lllumination, Reflection,
Shading

lllumination, Reflection,
Shading
e Need to display surfaces in “natural” colors
— Colors observed if we really saw the scene
e How do they get those colors?
e Observed Colors Depend on:
— Light sources in scene

— Material properties of object surfaces

— How light interacts with those surfaces
 Reflection, Transmission, Absorption

e Need an lllumination/Reflection model

Light Sources

e Approximate with two types:

1. Ambient (non-directional, diffuse,
background light)
» Take as constant in the scene
* Non-directional
» Grossly approximates multiply-reflected light
* “Global” reflection

2. Light Sources

» Approximate with a series of point sources
* Directional

Interaction of Light with Surfaces

e Absorption Incident Reflected
e Transmission
e Reflection Transmitted
— Diffuse |

* Nondirectional
* Dull, chalky surfaces

Incident; i ; Reflected
 No highlights

— Specular !

 Directional : | ;
* Mirror-like surfaces

 Highlights

Material Properties

e Incident light is reflected to different degrees

— Depends on physical (material) properties of
reflecting surface

— This gives intrinsic color to materials
— Approximate by giving 3 diffuse reflection
coefficients

 Fractions of red, green blue reflected
« kr, kg, kb (0 <=k <= 1)

0 means no reflection in that color band

1 means 100% reflection in that band

Phong lllumination/Reflection
Model

e Assume all illumination comes from:
— Ambient Light
— Point sources
e Diffuse reflection of Ambient light
e Reflection from Point sources:
— Some is reflected diffusely
— Some is reflected specularly

Reflection of Ambient Light

o | =Kk I,
— | = intensity of ambient light reflected
— ky = diffuse/ambient reflection coefficient
» Assume ambient light is reflected diffusely

— Actually 3 values of ky:
 kr, kg, kb
« Values give object its intrinsic color
— (So this is really three equations)
— |, = Intensity of ambient light in scene
¢ Could also have color dependence
« But for simplicity we’ll assume white lights

— la, kr, kg, kb are adjustable parameters

Diffuse Reflection of a Point Source
L;= Vector from reflacting polnt to light source

N = Normal vector ts surface at reflecting point
I; = Intrinsic intansity ofthe paint source
V = Vecter from reflecting point to view peint

kq= Diffuse reflection goefficient (01}

For perfectly diffuse surfaces the intensity of
the reflected light is independent of V.

Surface 3 N3 . .
The intensity of light reflected from a diffuse
surface depends on the angle between Nand L.
N1 o~
" To-
Surfage 1 Burface 2 ‘ 0 i‘f. .
I=kdlj cos (o}

2 I=kgly N-1;

Specular Reflection from a Point Source (Phong Model

Li=Vecinr to Wght source

M= Mormal vector to reflecting surface
R =Vactor in ideal reflection direction
V= Vector to viewpeint

w = Angle between R oang W
kg = Specular reflection coeffient
n = specular exponent [Alnssiness)

Ii= Irtrinzic intensity of ith point source

= kg |icOanJ

| = ke Ij (RpV)"

Combining Ambient, Diffuse, and Specular Terms:

Hegb) = ky(hgh) 1g + D Nilkglrab) (N-Li) + ke (R;-¥)1)

i point sources

Final Phong Model Result
(Single Light Source)

e Three color intensity equations:
I(r,g,b) = Ambient + Point Diffuse + Point Specular

I(r,g,b) = kd(r,g,b)*la (ambient)
+ Ip*kd(r,g,b)*(N - L) (diffuse from point source)
+ Ip*ks*(R - V)" (specular from pt. Source)

It can be shown that R = 2*(N - L)N - L
where N and L are unit vectors

Note that specular term has no color dependency
(First approximation)

If viewer moves, specular term must be recomputed

Computing N and L

. {Lx,L¥,Lz)
|

Jix2+LyZ+02D

L

dx1=x1-x0, dyl=51-30, dzl=z1-z0
dx?=x2-x0, dy2=¥2-30, de?=22-20

N = V01X v02

(dx1,dyl,dzl) X (dx2,dy2.d=z2)
OF N

\J ((dx1,dy1,d21) X (dx2,dy2,dz2)) e ((dx1,dyl,dz1) X (dx2, dy2, dz2))

\f = \/(dyl*dzz—dﬂ*dzl}2+ (dxl*dz2-dx2*dzl)? + (dxl*dy2- da2*dyl)2
Assumes light source is at infinity

If N-L <0, no light received, so only use ambient light

CalcNormal(double vO[3], double v1[3], double v2[3],
double n[3])
{

/I Form two vectors from the points vO, v1, v2.
double a[3], b[3]; // Array elements 0,1,2 are X,y,zZ components
a[0] = v1[0] - vO[O]; a[l]=v1[1]-VO[1]; a[2]=Vv1[2]- VvO[2];
b[0] =v2[0] - vO[O]; b[1] =v2[1] - vO[1]; V[2] =Vv2[2]- VvO[2];

/I Calculate the cross product of the two vectors.

n[0] = a[1] * b[2] - a[2] * b[1];

n[1] = a[2] * b[0] - a[0] * b[2];

n[2] = a[0] * b[1] - a[1] * b[0];

double length = sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]);

n[0] = n[0] / length; // Normalize
n[1] = n[1] / length;

n[2] = n[2] / length;

Intensity Computations

e For each polygon
— Compute I(r), 1(g), and I(b) from Phong Formula
— Scale to Frame Buffer r,g,b values:

FB(color) I(color)
FBmax Imax
* For True color, FBmax=255

» Imax from formula with all dot products = 1 and
maximum values of reflection coefficients

— Paint Polygon with resulting FB(color) values
e This is Lambertian Flat Shading

— All points on a polygon have same color intensity
— Gives a faceted appearance to all (curved) surfaces

Rendering Process
(Flat Shading)

e 1. Set up polygon model data structures

— Include information needed for subsequent shading

« Object list, polygon list, vertex list, lighting (la,L,Ip), reflection
properties (kr, kg, kb, ks, n)

e 2. Apply chain of transformations to model
— For each vertex get (xv,yv,zv) and (xs,ys)
e 3. Do Back-Face Culling

e 4. Compute & store polygon colors (Phong
model)

e 5. Apply Z-Buffer Algorithm and shade polygons

Data Structures for Flat-Shaded
Polygon Mesh Rendering

Array of objects
Array of polygons
Lighting parameters
Viewing parameters

P w0 D P

e Values could come from a scene file

e 1. Array of objects (e.g., for object i):

Object[i].num_pts /I number of vertices in object
Object[il.w_pts[num_pts] // vertex 3D world coords
Object[i].v_pts[num_pts] // vertex 3D viewing coords
Object[i].s_pts[num_pts] //vertex 2D screen coords
Object[i].num_polys /[l number of polygons
Object[i].polys[num_polys] //array of polygons

/I Diffuse reflection coefficients:

Object][i].kr; Object[i].kg; Object[i].kb

Object[il.ks // Specular reflection coefficient
Object[il.n // Specular exponent

— This assumes that all faces of the object have the
same reflection properties

e 2. Array of polygons (e.g., for polygon j):

polys[j].num_verts /I Number of vertices in polygon
polys][j].inds[num_verts] // List of polygon vertices
polys][j].visibility /IBack-Face culling visibility
polys][j].lred /l Red computed intensity
polys][j].Igreen /l Green computed intensity
polys][j].Iblue /[Blue computed intensity

— Alternative to storing color intensities: compute and
store surface normals
Polys[j].n[3] // x,y,z components of surface normal
« Compute color intensities later
» Would facilitate interpolated smooth shading (see below)

e 3. Lighting Parameters:

la /l Ambient Light Intensity (1a)
num_lights /l Number of light sources

Lx[k], Ly[Kk], Lz[k] // World coordinates of kth light source
Ip[K] Il intensity of kth light source

Scene Description Files

Viewing parameters (p, 6, @, scrn_dist)

Number of objects (num_objs)

For each object:

— File name of Generic Object Description File

— X,Y,z scaling factors to be applied to object (sx,sy,sz)
— rotation angles to be applied to object (az,ay,az)

— translation distances to be applied to object (tx,ty,tz)

Position, Intensity of light sources (Lx,Ly,Lz,Ip)
Intensity of ambient light (1a)

Example Scene Description File

200, 1000, 45,60 /I scrn_dist, p, 8, @

1

/I number of objects in scene

pyramid.des // name of generic object description file
1.8,1.0,1.0 /Isx, sy, sz scaling factors

0,0,0 II'x,y, z, rotation angles
200,0,0 Il X, y, z translation components
1 /l number of light sources

500, 500, 500, 100 // x,y,z & Intensity of light source
50 /I ambient light intensity

Generic Object Description Files

e For each object:
— Number of points (num_pts)
— For each point:
« 3-D world coordinates of point (xw,yw,zw)
— Number of polygons (num_polys)
— For each polygon:
* Number of vertices (num_verts)
* List of polygon vertices (*inds)
— Reflection properties:
» Diffuse reflection coefficients (kr,kg,kb)
» Specular reflection coefficient & exponent (ks,n)

Example Generic Object

Description File
/I pyramid.des file:

5,5 /I number of vertices and polygons

/' World coordinates of pyramid vertices:

(0,0,0), (150,0,0), (150,150,0), (0,150,0), (75,75,150)
//Pyramid polygons:

3,(0,1,4), 3,(1,2,4), 3,(2,3,4), 3,(0,4,3), 4,(0,3,2,1)
0.2,0.5,0.9 [lkr, kg, kb diffuse reflection coefficients
0.4 Il ks specular reflection coefficient

/I n specular exponent

Interpolated Shading

e To “fake” curved surfaces

e Easiest way--Gouraud shading:
— Compute vertex intensities

— Double Interpolate values across polygon

* Should be done at same time as Z-Buffer
interpolations

— Gives a curved appearance to surfaces

interpolated {Gouraud) Shading

1. Calculate the Vertex, Normal as the
average of the surface normals of
the polygons surounding the vertex.

N1 +MN2+N3+N
Np = 1 24 3 +hNg

2. Calculate a Yertex Intensity for each
vertex using the Phong model.

la= 11 + -S——-L(;zg'_';,ll {ys-y1)

a {14 - 11
=11 + w {ys-y1)

Is=la + _f%))% (xs - xa)

3. When scan converting the polygon, calcuate
the intensity of a pixel by doubls intetpolation:

Polygon Mesh (Z-Buffer hidden
Surface removal + Flat Shading)

Polygon Mesh (Z-Buffer and
Flat/Gouraud/Phong shading)

Phong Smooth Shading

e Interpolate the vertex normal vectors
— Instead of the intensities

— Means a Phong intensity calculation for
each pixel on each polygon

— Much more computationally intensive

— But “catches” specular highlights that
Gouraud misses

— More realistic images

Flat Gouraud Phong

Polygon Mesh (no hidden surface removal)

Polygon Mesh (Back-Face Culling)

Polygon Mesh (Z-Buffer hidden
Surface removal + Flat Shading)

Polygon Mesh (Z-Buffer and
Flat/Gouraud/Phong shading)

llHlumination & Reflection in
OpenGL

e OpenGL Uses the Phong
[llumination/Reflection Model

Final Phong Illumination/Reflection
Model Result (Single White Light
Source)

e Three color intensity equations:
I(r,g,b) = Ambient + Point Diffuse + Point Specular
I(r,g,b) = kd(r,g,b)*la
+ Ip*kd(r,g,b)*(N-L)
+ Ip*ks*(R-V)"
e OpenGL generalizes this to include colored light
sources

llHlumination & Reflection in
OpenGL

e Define Light Sources
e Define Material Properties

e Define polygons and their outward-directed
normal vectors

e Specify Shading Model
e Enable Depth Testing (Z-Buffer)

Lighting
e OpenGL supports 4 types of light:
— Ambient
— Diffuse
— Specular
— Emitted

e Can be up to 8 different light sources

Defining a Light Source

e Set up Arrays of lighting values

— Intensities:
GLfloat ambLightQ[] = {0.3f, 0.3f, 0.3f, 1.0f}; // R,G,B,a
GLfloat diffLightO[] ={Q.5f, 0.5f, 0.5f, 1.0f};

e Pass Arrays t
glLightfv(GL_LIGHTO, mbLight0);
glLightfv(GL_LIGHTO, GL_ iffllight0);

glLightfv(GL_LIGHTO, GL_SPEC AR specLight0);

glLightfv(GL_LIGHTO, GL_POSITION;posnLight0);

Enabling a Light Source

e Turn on Lighting
glEnable(GL_LIGHTING);

e Turn on a Light Source
glEnable(GL_LIGHTO);

Material Reflection Properties

e Ambient

e Diffuse
— These are usually the same

e Specular

Material Reflection Properties

e Set up Material Arrays
— ambient/diffuse reflection coefficients
GLfloat mat_ambdiff[] = {0.0f, 0.7f, 0.0f, 1.0f}; // diff. refl. coeffs.

gIMaterjalfv(GL_FRONT, GL_AMBI
mat_ambdiff);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec);
gIMaterialf(GL_FRONT, GL_SHININESS, 20.0f);
/I last parameter: specular exponent (0-128)

AND_DIFFUSE,

Defining Normals

e Must compute normals for all polygons

e OpenGL has no function to do that
— So write your own
» See notes from last class
e Assume the result is:
double n[3];

e Use this when you define the polygon
glBegin(GL_POLYGON)
gINormal3f ((GLfloat)n[0], (GLfloat)n[1], (GLfloat)n[2]);
/I glVertex3f() calls here for polygon vertices

glEnd();

Specify a Shading Model and
Enable Depth Testing

glShadeModel(GL_FLAT); // use GL_SMOOTH
I/ for Gouraud shading

glEnable(GL_DEPTH_TEST);
glClear (GL_COLOR_BUFFER _BIT |

GL_DEPTH_BUFFER_BIT);
/I clear frame buffer and z-buffer

Some sample code - view class::OnDraw()

glShadeModel(GL_SMOOTH);

glEnable(GL_DEPTH_TEST);

glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW); glLoadldentity();
gIMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mat_ambdiff);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec); // The lighting..

glMaterialf(GL_FRONT, GL_SHININESS, 20.0f); /[and material..
glLightfv(GL_LIGHTO, GL_AMBIENT, ambLight0); /[arrays were..
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffLight0); /] set up..

glLightfv(GL_LIGHTO, GL_SPECULAR, specLight0); // before this..
glLightfv(GL_LIGHTO, GL_POSITION, posnLight0); Il code.
glEnable(GL_LIGHTING); glEnable(GL_LIGHTO);

DrawCube(); // Helper function to define cube vertices/polygons/normalg
glFlush();

Code from DrawCube() function

glTranslatef(0.0f, 0.0f, -3.0f); // position cube inside viewing volume
glRotatef(20.0f, 1.0f, 0.0f, 0.0f); // rotate about x
glRotatef(20.0f, 0.0f, 1.0f, 0.0f); // rotate about y
I/l Draw the polygons of the cube, only front face is given here:
double p1[] ={-0.5, 0.5, 0.5}; double p2[] = {-0.5, -0.5, 0.5};
double p3[] ={0.5, -0.5, 0.5}; double n[3];
CalcNormal(pl, p2, p3, n);
glBegin(GL_POLYGON); // only 1 face here, other 5 must be defined
glNormal3f((GLfloat)n[0], (GLfloat)n[1], (GLfloat)n[2]);
glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);
glEnd();

Code from CalcNormal (double *p1,
double *p2, double *p3, double *n)

/I Form two vectors from the points.

double a[3], b[3];

a[0] = p2[0] - p1[0]; a[1] = p2[1] - p1[1]; a[2] = p2[2] - p1[2];
b[0] = p3[0] - p1[0]; b[1] = p3[1] - p1[1]; b[2] = p3[2] - p1[2];
/I Calculate the cross product of the two vectors.

n[0] = a[1] * b[2] - a[2] * b[1];

n[1] = a[2] * b[0] - a[0] * b[2];

n[2] = a[0] * b[1] - a[1] * b[0];

/I Normalize the new vector.

double length = sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]);

n[0] = n[0] / length;

n[1] = n[1] / length;

n[2] = n[2] / length;

Shadows
e VVery important to our perception of depth

e Shadow position/orientation give
information as to how objects relate to
each other in space

Sharp Shadows from Point
Sources

) BRIGHT

no light --completely dark
Point source

) This region receives
of light Object)

ERIGHT

Soft Shadows from Extended
Sources

Outside red lines:) Light received from

light received from B hoth A and B
Light from A, but not B

. Completely Dark
Light from B, hut not A

A

B -
Object Light received from

Cutside black lines: hoth A and B
light received from A

Umbra: central area that receives no light (complete shadow)
Penumbra: areas in partial shadow (receive light from part of source)

Shadows from Point
Sources

e Look at shadows from point sources

e If a point is in shadow, set Phong Ipto O
— Source gets no light from point source
— So no reflection from point source
— Still must include ambient term

e Lots of algorithms

e One of simplest: Shadow Z-Buffer

Shadow Z-Buffer Algorithm
e A two-stage process

1. Take Light Source as viewpoint & compute
depths
« Store results in shadow Z-buffer Z'[xX'][y’]
» Each Z'[x"][y’] will contain distance of closest
surface to light source
2. Normal Z-Buffer rendering

» But if (x,y) is closest to viewer (visible), transform
to light space coordinates (x',y’,z’)
* If 22 > Z'[X'][y’] point is in shadow
— Some object is closer to light & will block it
— So only include ambient term in computation

Shadow Z-Buffer

y' z' > z'[x'y'] ==> In Shadow

Z-Buffer

Set up shadow Z-Buffer, Z'[x’][y’], using coordinate
system whose origin is at light source

(same code as Z-Buffer, but using different origin)
Z-buf[x][y]=infinity for all x,y // regular Z-buffer
for each polygon
for each pixel x,y
calculate z
if z < Z-buf[x][y]
transform x,y,z to light coord space x,y’,z’
iz’ > Z'[x]ly’]
reduce intensity (include only ambient)
Z-buf[x][y]=z; FBI[X][y]=intensity

