
•Hidden Surface Removal
•Back Face Culling

•3D Surfaces
•Bicubic Parametric Bezier
Surface Patches

•3D Graphics with OpenGL

Back-Face Culling
� Define one side of each polygon to be

the visible side
– That side is the outward-facing side

� Defining each polygon in the polygons
array:
– Systematically number vertices in counter-

clockwise fashion as seen from outside of
the object

First: Review of Vector Products
� Dot (Scalar) Product

s = A . B
s = |A| * |B| * cos(θ)

θ is the angle between vectors A and B

In terms of components (RH coord system):
s = Ax*Bx + Ay*By + Az*Bz

Cross (Vector) Product
� V = A x B, a vector
� Magnitude: |V| = |A| * |B| * sin(θ)

θ is angle between vectors A and B
� Direction: Given by right-hand rule

– 1. Align fingers of right hand with first
vector

– 2. Rotate toward second
– 3. Thumb points in direction of V

In the following diagram:
V = A x B would point out of the screen
toward the observer

In terms of components (RH coordinate system):
| i j k |

V = | Ax Ay Az | (a determinant)
| Bx By Bz |

i, j, k are unit vectors along x,y,z axes

Triple Product

A . (B x C)
| Ax Ay Az |

A . (B x C) = | Bx By Bz | (determinant)
| Cx Cy Cz |

(Components in terms of RH coord system)

� Consider triangle with vertices 0, 1, 2
� Visible side of the triangle: 0,1,2

– Vertices numbered in counter-clockwise order
– Invisible side is: 0,2,1

• (clockwise vertex ordering)

Back-Face Culling

� Define vector N
– Outward normal to triangle

� Define Vector V0
– Vector from observer to vertex 0

� Some Cases:
– N and V0 nearly parallel (V0 . N = 1)
– Visible side of triangle 0 1 2 invisible to viewer

� Rotate triangle about side 01 by 90 degrees
– Now N and V0 are perpendicular (V0 . N = 0)
– Triangle is about to become visible
– At all other points between these two

orientations:
• V0 . N is positive
• And triangle is invisible to viewer

� Continue rotation about side 01
� Triangle becomes visible to the viewer
� 90 degrees more, N and V0 are antiparallel

V0 . N = -1
Triangle facing toward viewer and is visible
– At all intermediate orientations:

• Triangle is visible
• And V0 . N is negative

Criterion for Invisibility
� If V0 . N > 0, triangle 012 is invisible
� Now place triangle 012 in an arbitrary

position relative to viewer V

� Outward normal N is vector (cross) product of
V01 and V02
V01 is vector from vertex 0 to vertex 1
V02 is vector from vertex 0 to vertex 2

� So: N = V01 x V02
� Criterion for invisibility:

V0 . (V01 x V02) > 0
� But:

V01 = V1 - V0
V02 = V2 - V0

� Substituting we get:
V0 . [(V1 - V0) x (V2 - V0)] > 0, invisibility

� Expanding:
V0 . (V1 x V2) - V0 . (V1 x V0) - V0 . (V0 x V2)

+ V0 . (V0 x V0) > 0
� Last Term = 0

(Cross product of any vector with itself = 0)

� Middle two terms:
Quantity inside () is a vector perpendicular to V0

So dot product of either vector with V0 is 0

So: V0 . (V1 x V2) > 0
– For right-handed coordinate system, triple

product can be expressed as a determinant
| X0 Y0 Z0 |

V0 . (V1 x V2) = | X1 Y1 Z1 |
| X2 Y2 Z2 |

� (X0,Y0,Z0), (X1,Y1,Z1), (X2,Y2,Z2) are viewing
coordinates (xv,yv,zv) of vertices 0, 1, and 2

� But viewing coordinate system is left-handed
� So sign of the determinant must be reversed

Final Criterion for Invisibility
| X0 Y0 Z0 |
| X1 Y1 Z1 | < 0
| X2 Y2 Z2 |

� Result can be applied to any planar polygon
� Use viewing coordinates of three consecutive

polygon vertices
� Could implement as a “visibility” function

– Computes and returns value of determinant
• Positive means visible, negative invisible

3-D Surfaces
� Explicit Representation

z = f(x,y)
� Plotting

– Fix values of y and vary x
– Gives a family of curves

z0 = f(x,0)
z1 = f(x,δ)
z2 = f(x,2*δ)
z3 = f(x,3*δ)
etc.

Plotting 3D Surfaces,
continued

� Then fix values of x and vary y
� Gives another family of curves

z0’ = f(0,y)
z1’ = f(δ,y)
z2’ = f(2*δ,y)
z3’ = f(3*δ,y)
etc.

Plotting 3D Surfaces,
continued

� Result is a wireframe that represents the
surface

� Could be broken
up into polygons

Parametric Representation
of 3D Surfaces

� Need two parameters, say t and s
� x = x(t,s), y = y(t,s), z = z(t,s)
� both t and s vary over a range (0 to 1)
� To plot:

– Fix values of s and for each vary t over range
• gives one family of isoparametric curves

– Fix values of t and for each vary s over range
• gives another family of isoparametric curves

Cubic Bezier Curves (Review)
� In matrix form, points on curve P [P = x,y] are

given in terms of paramter t and four control
points P0, P1, P2, P3

� Result:
P = a*t3 + b*t2 + c*t + d, 0 <= t <= 1

– Can be written in a more compact form:
P = T * Bg * Pc
T: row vector of parameter powers [t3 t2 t 1]
Bg: the constant 4 X 4 Bezier Geometry matrix
Pc: column vector of the control points

Bicubic Bezier Surface Patches
� Define 4-vectors S and T:

_ _
S = |_s3 s2 s 1_|, 0 <= s <= 1

_ _
T = |_t3 t2 t 1_|, 0 <= t <= 1

� Define points on surface patch Q(s,t) [Q = x,y,z] as:
_ _

Q(s,t) = S * MB * | P0(t) |
| P1(t) |
| P2(t) |
|_P3(t)_|

Control points P0, P1, P2, P3 are themselves parameterized by t
MB is the Bezier Geometry Matrix we’ve seen before

So P0(t) = T * MB * | P00 |
| P01 |
| P02 |
|_ P03_|

Transposing:

P0(t) = |_P00 P01 P02 P03_| * MB
T * TT

Do the same for P1(t), P2(t), P3(t)

Result: _ _

| P00 P01 P02 P03 |
Q(s,t) = S * MB * | P10 P11 P12 P13 | * MB

T * TT

| P20 P21 P22 P23 |
|_P30 P31 P32 P33_|

A Bicubic Bezier Surface Patch

Expanding and Rearranging
Terms -- x(s,t) Equation

� Similar equation for y(s,t)

Plotting One Set of Isoparametric Curves
For (s=0; s<=1; s+=δ)

Compute & store x(s,0), y(s,0), z(s,0)
Project to screen and store --> xs(s,0), ys(s,0)
MoveTo(xs(s,0), ys(s,0))
For (t=0; t<=1; t+=δ)

Compute & store x(s,t), y(s,t), z(s,t)
Project to screen and store --> xs(s,t), ys(s,t)
LineTo(xs(s,t), ys(s,t))

Plotting the Other Set of
Isoparametric Curves

For (t=0; t<=1; t+=δ)
MoveTo(xs(0,t), ys(0,t))
For (s=0; s<=1; s+=δ)

LineTo(xs(s,t), ys(s,t))

Introduction to 3D
Graphics with OpenGL

3D Graphics Using OpenGL

� Building Polygon Models
� ModelView & Projection Transformations
� Quadric Surfaces
� User Interaction
� Hierarchical Modeling
� Animation

OpenGL 3D Coordinate System
� A Right-handed coordinate system

– Viewpoint is centered at origin initially

Defining 3D Polygons in
OpenGL

� e.g., front face of a cube
glBegin(GL_POLYGON)

glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);

glEnd();
� need to define the other faces

Projection Transformation
� First tell OpenGL you’re using the projection matrix

glMatrixMode(GL_PROJECTION);
� Then Initialize it to the Identity matrix

glLoadIdentity();
� Then define the viewing volume, for example:

glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
– (left, right, bottom, top, near, far)

• near & far are positive distances, near < far
– Viewing volume is the frustum of a pyramid
– Used for perspective projection
or glOrtho(-1.0, 1.0,-1.0, 1.0, 2.0, 7.0);
– Viewing volume is a rectangular solid
– for parallel projection

� For both the viewpoint (eye) is at (0,0,0)

� Everything outside viewing volume is clipped
� Think of near plane as being window’s client area

The Viewing Volume

Modelview Transformation
Our cube is not visible
It lies in front of near clipping plane

Positioning the Camera
� By default it’s at (0,0,0), pointing in –z

direction, up direction is y-axis
� Can set the camera point
� And the “lookat” point
� And the up direction

gluLookAt(xc,yc,zc,xa,ya,za,xu,yu,zu);
(xc,yc,zc) coordinates of virtual camera
(xa,ya,za) coordinates of lookat point
(xu,yu,zu) up direction vector

� Example:
gluLookAt(2.0,2.0,2.0,0.0,0.0,0.0,0.0,0.0,1.0);

camera at (2,2,2), looking at origin, z-axis is up

Modelview Transformation
� Used to perform geometric translations,

rotations, scalings
� Also implements the viewing transformation
� If we don’t position the camera, we need to

move our cube into the viewing volume
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(0.0f, 0.0f, -3.5f);
– Translates cube down z-axis by 3.5 units

� OpenGL performs transformations on all
vertices

� First modelview transformation
� Then projection transformation
� The two matrices are concatenated
� Resulting matrix multiplies all points in

the model

OpenGL Geometric Transformations
� “Modeling” Transformations

glScalef(2.0f, 2.0f, 2.0f); // twice as big
parameters: sx, sy, sz

glTranslatef(2.0f, 3.5f, 1.8f); // move object
parameters: tx, ty, tz

glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // 30 degrees about z-axis
parameters:
– angle
– (x,y,z) -> coordinates of vector about which to rotate

OpenGL Composite Transformations
� Combine transformation matrices
� Example: Rotate by 45 degrees about a line

parallel to the z axis that goes through the point
(xf,yf,zf) – the fixed point
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslate(xf,yf,zf);
glRotate(45, 0.0,0.0,1.0);
glTranslate(-xf,-yf,-zf);

� Note last transformation specified is first applied
– Because each transformations in OpenGL is applied to

present matrix by postmultiplication

Typical code for a polygon mesh model
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -3.5f); // translate into viewing frustum
glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // rotate about z axis by 30
glClearColor(1.0f, 1.0f, 1.0f, 1.0f); // set background color
glClear(GL_COLOR_BUFFER_BIT); // clear window
glColor3f(0.0f, 0.0f, 0.0f); // drawing color
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);

//define polygon vertices here
glEnd();

� See 3dxform example program

The OpenGL Utility Library
(GLU) and Quadric Surfaces

� Provides many modeling features
– Quadric surfaces

• described by quadratic equations in x,y,z
• spheres, cylinders, disks
• Polygon Tesselation

– Approximating curved surfaces with polygon facets

– Non-Uniform Rational B-Spline Curves & Surfaces
(NURBS)

� Routines to facilitate setting up matrices for
specific viewing orientations & projections

Modeling & Rendering a
Quadric with the GLU

1. Get a pointer to a quadric object
2. Make a new quadric object
3. Set the rendering style
4. Draw the object
5. When finished, delete the object

OpenGL GLU Code to
Render a Sphere

GLUquadricObj *mySphere;
mySphere=gluNewQuadric();
gluQuadricDrawStyle(mySphere,GLU_FILL);

// some other styles: GLU_POINT, GLU_LINE

gluSphere(mySphere,1.0,12,12);
// radius, # longitude lines, # latitude lines

The GLUT and Quadric Surfaces
� Many predefined quadric surface objects

– glutWire***()
– glutSolid***()
– Some examples:

• glutWireCube(size); glutSolidCube(size);
• glutWireSphere(radius,nlongitudes,nlatitudes);
• glutWireCone(rbase,height,nlongitudes,nlatitudes);
• glutWireTeapot(size);
• Lots of others

– See cone_perspective example program

Interaction in OpenGL
� OpenGL GLUT Callback Functions

– GLUT’s version of event/message handling
– Programmer specifies function to be called

by OS in response to different events
– Specify the function by using glut***Func(ftn)

• We’ve already seen glutDisplayFunc(disp_ftn)
• disp_ftn called when client area needs to be

repainted
– Like Windows response to WM_PAINT messages

– All GLUT callback functions work like MFC
On***() event handler functions

Some Other GLUT Callbacks
� glutReshapeFunc(ftn(width,height))

– Identifies function ftn() invoked when user
changes size of window

• height & width of new window returned to ftn()

� glutKeyboardFunc(ftn(key,x,y))
– Identifies function ftn() invoked when user presses

a keyboard key
– Character code (key) and position of mouse cursor

(x,y) returned to ftn()
� glutSpecialFunction(ftn(key,x,y))

– For special keys such as function & arrow keys

Mouse Callbacks
� glutMouseFunc(ftn(button, state, x, y))

– Identifies function ftn() called when mouse
events occur

• Button presses or releases
• Position (x,y) of mouse cursor returned
• Also the state (GLUT_UP or GLUT_DOWN)
• Also which button

– GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or
GLUT_MIDDLE_BUTTON

Mouse Motion
� Move event: when mouse moves with a

button pressed –
– glutMotionFunctionFunc(ftn(x,y))

• ftn(x,y) called when there’s a move event
• Position (x,y) of mouse cursor returned

� Passive motion event: when mouse moves
with no button pressed
– glutPassiveMotionFunctionFunc(ftn(x,y))

• ftn(x,y) called when there’s a passive motion event
• Position (x,y) of mouse cursor returned

GLUT Menus
� Can create popup menus and add menu

items with:
– glutCreateMenu (menu-ftn(ID))

• Menu-ftn(ID) is callback function called when user
selects an item from the menu

• ID identifies which item was chosen
– glutAddMenuEntry(name, ID_value)

• Adds an entry with name displayed to current menu
• ID_value returned to menu_ftn() callback

– glutAttachMenu(button)
• Attaches current menu to specified mouse button
• When that button is pressed, menu pops up

Hierarchical Models
� In many applications the parts of a model

depend on each other
� Often the parts are arranged in a hierarchy

– Represent as a tree data structure
– Transformations applied to parts in parent nodes are

also applied to parts in child nodes
– Simple example: a robot arm

• Base, lower arm, and upper arm
• Base rotates � lower and upper arm also rotate
• Lower arm rotates � upper arm also rotates

Simple Robot Arm Hierarchical
Model

Use of Matrix Stacks in OpenGL
to Implement Hierarchies

� Matrix stacks store projection & model-view
matrices

� Push and pop matrices with:
– glPushMatrix();
– glPopMatrix();

� Can use to position entire object while also
preserving it for drawing other objects

� Use in conjunction with geometrical
transformations

� Example: Robot program

OpenGL Hierarchical Models
� Set up a hierarchical representation of scene

(a tree)
� Each object is specified in its own modeling

coordinate system
� Traverse tree and apply transformations to

bring objects into world coordinate system
� Traversal rule:

– Every time we go to the left at a node with another
unvisited right child, do a push

– Every time we return to that node, do a pop
– Do a pop at the end so number of pushes & pops

are the same

GLUT Animation
� Simple method is to use an “idle” callback

– Called whenever window’s event queue is empty
– Could be used to update display with the next

frame of the animation
– Identify the idle function with:

• glutIdleFunc(idle_ftn())

– Simple Example:
void idle_ftn()

{ glutPostRedisplay(); }
• Posts message to event queue that client area needs to

be repainted
• Causes display callback function to be invoked
• Effectively displays next frame of animation

Double Buffering
� Use two display buffers
� Front buffer is displayed by display hardware
� Application draws into back buffer
� Swap buffers after new frame is drawn into back

buffer
� Implies only one access to display hardware per

frame
� Eliminates flicker
� In OpenGL, implement by replacing glFlush() with

glutSwapBuffers() in display callback
� In initialization function, must use:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
� See anim_square & cone_anim examples

