Gauss-Seidel Solution

\[B_1 + M_{12}B_2 + \ldots + M_{1N}B_N = E_1 \]
\[M_{21}B_1 + B_2 + \ldots + M_{2N}B_N = E_2 \]
\[\vdots \]
\[M_{N1}B_1 + M_{N2}B_2 + \ldots + B_N + M_{NN}B_N = E_N \]

Initial guess: \(B_i^{(0)} = E_i \)

Next iteration \(B_i^{(n+1)} = E_i - \left(M_{i1}B_1^{(n)} + \ldots + M_{iN}B_N^{(n)} + \ldots + M_{NN}B_N^{(n)} \right) \)

Continue iterating until all the difference between \(B_i^{(n+1)} \) and \(B_i^{(n)} \) is small enough for all patches.

Notice that for each patch \(i \) we are "gathering" radiosity from all the other patches.

Thus the scene is not finished until we have processed all patches—very time consuming.

Problem: getting form factors

Computing Form Factors

Form Factor Determination

The form factor \(F_{ij} \) from patch \(i \) to patch \(j \) is obtained in principle by by integrating over both patches:

\[F_{ij} = \frac{1}{\epsilon_{i,j} A_i A_j} \int_{\Delta A_i} \cos \phi_i \cos \phi_j \frac{\Delta A_j}{\pi r^2} \]

But this is very difficult.

\[\Delta FF = \Sigma \left(\cos \phi_i \cos \phi_j \Delta A_j \right) / (\pi r^2) \], approximately
Hemicube Approximation

Calculate and store the delta form factors for each element of the hemicube.

\[F_i = \sum_{j} \Delta F_{ij} \]

To calculate the form factor \(F_{ij} \), build a hemicube centered on patch \(i \) and sum the delta form factors for those elements of the hemicube to which patch \(j \) projects.

Hemicube Pixel Computations

\[\Delta F = \cos \theta_i \cos \theta_p \Delta A / (\pi r^2) \]

a. (top) \(\Delta F = \Delta A / [\pi (x^2 + y^2 + 1)^2] \)

b. (sides) \(\Delta F = z \Delta A / [\pi (y^2 + z^2 + 1)^2] \)
Hemicube Form Factor Algorithm

Compute & store all hemicube delta Form Factors: \(\Delta FF[k] \)
Zero all the Form Factors: \(F_{ij} \)
For all patches \(i \)
 Place unit hemicube at center of patch \(i \)
 For each cell \(k \) on hemicube
 \(\text{dist}[k] = \infty \)
 For each patch \(j \) (\(j \neq i \))
 If line from origin through cell \(k \) intersects patch \(j \)
 compute distance \(d \) to intersection point
 if \(d < \text{dist}[k] \)
 \(\text{dist}[k] = d \)
 store \(j \) in item_buf \([k]\)
 For each cell \(k \) on hemicube
 \(j = \text{item}_\text{buf}[k] \)
 \(F_{ij} = F_{ij} + \Delta FF[k] \)

Video of Radiosity Form Factor Computation
Steps in Applying Radiosity Method

Summary of Steps:
Define a scene.
Divide scene into distinct patches.
Build a hemicube on each patch and calculate the delta form factors for cell on every hemicube.
Calculate a form factor for every pair of patches in the scene.
Calculate the red, green, and blue radiosities for each patch.
Map all radiosity values to a 0 - 255 color scale.
Apply Gouraud shading.

Three Simple Radiosity Images

After 1st Gauss-Seidel Iteration
No Gouraud Shading
Gouraud Shading
Radiosity Summary

- Good for scenes with lots of diffuse reflection
- Not good for scenes with lots of specular reflection
 - Complementary to Ray Tracing
 - But can be combined with Ray Tracing
- Very computationally intensive
 - Can take very long times for complex scenes
 - but once patch intensities are computed, scene “walkthroughs” are fast
 - Gauss-Seidel is very memory intensive
 - There are other approaches
 - Progressive Refinement