3D Graphics with OpenGL.:
Hierarchical Models,
Interaction, Animation

Z-Buffer Hidden Surface
Removal

lllumination and Shading

3D Graphics Using OpenGL

e OpenGL 3D Coordinate System

e Building Polygon Models

e ModelView & Projection Transformations
e Quadric Surfaces

e User Interaction

e Hierarchical Modeling

e Animation

OpenGL 3D Coordinate System

e A Right-handed coordinate system
— Viewpoint is centered at origin initially

Y Axis

Z Axis X Axis

Defining 3D Polygons in
OpenGL

e e.9., front face of a cube centered at origin
glBegin(GL_POLYGON)
glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);
glEnd();
e need to define the other faces

Model-View and Projection
Transformations

e Each vertex in model passes through
two transformations
— Defined by two 4X4 matrices
» Model-view and projection matrices
— Model-view matrix
* Position objects relative to camera
— Projection matrix

* Forms the image through projection to a
projection plane and helps with clipping

Projection Transformation

First tell OpenGL you're using the projection matrix
glMatrixMode(GL_PROJECTION);
Then Initialize it to the Identity matrix
glLoadldentity();
Then define the viewing volume, for example:
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
— (left, right, bottom, top, near, far)
« near & far are positive distances, near < far
— Viewing volume is the frustum of a pyramid
— Used for perspective projection
or glOrtho(-1.0, 1.0,-1.0, 1.0, 2.0, 7.0);
— Viewing volume is a rectangular solid
— for parallel projection

For both the viewpoint (eye) is at (0,0,0)

The Viewing Volume
e Everything outside viewing volume is clipped

e Think of near plane as being window'’s client area

Far
Plane

Near

Plane ™~

Eye

Modelview Transformation
Our cube as specified is not visible

It lies in front of near clipping plane

Qriginal Near Clipping Far Clipping
3-D Cane?.lan Grid F\"Iane Viewing Volume F:l\ane
LY .'l
Cube ~ i - \
A\ Y
- kY \
Eye—1 | R

Positioning the Camera
e By default it's at (0,0,0), pointing in —z
direction, up direction is y-axis
e Can set the camera point
e And the “lookat” point
e And the up direction
gluLookAt(xc,yc,zc,xa,ya,za,xu,yu,zu);
(xc,yc,zc) coordinates of virtual camera

(xa,ya,za) coordinates of lookat point
(xu,yu,zu) up direction vector
e Example:

gluLookAt(2.0,2.0,2.0,0.0,0.0,0.0,0.0,0.0,1.0);
camera at (2,2,2), looking at origin, z-axis is up

Modelview Transformation

e Used to perform geometric translations,
rotations, scalings

e Also implements the viewing transformation
e If we don't position the camera, we need to
move our cube into the viewing volume
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslate(0.0f, 0.0f, -3.5f);
— Translates cube down z-axis by 3.5 units

e OpenGL performs transformations on all
vertices

e First modelview transformation
e Then projection transformation
e The two matrices are concatenated

e Resulting matrix multiplies all points in
the model

OpenGL Geometric Transformations
e “Modeling” Transformations

glScalef(2.0f, 2.0f, 2.0f); // twice as big
parameters: sx, Sy, Sz

glTranslatef(2.0f, 3.5f, 1.8f); // move object
parameters: tx, ty, tz

glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // 30 degrees about z-axis
parameters:
— angle
— (x,y,2) -> coordinates of vector about which to rotate

OpenGL Composite Transformations

e Combine transformation matrices

e Example: Rotate by 45 degrees about a line
parallel to the z axis that goes through the point
(xf,yf,zf) — the fixed point
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslate(xf,yf,zf);
glRotate(45, 0.0,0.0,1.0);
glTranslate(-xf,-yf,-zf);

e Note last transformation specified is first applied

— Because each transformations in OpenGL is applied to
present matrix by postmultiplication

Typical code for a polygon mesh model
glMatrixMode(GL_PROJECTION);
glLoadldentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef(0.0f, 0.0f, -3.5f); /l translate into viewing frustum
glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // rotate about z axis by 30
glClearColor(1.0f, 1.0f, 1.0f, 1.0f); /I set background color
glClear(GL_COLOR_BUFFER_BIT); // clear window
glColor3f(0.0f, 0.0f, 0.0f); /I drawing color
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);

//define polygon vertices here
glEnd();

e See 3dxform example program

The OpenGL Utility Library
(GLU) and Quadric Surfaces

e Provides many modeling features

— Quadric surfaces
 described by quadratic equations in x,y,z
» spheres, cylinders, disks
» Polygon Tesselation
— Approximating curved surfaces with polygon facets
— Non-Uniform Rational B-Spline Curves & Surfaces
(NURBS)

e Routines to facilitate setting up matrices for
specific viewing orientations & projections

Modeling & Rendering a
Quadric with the GLU

1. Get a pointer to a quadric object
2. Make a new quadric object

3. Set the rendering style

4. Draw the object

5. When finished, delete the object

OpenGL GLU Code to
Render a Sphere

GLUquadricObj *mySphere
mySphere=gluNewQuadric();
/lcreate the new sphere object
gluQuadricDrawStyle(mySphere,GLU_FILL);
I/l some other styles: GLU_POINT, GLU_LINE
gluSphere(mySphere,1.0,12,12);

/l radius, # longitude lines, # latitude lines

The GLUT and Quadric Surfaces

e An alternative to GLU Quadrics with many
more predefined quadric surface objects
— glutWire***()

— glutSolid***()
— Some examples:
* glutWireCube(size); glutSolidCube(size);
* glutWireSphere(radius,nlongitudes,nlatitudes);
* glutWireCone(rbase,height,nlongitudes,nlatitudes);
* glutWireTeapot(size);
* Lots of others
— See cone_perspective example program

Interaction in OpenGL

e OpenGL GLUT Callback Functions
— GLUT’s version of event/message handling

— Programmer specifies function to be called
by OS in response to different events

— Specify the function by using glut***Func(ftn)
» We've already seen glutDisplayFunc(disp_ftn)

« disp_ftn called when client area needs to be
repainted
— Like Windows response to WM_PAINT messages

— All GLUT callback functions work like MFC
On***() event handler functions

Some Other GLUT Callbacks

e glutReshapeFunc(ftn(width,height))
— Identifies function ftn() invoked when user
changes size of window
* height & width of new window returned to ftn()
e glutkKeyboardFunc(ftn(key,x,y))

— Identifies function ftn() invoked when user presses
a keyboard key

— Character code (key) and position of mouse cursor
(x,y) returned to ftn()

e glutSpecialFunction(ftn(key,x,y))
— For special keys such as function & arrow keys

Mouse Callbacks

e glutMouseFunc(ftn(button, state, X, y))

— ldentifies function ftn() called when mouse
events occur

— Button presses or releases
 Position (x,y) of mouse cursor returned
* Also the state (GLUT_UP or GLUT_DOWN)

» Also which button

— GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or
GLUT_MIDDLE_BUTTON

Mouse Motion

e Move event: when mouse moves with a
button pressed —
— glutMotionFunctionFunc(ftn(x,y))
« ftn(x,y) called when there’s a move event
 Position (x,y) of mouse cursor returned
e Passive motion event: when mouse moves
with no button pressed
— glutPassiveMotionFunctionFunc(ftn(x,y))

« ftn(x,y) called when there’s a passive motion event
 Position (x,y) of mouse cursor returned

GLUT Menus

e Can create popup menus and add menu
items with:

— glutCreateMenu (menu-ftn(ID))

¢ Menu-ftn(ID) is callback function called when user
selects an item from the menu

« ID identifies which item was chosen
— glutAddMenuEntry(name, ID_value)
« Adds an entry with name displayed to current menu
« ID_value returned to menu_ftn() callback
— glutAttachMenu(button)
« Attaches current menu to specified mouse button
« When that button is pressed, menu pops up

Hierarchical Models

e In many applications the parts of a model
depend on each other

e Often the parts are arranged in a hierarchy
— Represent as a tree data structure

— Transformations applied to parts in parent nodes are

also applied to parts in child nodes

— Simple example: a robot arm
« Base, lower arm, and upper arm
« Base rotates = lower and upper arm also rotate
« Lower arm rotates =» upper arm also rotates

Simple Robot Arm Hierarchical
Model

Base

)

Lower Arm

A}

‘ e ‘ Upper Arm

Use of Matrix Stacks in OpenGL
to Implement Hierarchies

e Matrix stacks store projection & model-view
matrices

e Push and pop matrices with:
— glPushMatrix();
— glPopMatrix();

e Can use to position entire object while also
preserving it for drawing other objects

e Use in conjunction with geometrical
transformations

e Example: Robot program

OpenGL Hierarchical Models

e Set up a hierarchical representation of scene (a tree)

e Each object is specified in its own modeling
coordinate system

e Traverse tree and apply transformations to bring
objects into world coordinate system

e Traversal rule:

— Every time we go to the left at a node with another unvisited
right child, do a push

— Every time we return to that node, do a pop

— Do a pop at the end so number of pushes & pops are the
same

Upper Armm

GLUT Animation

e Simple method is to use an “idle” callback
— Called whenever window’s event queue is empty

— Could be used to update display with the next
frame of the animation

— Identify the idle function with:
« glutldleFunc(idle_ftn())
— Simple Example:
void idle_ftn()

{ glutPostRedisplay(); }

* Posts message to event queue that client area needs to
be repainted

« Causes display callback function to be invoked
« Effectively displays next frame of animation

Double Buffering

Use two display buffers
Front buffer is displayed by display hardware
Application draws into back buffer

Buffers are swapped after new frame is drawn into
back buffer

Implies only one access to display hardware per
frame

e Eliminates flicker
e In OpenGL, implement by replacing glFlush() with

glutSwapBuffers() in display callback

In initialization function, must use:
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

See anim_square & cone_anim examples

General Hidden Surface
Removal

Z-Buffer Hidden Surface
Removal Algorithm

Hidden Surface Removal

e Determination of surfaces not visible to
the viewer

e Many different techniques
— Back face culling, for single objects only
— Z-Buffer
— Depth Sort

Z-Buffer Hidden Surface
Removal Algorithm

e Basic ldea:
— At a given pixel we want to plot color of
closest surface that projects to that pixel
— We're looking for minimum zv
— Use a buffer (array) parallel to the frame
buffer
 Store minimum values of zv
» One for every pixel
 Called the Z-Buffer

Z-Buffer Technique Applied
to a Polygon Mesh

e Initialize Z-Buffer and Frame Buffer
e Look at each polygon
— Look at each point (xs,ys) projected to by the
polygon
— Compute zv of the point on the polygon

* If zv is closer than value stored at [x,y] in Z-Buffer
— Replace value in Z-Buffer with zv

— Update corresponding element in frame buffer with color
of the polygon

Z~-Buffer Hidden Surface Removal

Screen
Viewpoint
Y
Frame Buffer ZBuffer
Imitialize all Z[x,¥], FB[x,¥] FBlx.¥] Z[xy]
For each polygon P bbhhh 11111
For each pixel (x,¥) covered by P bbbhbh iiiii
if (z < Z[x,Y]) bbbbb iiiif
Zxy] =z b =background i= infinity
FB[x,¥] = color of P color initially (largest value)

initially
When completed, each position {pixel) in the frame buffer will contain the color of

the closest polygon, and each position in the Z-huffer will contain the distance to
the intersection with that polygon.

Z-Buffer Algorithm Applied to
Convex Polygons

Data Structures:

e For each polygon
— Polygon color

— Polygon vertex coordinates: xs, ys, and zv
* Note mixed coordinates
— Edge table (xmin, ymin, zmin, xmax, ymax, zmax)
— Active edge list (AEL) with active edges intersected by

current scanline sorted on xs
— (See scanline polygon fill notes)

Other Data Structures

e Frame Buffer FBuf[x][y]
— Will store the color of each pixel (x,y)
e Z-Buffer ZBuf[x][y]

— Will store the zv distance of point on closest
polygon that projects to pixel (x,y) on screen

e |nitialize each element of FBUf[][] to
background color

e |nitialize each element of ZBuf][] to infinity
(largest possible value)

The Algorithm

For each polygon
For each scanline y spanning the polygon
Get left & right active edges from AEL
Get x,z coordinates of endpoints from edge table
Compute scanline/edge intersection pts (xL,zL,xR,zR
(Use x-y & z-y interpolation)
For (x=xL to xR)
Compute z by z-x interpol.
If (z < ZBuf[x,y])
ZBuf[x,y] = z
FBuf[x,y] = polygon color

Double Interpolation
e We know (from Edge Table):
lower/upper vertices of left active edge:
(x0,y0,z0) and (x1,y1,z1)
lower/upper vertices of right active edge:
(x2,y2,z2) and (x3,y3,z3)

e We also know y of
current scanline

#3323

%2 ya 22

X-y Interpolation:
e Find x coords of intersection pts (XL,xR)

e Left Edge:
XL-x0 y-yO

x3,y3,23

x1-x0 yl-yO

e Solving for xL.:
XL = (x1-x0)*(y-y0)/(y1-y0) + x0
e Similarly for xR on right edge:
XR = (x3-x2)*(y-y2)/(y3-y2) + x2

z-y Interpolation

e Find z coordinates of intersection points
of scan line (y) with left and right edges

e Done the same way as x-y interpolation
e X coordinates replaced by z coordinates

e Results:
e zL = (z1-z0)*(y-y0)/(y1l-y0) + z0
e zR = (z3-z2)*(y-y2)/(y3-y2) + z2

z-X Interpolation
e Find z value on polygon at pixel x on current
scanline (y)

e Interpolate between the left and right edge

intersection points:
x3v323

Z'ZL X'XL x1y1,21
ZR-zL XR-xL shyal ‘ xRy,

FURTFE]]

%2y 2,22

Solving for z:
Zz = (zR-zL)*(x-xL)/(xR-xL) + zL

Speeding up the Algorithm

e Do interpolations incrementally

— Get new values from old values by adding
correct increments

— XL, xR,zL,zR (in the outer loop)
— Z (in the inner loop)

— Avoids multiplications and divisions inside
algorithm loops

Z-Buffer Performance

e Outer loop repeats for each polygon

e Complex scenes have more polygons
— So complex scenes should be slower

e But:-- More polygons usually means smaller
polygons
— So inner loops (y and x) are faster

e For most real scenes, performance is
approximately independent of scene
complexity

Disadvantage of Z-Buffer

e Memory requirements
e Z-Buffer is at least as big as the frame buffer

e For best results, need floating point or
doubles for z values

e Example 1000 X 1000 resolution screen
— Assume 8 bytes to store a double
— 8 Megabytes required for Z-Buffer

e But memory has become cheap

e Z-Buffer used very commonly now

e Often implemented in hardware

