
Illumination, Reflection,
Shading

Illumination, Reflection,
Shading

� Need to display surfaces in “natural” colors
– Colors observed if we really saw the scene

� How do they get those colors?
� Observed Colors Depend on:

– Light sources in scene
– Material properties of object surfaces
– How light interacts with those surfaces

• Reflection, Transmission, Absorption

� Need an Illumination/Reflection model

Light Sources
� Approximate with two types:

1. Ambient (non-directional, diffuse,
background light)

• Take as constant in the scene
• Non-directional
• Grossly approximates multiply-reflected light
• “Global” reflection

2. Light Sources
• Approximate with a series of point sources
• Directional

Interaction of Light with Surfaces
� Absorption
� Transmission
� Reflection

– Diffuse
• Nondirectional
• Dull, chalky surfaces
• No highlights

– Specular
• Directional
• Mirror-like surfaces
• Highlights

Material Properties
� Incident light is reflected to different degrees

– Depends on physical (material) properties of
reflecting surface

– This gives intrinsic color to materials
– Approximate by giving 3 diffuse reflection

coefficients
• Fractions of red, green blue reflected
• kr, kg, kb (0 <= k <= 1)

0 means no reflection in that color band
1 means 100% reflection in that band

Phong Illumination/Reflection
Model

� Assume all illumination comes from:
– Ambient Light
– Point sources

� Diffuse reflection of Ambient light
� Reflection from Point sources:

– Some is reflected diffusely
– Some is reflected specularly

Reflection of Ambient Light
� I = k d*Ia

– I = intensity of ambient light reflected
– kd = diffuse/ambient reflection coefficient

• Assume ambient light is reflected diffusely
– Actually 3 values of kd:

• kr, kg, kb
• Values give object its intrinsic color

– (So this is really three equations)
– Ia = Intensity of ambient light in scene

• Could also have color dependence
• But for simplicity we’ll assume white lights

– Ia, kr, kg, kb are adjustable parameters

Final Phong Model Result
(Single Light Source)

� Three color intensity equations:
I(r,g,b) = Ambient + Point Diffuse + Point Specular
I(r,g,b) = kd(r,g,b)*Ia (ambient)

+ Ip*kd(r,g,b)*(N . L) (diffuse from point source)
+ Ip*ks*(R . V)n (specular from pt. Source)

It can be shown that R = 2*(N . L)N - L
where N and L are unit vectors

Note that specular term has no color dependency
(First approximation)

If viewer moves, specular term must be recomputed

Computing N and L

Assumes light source is at infinity

If N.L < 0, no light received, so only use ambient light

CalcNormal(double v0[3], double v1[3], double v2[3],

double n[3])
{

// Form two vectors from the points v0, v1, v2.
double a[3], b[3]; // Array elements 0,1,2 are x,y,z components
a[0] = v1[0] - v0[0]; a[1] = v1[1] - v0[1]; a[2] = v1[2] - v0[2];
b[0] = v2[0] - v0[0]; b[1] = v2[1] - v0[1]; v[2] = v2[2] - v0[2];
// Calculate the cross product of the two vectors.
n[0] = a[1] * b[2] - a[2] * b[1];
n[1] = a[2] * b[0] - a[0] * b[2];
n[2] = a[0] * b[1] - a[1] * b[0];
double length = sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]);
n[0] = n[0] / length; // Normalize
n[1] = n[1] / length;
n[2] = n[2] / length;

}

Intensity Computations
� For each polygon

– Compute I(r), I(g), and I(b) from Phong Formula
– Scale to Frame Buffer r,g,b values:

FB(color) I(color)
---------------- = -------------

FBmax Imax
• For True color, FBmax=255
• Imax from formula with all dot products = 1 and

maximum values of reflection coefficients
– Paint Polygon with resulting FB(color) values

� This is Lambertian Flat Shading
– All points on a polygon have same color intensity
– Gives a faceted appearance to all (curved) surfaces

Rendering Process
(Flat Shading)

� 1. Set up polygon model data structures
– Include information needed for subsequent shading

• Object list, polygon list, vertex list, lighting (Ia,L,Ip), reflection
properties (kr, kg, kb, ks, n)

� 2. Apply chain of transformations to model
– For each vertex get (xv,yv,zv) and (xs,ys)

� 3. Do Back-Face Culling
� 4. Compute & store polygon colors (Phong

model)
� 5. Apply Z-Buffer Algorithm and shade polygons

Data Structures for Flat-Shaded
Polygon Mesh Rendering

1. Array of objects
2. Array of polygons
3. Lighting parameters
4. Viewing parameters

� Values could come from a scene file

� 1. Array of objects (e.g., for object i):

Object[i].num_pts // number of vertices in object
Object[i].w_pts[num_pts] // vertex 3D world coords
Object[i].v_pts[num_pts] // vertex 3D viewing coords
Object[i].s_pts[num_pts] //vertex 2D screen coords
Object[i].num_polys // number of polygons
Object[i].polys[num_polys] //array of polygons
// Diffuse reflection coefficients:
Object[i].kr; Object[i].kg; Object[i].kb
Object[i].ks // Specular reflection coefficient
Object[i].n // Specular exponent

– This assumes that all faces of the object have the
same reflection properties

� 2. Array of polygons (e.g., for polygon j):

polys[j].num_verts // Number of vertices in polygon
polys[j].inds[num_verts] // List of polygon vertices
polys[j].visibility //Back-Face culling visibility
polys[j].Ired // Red computed intensity
polys[j].Igreen // Green computed intensity
polys[j].Iblue // Blue computed intensity

– Alternative to storing color intensities: compute and
store surface normals

Polys[j].n[3] // x,y,z components of surface normal
• Compute color intensities later
• Would facilitate interpolated smooth shading (see below)

� 3. Lighting Parameters:

Ia // Ambient Light Intensity (Ia)
num_lights // Number of light sources
Lx[k], Ly[k], Lz[k] // World coordinates of kth light source
Ip[k] // intensity of kth light source

Scene Description Files
� Viewing parameters (ρ, θ, φ, scrn_dist)
� Number of objects (num_objs)
� For each object:

– File name of Generic Object Description File
– x,y,z scaling factors to be applied to object (sx,sy,sz)
– rotation angles to be applied to object (αz,αy,αz)
– translation distances to be applied to object (tx,ty,tz)

� Position, Intensity of light sources (Lx,Ly,Lz,Ip)
� Intensity of ambient light (Ia)

Example Scene Description File
200, 1000, 45, 60 // scrn_dist, ρ, θ, φ
1 // number of objects in scene
pyramid.des // name of generic object description file
1.8, 1.0, 1.0 // sx, sy, sz scaling factors
0, 0, 0 // x, y, z, rotation angles
200, 0, 0 // x, y, z translation components
1 // number of light sources
500, 500, 500, 100 // x,y,z & Intensity of light source
50 // ambient light intensity

Generic Object Description Files
� For each object:

– Number of points (num_pts)
– For each point:

• 3-D world coordinates of point (xw,yw,zw)
– Number of polygons (num_polys)
– For each polygon:

• Number of vertices (num_verts)
• List of polygon vertices (*inds)

– Reflection properties:
• Diffuse reflection coefficients (kr,kg,kb)
• Specular reflection coefficient & exponent (ks,n)

Example Generic Object
Description File

// pyramid.des file:

5, 5 // number of vertices and polygons
// World coordinates of pyramid vertices:
(0,0,0), (150,0,0), (150,150,0), (0,150,0), (75,75,150)
//Pyramid polygons:
3,(0,1,4), 3,(1,2,4), 3,(2,3,4), 3,(0,4,3), 4,(0,3,2,1)
0.2, 0.5, 0.9 // kr, kg, kb diffuse reflection coefficients
0.4 // ks specular reflection coefficient
// n specular exponent

Interpolated Shading

� To “fake” curved surfaces
� Easiest way--Gouraud shading:

– Compute vertex intensities
– Double Interpolate values across polygon

• Should be done at same time as Z-Buffer
interpolations

– Gives a curved appearance to surfaces

Polygon Mesh (Z-Buffer hidden
Surface removal + Flat Shading)

Polygon Mesh (Z-Buffer and
Flat/Gouraud/Phong shading)

Phong Smooth Shading

� Interpolate the vertex normal vectors
– Instead of the intensities
– Means a Phong intensity calculation for

each pixel on each polygon
– Much more computationally intensive
– But “catches” specular highlights that

Gouraud misses
– More realistic images

Flat Gouraud Phong

Polygon Mesh (no hidden surface removal)

Polygon Mesh (Back-Face Culling)

Polygon Mesh (Z-Buffer hidden
Surface removal + Flat Shading)

Polygon Mesh (Z-Buffer and
Flat/Gouraud/Phong shading)

Illumination & Reflection in
OpenGL

� OpenGL Uses the Phong
Illumination/Reflection Model

Final Phong Illumination/Reflection
Model Result (Single White Light

Source)
� Three color intensity equations:

I(r,g,b) = Ambient + Point Diffuse + Point Specular
I(r,g,b) = kd(r,g,b)*Ia

+ Ip*kd(r,g,b)*(N.L)
+ Ip*ks*(R.V)n

� OpenGL generalizes this to include colored light
sources

Illumination & Reflection in
OpenGL

� Define Light Sources
� Define Material Properties
� Define polygons and their outward-directed

normal vectors
� Specify Shading Model
� Enable Depth Testing (Z-Buffer)

Lighting

� OpenGL supports 4 types of light:
– Ambient
– Diffuse
– Specular
– Emitted

� Can be up to 8 different light sources

Defining a Light Source
� Set up Arrays of lighting values

– Intensities:
GLfloat ambLight0[] = {0.3f, 0.3f, 0.3f, 1.0f}; // R,G,B,α
GLfloat diffLight0[] = {0.5f, 0.5f, 0.5f, 1.0f};
GLfloat specLight0[] = {0.0f, 0.0f, 0.0f, 1.0f};

– Position:
GLfloat posnLight0[] = {1.0f, 1.0f, 1.0f, 0.0f); // x,y,z,w

� Pass Arrays to OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, ambLight0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffLight0);
glLightfv(GL_LIGHT0, GL_SPECULAR, specLight0);
glLightfv(GL_LIGHT0, GL_POSITION, posnLight0);

Enabling a Light Source

� Turn on Lighting
glEnable(GL_LIGHTING);

� Turn on a Light Source
glEnable(GL_LIGHT0);

Material Reflection Properties

� Ambient
� Diffuse

– These are usually the same
� Specular

Material Reflection Properties
� Set up Material Arrays

– ambient/diffuse reflection coefficients
GLfloat mat_ambdiff[] = {0.0f, 0.7f, 0.0f, 1.0f}; // diff. refl. coeffs.

// 70% of green light reflected diffusely, no red or blue
– specular reflection coefficient

GLfloat mat_spec[] = {1.0f, 1.0f, 1.0f, 1.0f}; // spec. refl. coeffs.
// bright white light reflected specularly (100% R, G, B)

� Pass Material Arrays to OpenGL
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE,

mat_ambdiff);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec);
glMaterialf(GL_FRONT, GL_SHININESS, 20.0f);

// last parameter: specular exponent (0-128)

Defining Normals
� Must compute normals for all polygons
� OpenGL has no function to do that

– So write your own
• See notes from last class

� Assume the result is:
double n[3];

� Use this when you define the polygon
glBegin(GL_POLYGON)

glNormal3f ((GLfloat)n[0], (GLfloat)n[1], (GLfloat)n[2]);
// glVertex3f() calls here for polygon vertices

glEnd();

Specify a Shading Model and
Enable Depth Testing

glShadeModel(GL_FLAT); // use GL_SMOOTH
// for Gouraud shading

glEnable(GL_DEPTH_TEST);
glClear (GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
// clear frame buffer and z-buffer

Some sample code - view class::OnDraw()
glShadeModel(GL_SMOOTH);
glEnable(GL_DEPTH_TEST);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW); glLoadIdentity();
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mat_ambdiff);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec); // The lighting..
glMaterialf(GL_FRONT, GL_SHININESS, 20.0f); // and material..
glLightfv(GL_LIGHT0, GL_AMBIENT, ambLight0); // arrays were..
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffLight0); // set up..
glLightfv(GL_LIGHT0, GL_SPECULAR, specLight0); // before this..
glLightfv(GL_LIGHT0, GL_POSITION, posnLight0); // code.
glEnable(GL_LIGHTING); glEnable(GL_LIGHT0);
DrawCube(); // Helper function to define cube vertices/polygons/normals
glFlush();

Code from DrawCube() function
glTranslatef(0.0f, 0.0f, -3.0f); // position cube inside viewing volume
glRotatef(20.0f, 1.0f, 0.0f, 0.0f); // rotate about x
glRotatef(20.0f, 0.0f, 1.0f, 0.0f); // rotate about y
// Draw the polygons of the cube, only front face is given here:
double p1[] = {-0.5, 0.5, 0.5}; double p2[] = {-0.5, -0.5, 0.5};
double p3[] = {0.5, -0.5, 0.5}; double n[3];
CalcNormal(p1, p2, p3, n);
glBegin(GL_POLYGON); // only 1 face here, other 5 must be defined

glNormal3f((GLfloat)n[0], (GLfloat)n[1], (GLfloat)n[2]);
glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);

glEnd();

Code from CalcNormal (double *p1,

double *p2, double *p3, double *n)
// Form two vectors from the points.
double a[3], b[3];
a[0] = p2[0] - p1[0]; a[1] = p2[1] - p1[1]; a[2] = p2[2] - p1[2];
b[0] = p3[0] - p1[0]; b[1] = p3[1] - p1[1]; b[2] = p3[2] - p1[2];
// Calculate the cross product of the two vectors.
n[0] = a[1] * b[2] - a[2] * b[1];
n[1] = a[2] * b[0] - a[0] * b[2];
n[2] = a[0] * b[1] - a[1] * b[0];
// Normalize the new vector.
double length = sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]);
n[0] = n[0] / length;
n[1] = n[1] / length;
n[2] = n[2] / length;

Shadows
� Very important to our perception of depth
� Shadow position/orientation give

information as to how objects relate to
each other in space

Sharp Shadows from Point
Sources

Soft Shadows from Extended
Sources

Shadows from Point
Sources

� Look at shadows from point sources
� If a point is in shadow, set Phong Ip to 0

– Source gets no light from point source
– So no reflection from point source
– Still must include ambient term

� Lots of algorithms
� One of simplest: Shadow Z-Buffer

Shadow Z-Buffer Algorithm
� A two-stage process

1. Take Light Source as viewpoint & compute
depths

• Store results in shadow Z-buffer Z’[x’][y’]
• Each Z’[x’][y’] will contain distance of closest

surface to light source
2. Normal Z-Buffer rendering

• But if (x,y) is closest to viewer (visible), transform
to light space coordinates (x’,y’,z’)

• If z’ > Z’[x’][y’] point is in shadow
– Some object is closer to light & will block it
– So only include ambient term in computation

Shadow Z-Buffer

Set up shadow Z-Buffer, Z’[x’][y’], using coordinate
system whose origin is at light source
(same code as Z-Buffer, but using different origin)

Z-buf[x][y]=infinity for all x,y // regular Z-buffer
for each polygon

for each pixel x,y
calculate z
if z < Z-buf[x][y]

transform x,y,z to light coord space x’,y’,z’
if z’ > Z’[x’][y’]

reduce intensity (include only ambient)
Z-buf[x][y]=z; FB[x][y]=intensity

