
3D Graphics with OpenGL:
Hierarchical Models,

Interaction, Animation

Z-Buffer Hidden Surface
Removal

Illumination and Shading

3D Graphics Using OpenGL
� OpenGL 3D Coordinate System
� Building Polygon Models
� ModelView & Projection Transformations
� Quadric Surfaces
� User Interaction
� Hierarchical Modeling
� Animation

OpenGL 3D Coordinate System
� A Right-handed coordinate system

– Viewpoint is centered at origin initially

Defining 3D Polygons in
OpenGL

� e.g., front face of a cube centered at origin
glBegin(GL_POLYGON)

glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);

glEnd();
� need to define the other faces

Model-View and Projection
Transformations

� Each vertex in model passes through
two transformations
– Defined by two 4X4 matrices

• Model-view and projection matrices
– Model-view matrix

• Position objects relative to camera
– Projection matrix

• Forms the image through projection to a
projection plane and helps with clipping

Projection Transformation
� First tell OpenGL you’re using the projection matrix

glMatrixMode(GL_PROJECTION);
� Then Initialize it to the Identity matrix

glLoadIdentity();
� Then define the viewing volume, for example:

glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
– (left, right, bottom, top, near, far)

• near & far are positive distances, near < far
– Viewing volume is the frustum of a pyramid
– Used for perspective projection
or glOrtho(-1.0, 1.0,-1.0, 1.0, 2.0, 7.0);
– Viewing volume is a rectangular solid
– for parallel projection

� For both the viewpoint (eye) is at (0,0,0)

� Everything outside viewing volume is clipped
� Think of near plane as being window’s client area

The Viewing Volume

Modelview Transformation
Our cube as specified is not visible

It lies in front of near clipping plane

Positioning the Camera
� By default it’s at (0,0,0), pointing in –z

direction, up direction is y-axis
� Can set the camera point
� And the “lookat” point
� And the up direction

gluLookAt(xc,yc,zc,xa,ya,za,xu,yu,zu);
(xc,yc,zc) coordinates of virtual camera
(xa,ya,za) coordinates of lookat point
(xu,yu,zu) up direction vector

� Example:
gluLookAt(2.0,2.0,2.0,0.0,0.0,0.0,0.0,0.0,1.0);

camera at (2,2,2), looking at origin, z-axis is up

Modelview Transformation
� Used to perform geometric translations,

rotations, scalings
� Also implements the viewing transformation
� If we don’t position the camera, we need to

move our cube into the viewing volume
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(0.0f, 0.0f, -3.5f);
– Translates cube down z-axis by 3.5 units

� OpenGL performs transformations on all
vertices

� First modelview transformation
� Then projection transformation
� The two matrices are concatenated
� Resulting matrix multiplies all points in

the model

OpenGL Geometric Transformations
� “Modeling” Transformations

glScalef(2.0f, 2.0f, 2.0f); // twice as big
parameters: sx, sy, sz

glTranslatef(2.0f, 3.5f, 1.8f); // move object
parameters: tx, ty, tz

glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // 30 degrees about z-axis
parameters:
– angle
– (x,y,z) -> coordinates of vector about which to rotate

OpenGL Composite Transformations
� Combine transformation matrices
� Example: Rotate by 45 degrees about a line

parallel to the z axis that goes through the point
(xf,yf,zf) – the fixed point
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(xf,yf,zf);
glRotate(45, 0.0,0.0,1.0);
glTranslate(-xf,-yf,-zf);

� Note last transformation specified is first applied
– Because each transformations in OpenGL is applied to

present matrix by postmultiplication

Typical code for a polygon mesh model
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -3.5f); // translate into viewing frustum
glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // rotate about z axis by 30
glClearColor(1.0f, 1.0f, 1.0f, 1.0f); // set background color
glClear(GL_COLOR_BUFFER_BIT); // clear window
glColor3f(0.0f, 0.0f, 0.0f); // drawing color
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);

//define polygon vertices here
glEnd();

� See 3dxform example program

The OpenGL Utility Library
(GLU) and Quadric Surfaces

� Provides many modeling features
– Quadric surfaces

• described by quadratic equations in x,y,z
• spheres, cylinders, disks
• Polygon Tesselation

– Approximating curved surfaces with polygon facets

– Non-Uniform Rational B-Spline Curves & Surfaces
(NURBS)

� Routines to facilitate setting up matrices for
specific viewing orientations & projections

Modeling & Rendering a
Quadric with the GLU

1. Get a pointer to a quadric object
2. Make a new quadric object
3. Set the rendering style
4. Draw the object
5. When finished, delete the object

OpenGL GLU Code to
Render a Sphere

GLUquadricObj *mySphere
mySphere=gluNewQuadric();

//create the new sphere object

gluQuadricDrawStyle(mySphere,GLU_FILL);
// some other styles: GLU_POINT, GLU_LINE

gluSphere(mySphere,1.0,12,12);
// radius, # longitude lines, # latitude lines

The GLUT and Quadric Surfaces
� An alternative to GLU Quadrics with many

more predefined quadric surface objects
– glutWire***()
– glutSolid***()
– Some examples:

• glutWireCube(size); glutSolidCube(size);
• glutWireSphere(radius,nlongitudes,nlatitudes);
• glutWireCone(rbase,height,nlongitudes,nlatitudes);
• glutWireTeapot(size);
• Lots of others

– See cone_perspective example program

Interaction in OpenGL
� OpenGL GLUT Callback Functions

– GLUT’s version of event/message handling
– Programmer specifies function to be called

by OS in response to different events
– Specify the function by using glut***Func(ftn)

• We’ve already seen glutDisplayFunc(disp_ftn)
• disp_ftn called when client area needs to be

repainted
– Like Windows response to WM_PAINT messages

– All GLUT callback functions work like MFC
On***() event handler functions

Some Other GLUT Callbacks
� glutReshapeFunc(ftn(width,height))

– Identifies function ftn() invoked when user
changes size of window

• height & width of new window returned to ftn()

� glutKeyboardFunc(ftn(key,x,y))
– Identifies function ftn() invoked when user presses

a keyboard key
– Character code (key) and position of mouse cursor

(x,y) returned to ftn()
� glutSpecialFunction(ftn(key,x,y))

– For special keys such as function & arrow keys

Mouse Callbacks
� glutMouseFunc(ftn(button, state, x, y))

– Identifies function ftn() called when mouse
events occur

– Button presses or releases
• Position (x,y) of mouse cursor returned
• Also the state (GLUT_UP or GLUT_DOWN)
• Also which button

– GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or
GLUT_MIDDLE_BUTTON

Mouse Motion
� Move event: when mouse moves with a

button pressed –
– glutMotionFunctionFunc(ftn(x,y))

• ftn(x,y) called when there’s a move event
• Position (x,y) of mouse cursor returned

� Passive motion event: when mouse moves
with no button pressed
– glutPassiveMotionFunctionFunc(ftn(x,y))

• ftn(x,y) called when there’s a passive motion event
• Position (x,y) of mouse cursor returned

GLUT Menus
� Can create popup menus and add menu

items with:
– glutCreateMenu (menu-ftn(ID))

• Menu-ftn(ID) is callback function called when user
selects an item from the menu

• ID identifies which item was chosen
– glutAddMenuEntry(name, ID_value)

• Adds an entry with name displayed to current menu
• ID_value returned to menu_ftn() callback

– glutAttachMenu(button)
• Attaches current menu to specified mouse button
• When that button is pressed, menu pops up

Hierarchical Models
� In many applications the parts of a model

depend on each other
� Often the parts are arranged in a hierarchy

– Represent as a tree data structure
– Transformations applied to parts in parent nodes are

also applied to parts in child nodes
– Simple example: a robot arm

• Base, lower arm, and upper arm
• Base rotates � lower and upper arm also rotate
• Lower arm rotates � upper arm also rotates

Simple Robot Arm Hierarchical
Model

Use of Matrix Stacks in OpenGL
to Implement Hierarchies

� Matrix stacks store projection & model-view
matrices

� Push and pop matrices with:
– glPushMatrix();
– glPopMatrix();

� Can use to position entire object while also
preserving it for drawing other objects

� Use in conjunction with geometrical
transformations

� Example: Robot program

OpenGL Hierarchical Models
� Set up a hierarchical representation of scene (a tree)
� Each object is specified in its own modeling

coordinate system
� Traverse tree and apply transformations to bring

objects into world coordinate system
� Traversal rule:

– Every time we go to the left at a node with another unvisited
right child, do a push

– Every time we return to that node, do a pop
– Do a pop at the end so number of pushes & pops are the

same

GLUT Animation
� Simple method is to use an “idle” callback

– Called whenever window’s event queue is empty
– Could be used to update display with the next

frame of the animation
– Identify the idle function with:

• glutIdleFunc(idle_ftn())

– Simple Example:
void idle_ftn()

{ glutPostRedisplay(); }
• Posts message to event queue that client area needs to

be repainted
• Causes display callback function to be invoked
• Effectively displays next frame of animation

Double Buffering
� Use two display buffers
� Front buffer is displayed by display hardware
� Application draws into back buffer
� Buffers are swapped after new frame is drawn into

back buffer
� Implies only one access to display hardware per

frame
� Eliminates flicker
� In OpenGL, implement by replacing glFlush() with

glutSwapBuffers() in display callback
� In initialization function, must use:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
� See anim_square & cone_anim examples

Z-Buffer Hidden Surface
Removal Algorithm

General Hidden Surface
Removal

Hidden Surface Removal

� Determination of surfaces not visible to
the viewer

� Many different techniques
– Back face culling, for single objects only
– Z-Buffer
– Depth Sort

Z-Buffer Hidden Surface
Removal Algorithm

� Basic Idea:
– At a given pixel we want to plot color of

closest surface that projects to that pixel
– We’re looking for minimum zv
– Use a buffer (array) parallel to the frame

buffer
• Store minimum values of zv
• One for every pixel
• Called the Z-Buffer

Z-Buffer Technique Applied
to a Polygon Mesh

� Initialize Z-Buffer and Frame Buffer
� Look at each polygon

– Look at each point (xs,ys) projected to by the
polygon

– Compute zv of the point on the polygon
• If zv is closer than value stored at [x,y] in Z-Buffer

– Replace value in Z-Buffer with zv
– Update corresponding element in frame buffer with color

of the polygon

Z-Buffer Algorithm Applied to
Convex Polygons

Data Structures:
� For each polygon

– Polygon color
– Polygon vertex coordinates: xs, ys, and zv

• Note mixed coordinates

– Edge table (xmin, ymin, zmin, xmax, ymax, zmax)
– Active edge list (AEL) with active edges intersected by

current scanline sorted on xs
– (See scanline polygon fill notes)

Other Data Structures
� Frame Buffer FBuf[x][y]

– Will store the color of each pixel (x,y)
� Z-Buffer ZBuf[x][y]

– Will store the zv distance of point on closest
polygon that projects to pixel (x,y) on screen

� Initialize each element of FBuf[][] to
background color

� Initialize each element of ZBuf[][] to infinity
(largest possible value)

The Algorithm
For each polygon

For each scanline y spanning the polygon
Get left & right active edges from AEL
Get x,z coordinates of endpoints from edge table
Compute scanline/edge intersection pts (xL,zL,xR,zR)

(Use x-y & z-y interpolation)
For (x=xL to xR)

Compute z by z-x interpol.
If (z < ZBuf[x,y])

ZBuf[x,y] = z
FBuf[x,y] = polygon color

Double Interpolation
� We know (from Edge Table):

lower/upper vertices of left active edge:
(x0,y0,z0) and (x1,y1,z1)

lower/upper vertices of right active edge:
(x2,y2,z2) and (x3,y3,z3)

� We also know y of
current scanline

x-y Interpolation:
� Find x coords of intersection pts (xL,xR)
� Left Edge:

xL-x0 y-y0
------- = -------
x1-x0 y1-y0

� Solving for xL:
xL = (x1-x0)*(y-y0)/(y1-y0) + x0

� Similarly for xR on right edge:
xR = (x3-x2)*(y-y2)/(y3-y2) + x2

z-y Interpolation
� Find z coordinates of intersection points

of scan line (y) with left and right edges
� Done the same way as x-y interpolation
� x coordinates replaced by z coordinates
� Results:
� zL = (z1-z0)*(y-y0)/(y1-y0) + z0
� zR = (z3-z2)*(y-y2)/(y3-y2) + z2

z-x Interpolation
� Find z value on polygon at pixel x on current

scanline (y)
� Interpolate between the left and right edge

intersection points:
z-zL x-xL

-------- = --------
zR-zL xR-xL

Solving for z:
z = (zR-zL)*(x-xL)/(xR-xL) + zL

Speeding up the Algorithm

� Do interpolations incrementally
– Get new values from old values by adding

correct increments
– xL,xR,zL,zR (in the outer loop)
– z (in the inner loop)
– Avoids multiplications and divisions inside

algorithm loops

Z-Buffer Performance
� Outer loop repeats for each polygon
� Complex scenes have more polygons

– So complex scenes should be slower
� But:-- More polygons usually means smaller

polygons
– So inner loops (y and x) are faster

� For most real scenes, performance is
approximately independent of scene
complexity

Disadvantage of Z-Buffer
� Memory requirements
� Z-Buffer is at least as big as the frame buffer
� For best results, need floating point or

doubles for z values
� Example 1000 X 1000 resolution screen

– Assume 8 bytes to store a double
– 8 Megabytes required for Z-Buffer

� But memory has become cheap
� Z-Buffer used very commonly now
� Often implemented in hardware

