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Back-Face Culling
� Define one side of each polygon to be 

the visible side
– That side is the outward-facing side 

� Defining each polygon in the polygons 
array:
– Systematically number vertices in counter-

clockwise fashion as seen from outside of 
the object



First: Review of Vector Products
� Dot (Scalar) Product

s = A . B
s = |A| * |B| * cos(θ)

θ is the angle between vectors A and B

In terms of components (RH coord system):
s = Ax*Bx + Ay*By + Az*Bz

Cross (Vector) Product
� V = A x B,  a vector
� Magnitude: |V| = |A| * |B| * sin(θ)

θ is angle between vectors A and B
� Direction: Given by right-hand rule

– 1. Align fingers of right hand with first 
vector

– 2. Rotate toward second
– 3. Thumb points in direction of V



In the following diagram: 
V = A x B  would point out of the screen   
toward the observer

In terms of components (RH coordinate system):
|  i       j      k |

V =   | Ax   Ay  Az |        (a determinant)
| Bx By  Bz |

i, j, k are unit vectors along x,y,z axes

Triple Product

A . (B x C)
|  Ax  Ay  Az |

A . (B x C) =   |  Bx By  Bz |      (determinant)
|  Cx Cy  Cz |

(Components in terms of RH coord system)



� Consider triangle with vertices 0, 1, 2
� Visible side of the triangle: 0,1,2

– Vertices numbered in counter-clockwise order
– Invisible side is: 0,2,1

• (clockwise vertex ordering)

Back-Face Culling

� Define vector N
– Outward normal to triangle

� Define Vector V0
– Vector from observer to vertex 0

� Some Cases:
– N and V0 nearly parallel (V0 . N = 1)
– Visible side of triangle 0 1 2 invisible to viewer



� Rotate triangle about side 01 by 90 degrees
– Now N and V0 are perpendicular (V0 . N = 0)
– Triangle is about to become visible
– At all other points between these two 

orientations:
• V0 . N is positive
• And triangle is invisible to viewer

� Continue rotation about side 01
� Triangle becomes visible to the viewer
� 90 degrees more, N and V0 are antiparallel

V0 . N = -1
Triangle facing toward viewer and is visible
– At all intermediate orientations:

• Triangle is visible 
• And V0 . N is negative



Criterion for Invisibility
� If  V0 . N > 0,  triangle  012  is invisible
� Now place triangle  012  in an arbitrary 

position relative to viewer V

� Outward normal N is vector (cross) product of 
V01 and V02
V01 is vector from vertex 0 to vertex 1
V02 is vector from vertex 0 to vertex 2

� So:  N = V01 x V02
� Criterion for invisibility:

V0 . (V01 x V02) > 0
� But:

V01 = V1 - V0
V02 = V2 - V0



� Substituting we get:
V0 . [(V1 - V0) x (V2 - V0)] > 0,  invisibility

� Expanding:
V0 . (V1 x V2) - V0 . (V1 x V0) - V0 . (V0 x V2) 

+ V0 . (V0 x V0) > 0
� Last Term = 0

(Cross product of any vector with itself = 0)

� Middle two terms:
Quantity inside ( ) is a vector perpendicular to V0

So dot product of either vector with V0 is 0

So:  V0 . (V1 x V2) > 0
– For right-handed coordinate system,  triple 

product can be expressed as a determinant
| X0   Y0   Z0 |

V0 . (V1 x V2)   =     | X1   Y1   Z1 | 
| X2   Y2   Z2 |

� (X0,Y0,Z0), (X1,Y1,Z1), (X2,Y2,Z2) are viewing 
coordinates (xv,yv,zv) of vertices 0, 1, and 2

� But viewing coordinate system is left-handed
� So sign of the determinant must be reversed



Final Criterion for Invisibility
| X0   Y0   Z0 |
| X1   Y1   Z1 |  <  0
| X2   Y2   Z2 |

� Result can be applied to any planar polygon
� Use viewing coordinates of three consecutive 

polygon vertices
� Could implement as a “visibility” function

– Computes and returns value of determinant
• Positive means visible, negative invisible

3-D Surfaces
� Explicit Representation

z = f(x,y)
� Plotting

– Fix values of y and vary x
– Gives a family of curves

z0 = f(x,0)
z1 = f(x,δ)
z2 = f(x,2*δ)
z3 = f(x,3*δ)
etc.



Plotting 3D Surfaces, 
continued

� Then fix values of x and vary y
� Gives another family of curves

z0’ = f(0,y)
z1’ = f(δ,y)
z2’ = f(2*δ,y)
z3’ = f(3*δ,y)
etc.

Plotting 3D Surfaces, 
continued

� Result is a wireframe that represents the 
surface

� Could be broken
up into polygons



Parametric Representation 
of 3D Surfaces

� Need two parameters, say t and s
� x = x(t,s),  y = y(t,s),  z = z(t,s)
� both t and s vary over a range (0 to 1)
� To plot:

– Fix values of s and for each vary t over range
• gives one family of isoparametric curves

– Fix values of t and for each vary s over range
• gives another family of isoparametric curves

Cubic Bezier Curves (Review)
� In matrix form, points on curve P [P = x,y] are 

given in terms of paramter t and four control 
points P0, P1, P2, P3

� Result:
P = a*t3 + b*t2 + c*t + d,    0 <= t <= 1

– Can be written in a more compact form:
P = T * Bg * Pc
T: row vector of parameter powers  [ t3 t2 t  1 ]
Bg: the constant 4 X 4 Bezier Geometry matrix
Pc: column vector of the control points



Bicubic Bezier Surface Patches
� Define 4-vectors S and T:

_ _
S = |_s3 s2 s 1_|, 0 <= s <= 1

_ _
T = |_t3 t2 t 1_|, 0 <= t <= 1

� Define points on surface patch Q(s,t)  [Q = x,y,z] as:
_ _

Q(s,t) = S * MB * |  P0(t)  |
|  P1(t)  |
|  P2(t)  | 
|_P3(t)_|

Control points P0, P1, P2, P3 are themselves parameterized by t
MB is the Bezier Geometry Matrix we’ve seen before

So P0(t) = T * MB * |   P00  |
|   P01  |
|   P02  |
|_ P03_|

Transposing:

P0(t) = |_P00 P01 P02 P03_| * MB
T * TT

Do the same for P1(t), P2(t), P3(t)

Result: _ _

|  P00 P01 P02 P03  | 
Q(s,t) = S * MB * |  P10 P11 P12 P13  | * MB

T *  TT

|  P20 P21 P22 P23  |
|_P30 P31 P32 P33_|



A Bicubic Bezier Surface Patch

Expanding and Rearranging 
Terms -- x(s,t) Equation

� Similar equation for y(s,t)



Plotting One Set of Isoparametric Curves
For (s=0; s<=1; s+=δ)

Compute & store x(s,0), y(s,0), z(s,0)
Project to screen and store --> xs(s,0), ys(s,0)
MoveTo(xs(s,0), ys(s,0))
For (t=0; t<=1; t+=δ)

Compute & store x(s,t), y(s,t), z(s,t)
Project to screen and store --> xs(s,t), ys(s,t)
LineTo(xs(s,t), ys(s,t))

Plotting the Other Set of 
Isoparametric Curves

For (t=0; t<=1; t+=δ)
MoveTo(xs(0,t), ys(0,t))
For (s=0; s<=1; s+=δ)

LineTo(xs(s,t), ys(s,t))



Introduction to 3D 
Graphics with OpenGL

3D Graphics Using OpenGL

� Building Polygon Models
� ModelView & Projection Transformations
� Quadric Surfaces
� User Interaction
� Hierarchical Modeling
� Animation



OpenGL 3D Coordinate System
� A Right-handed coordinate system

– Viewpoint is centered at origin initially

Defining 3D Polygons in 
OpenGL

� e.g., front face of a cube
glBegin(GL_POLYGON)

glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);

glEnd();
� need to define the other faces



Projection Transformation
� First tell OpenGL you’re using the projection matrix

glMatrixMode(GL_PROJECTION);
� Then Initialize it to the Identity matrix

glLoadIdentity();
� Then define the viewing volume, for example:

glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
– (left, right, bottom, top, near, far)

• near & far are positive distances, near < far
– Viewing volume is the frustum of a pyramid
– Used for perspective projection
or glOrtho(-1.0, 1.0,-1.0, 1.0, 2.0, 7.0);
– Viewing volume is a rectangular solid
– for parallel projection

� For both the viewpoint (eye) is at (0,0,0)

� Everything outside viewing volume is clipped
� Think of near plane as being window’s client area

The Viewing Volume



Modelview Transformation
Our cube is not visible
It lies in front of near clipping plane

Positioning the Camera
� By default it’s at (0,0,0), pointing in –z 

direction, up direction is y-axis
� Can set the camera point
� And the “lookat” point
� And the up direction

gluLookAt(xc,yc,zc,xa,ya,za,xu,yu,zu);
(xc,yc,zc) coordinates of virtual camera
(xa,ya,za) coordinates of lookat point
(xu,yu,zu) up direction vector

� Example:
gluLookAt(2.0,2.0,2.0,0.0,0.0,0.0,0.0,0.0,1.0);

camera at (2,2,2), looking at origin, z-axis is up



Modelview Transformation
� Used to perform geometric translations, 

rotations, scalings
� Also implements the viewing transformation
� If we don’t position the camera, we need to 

move our cube into the viewing volume
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(0.0f, 0.0f, -3.5f);
– Translates cube down z-axis by 3.5 units

� OpenGL performs transformations on all 
vertices

� First modelview transformation
� Then projection transformation
� The two matrices are concatenated
� Resulting matrix multiplies all points in 

the model



OpenGL Geometric Transformations
� “Modeling” Transformations

glScalef(2.0f, 2.0f, 2.0f);  // twice as big
parameters: sx, sy, sz

glTranslatef(2.0f, 3.5f, 1.8f); // move object
parameters: tx, ty, tz

glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // 30 degrees about z-axis
parameters: 
– angle 
– (x,y,z) -> coordinates of vector about which to rotate

OpenGL Composite Transformations
� Combine transformation matrices
� Example: Rotate by 45 degrees about a line 

parallel to the z axis that goes through the point 
(xf,yf,zf) – the fixed point
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(xf,yf,zf);
glRotate(45, 0.0,0.0,1.0);
glTranslate(-xf,-yf,-zf);

� Note last transformation specified is first applied
– Because each transformations in OpenGL is applied to 

present matrix by postmultiplication



Typical code for a polygon mesh model
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -3.5f);               // translate into viewing frustum
glRotatef(30.0f, 0.0f, 0.0f, 1.0f);           // rotate about z axis by 30
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);       // set background color
glClear(GL_COLOR_BUFFER_BIT);  // clear window
glColor3f(0.0f, 0.0f, 0.0f);                     // drawing color
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON); 

//define polygon vertices here
glEnd();

� See 3dxform example program

The OpenGL Utility Library 
(GLU) and Quadric Surfaces

� Provides many modeling features
– Quadric surfaces

• described by quadratic equations in x,y,z
• spheres, cylinders, disks
• Polygon Tesselation

– Approximating curved surfaces with polygon facets

– Non-Uniform Rational B-Spline Curves & Surfaces 
(NURBS)

� Routines to facilitate setting up matrices for 
specific viewing orientations & projections



Modeling & Rendering a 
Quadric with the GLU

1. Get a pointer to a quadric object
2. Make a new quadric object
3. Set the rendering style
4. Draw the object
5. When finished, delete the object

OpenGL GLU Code to 
Render a Sphere

GLUquadricObj *mySphere;
mySphere=gluNewQuadric();
gluQuadricDrawStyle(mySphere,GLU_FILL);

// some other styles: GLU_POINT, GLU_LINE

gluSphere(mySphere,1.0,12,12);
// radius, # longitude lines, # latitude lines



The GLUT and Quadric Surfaces
� Many predefined quadric surface objects

– glutWire***()
– glutSolid***()
– Some examples:

• glutWireCube(size); glutSolidCube(size);
• glutWireSphere(radius,nlongitudes,nlatitudes);
• glutWireCone(rbase,height,nlongitudes,nlatitudes);
• glutWireTeapot(size);
• Lots of others

– See cone_perspective example program 

Interaction in OpenGL
� OpenGL GLUT Callback Functions

– GLUT’s version of event/message handling
– Programmer specifies function to be called 

by OS in response to different events
– Specify the function by using glut***Func(ftn)

• We’ve already seen glutDisplayFunc(disp_ftn)
• disp_ftn called when client area needs to be 

repainted
– Like Windows response to WM_PAINT messages

– All GLUT callback functions work like MFC 
On***() event handler functions



Some Other GLUT Callbacks
� glutReshapeFunc(ftn(width,height))

– Identifies function ftn() invoked when user 
changes size of window

• height & width of new window returned to ftn()

� glutKeyboardFunc(ftn(key,x,y))
– Identifies function ftn() invoked when user presses 

a keyboard key
– Character code (key) and position of mouse cursor 

(x,y) returned to ftn()
� glutSpecialFunction(ftn(key,x,y))

– For special keys such as function & arrow keys

Mouse Callbacks
� glutMouseFunc(ftn(button, state, x, y))

– Identifies function ftn() called when mouse 
events occur

• Button presses or releases
• Position (x,y) of mouse cursor returned
• Also the state (GLUT_UP or GLUT_DOWN)
• Also which button

– GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or 
GLUT_MIDDLE_BUTTON



Mouse Motion
� Move event: when mouse moves with a 

button pressed –
– glutMotionFunctionFunc(ftn(x,y))

• ftn(x,y) called when there’s a move event
• Position (x,y) of mouse cursor returned

� Passive motion event: when mouse moves 
with no button pressed
– glutPassiveMotionFunctionFunc(ftn(x,y))

• ftn(x,y) called when there’s a passive motion event
• Position (x,y) of mouse cursor returned

GLUT Menus
� Can create popup menus and add menu 

items with:
– glutCreateMenu (menu-ftn(ID))

• Menu-ftn(ID) is callback function called when user 
selects an item from the menu

• ID identifies which item was chosen
– glutAddMenuEntry(name, ID_value)

• Adds an entry with name displayed to current menu
• ID_value returned to menu_ftn() callback

– glutAttachMenu(button)
• Attaches current menu to specified mouse button
• When that button is pressed, menu pops up



Hierarchical Models
� In many applications the parts of a model 

depend on each other
� Often the parts are arranged in a hierarchy

– Represent as a tree data structure
– Transformations applied to parts in parent nodes are 

also applied to parts in child nodes
– Simple example: a robot arm

• Base, lower arm, and upper arm
• Base rotates � lower and upper arm also rotate
• Lower arm rotates � upper arm also rotates

Simple Robot Arm Hierarchical 
Model



Use of Matrix Stacks in OpenGL 
to Implement Hierarchies

� Matrix stacks store projection & model-view 
matrices

� Push and pop matrices with:
– glPushMatrix();
– glPopMatrix();

� Can use to position entire object while also 
preserving it for drawing other objects

� Use in conjunction with geometrical 
transformations

� Example: Robot program

OpenGL Hierarchical Models
� Set up a hierarchical representation of scene 

(a tree)
� Each object is specified in its own modeling 

coordinate system
� Traverse tree and apply transformations to 

bring objects into world coordinate system
� Traversal rule:

– Every time we go to the left at a node with another 
unvisited right child, do a push

– Every time we return to that node, do a pop
– Do a pop at the end so number of pushes & pops 

are the same



GLUT Animation
� Simple method is to use an “idle” callback

– Called whenever window’s event queue is empty
– Could be used to update display with the next 

frame of the animation
– Identify the idle function with:

• glutIdleFunc(idle_ftn())

– Simple Example:
void idle_ftn()

{ glutPostRedisplay(); }
• Posts message to event queue that client area needs to 

be repainted
• Causes display callback function to be invoked
• Effectively displays next frame of animation

Double Buffering
� Use two display buffers
� Front buffer is displayed by display hardware
� Application draws into back buffer 
� Swap buffers after new frame is drawn into back 

buffer
� Implies only one access to display hardware per 

frame
� Eliminates flicker
� In OpenGL, implement by replacing glFlush() with 

glutSwapBuffers() in display callback
� In initialization function, must use: 

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
� See anim_square & cone_anim examples


