-Hidden Surface Removal
Back Face Culling
.3D Surfaces

Bicubic Parametric Bezier
Surface Patches

3D Graphics with OpenGL

Back-Face Culling

e Define one side of each polygon to be
the visible side

— That side is the outward-facing side
e Defining each polygon in the polygons
array:

— Systematically number vertices in counter-
clockwise fashion as seen from outside of
the object

First: Review of Vector Products

e Dot (Scalar) Product
s=A-B
s = |A] *|B| * cos(6)
0 is the angle between vectors A and B
In terms of components (RH coord system):
s = Ax*Bx + Ay*By + Az*Bz

Cross (Vector) Product

e \VV=AXxB, avector
e Magnitude: |V| = |A| * |B| * sin(0)
0 is angle between vectors A and B

e Direction: Given by right-hand rule

— 1. Align fingers of right hand with first
vector

— 2. Rotate toward second
— 3. Thumb points in direction of V

In the following diagram:

V = A x B would point out of the screen
toward the observer

In terms of components (RH coordinate system):
i] k]
V= |Ax Ay Az| (a determinant)
| Bx By Bz |
i, J, k are unit vectors along x,y,z axes

Triple Product

A-(BxC)
| Ax Ay Az |

A-(BxC)= | Bx By Bz | (determinant)
| Cx Cy Cz|

(Components in terms of RH coord system)

Back-Face Culling

e Consider triangle with vertices 0, 1, 2
e Visible side of the triangle: 0,1,2
— Vertices numbered in counter-clockwise order

— Invisible side is: 0,2,1
« (clockwise vertex ordering)

e Define vector N
— Outward normal to triangle
e Define Vector VO
— Vector from observer to vertex 0
e Some Cases:
— N and VO nearly parallel (VO - N =1)
— Visible side of triangle 0 1 2 invisible to viewer

2

3

Vo 8 N

-
Viewpoint

e Rotate triangle about side 01 by 90 degrees
—Now N and VO are perpendicular (VO - N =0)
— Triangle is about to become visible

— At all other points between these two
orientations:
* VO - N is positive
* And triangle is invisible to viewer

N
2‘41
L]
Viewpoint Vi g

e Continue rotation about side 01

e Triangle becomes visible to the viewer

e 90 degrees more, N and VO are antiparallel
VO-N=-1
Triangle facing toward viewer and is visible

— At all intermediate orientations:
* Triangle is visible
* And VO - N is negative

L
Viewpoint Vo V
2

Criterion for Invisibility
e If VO -N>0, triangle 012 is invisible

e Now place triangle 012 in an arbitrary
position relative to viewer V

e Outward normal N is vector (cross) product of
V01 and V02

V01 is vector from vertex O to vertex 1
V02 is vector from vertex O to vertex 2

e So: N=V01xV02
e Criterion for invisibility:
VO - (V01 xV02)>0

e But:
V0l1=V1-VO
V02 =V2-VO

e Substituting we get:
VO -[(V1 - VO) x (V2 - VO)] > 0, invisibility
e Expanding:
VO - (V1xV2)-V0-(V1xV0)-V0: (VOxV2)
+ V0 (VOxV0)>0
e Last Term=0
(Cross product of any vector with itself = 0)

e Middle two terms:
Quantity inside () is a vector perpendicular to VO

So dot product of either vector with VO is O

So: VO-(V1xV2)>0

— For right-handed coordinate system, triple
product can be expressed as a determinant

|X0 YO Z0|
VO-(V1xV2) = |X1 Y1 Z1|

|X2 Y2 Z2|

e (X0,Y0,Z20), (X1,Y1,21), (X2,Y2,Z2) are viewing
coordinates (xv,yv,zv) of vertices 0, 1, and 2

e But viewing coordinate system is left-handed
e So sign of the determinant must be reversed

Final Criterion for Invisibility

|X0 YO ZO|
IX1 Y1 Z1| < O

| X2 Y2 Z2|
e Result can be applied to any planar polygon

e Use viewing coordinates of three consecutive
polygon vertices
e Could implement as a “visibility” function
— Computes and returns value of determinant
 Positive means visible, negative invisible

3-D Surfaces

e Explicit Representation
z = f(x,y)
e Plotting
— Fix values of y and vary x
— Gives a family of curves ,
z0 = f(x,0)
z1 = 1(x,0)
z2 = f(x,2*d)
z3 = f(x,3*0)
etc.

Plotting 3D Surfaces,
continued

e Then fix values of x and vary y

e Gives another family of curves
z0' =1(0,y)
z1' = (3,y)
z2' = f(2*0,y)

z

z3' = f(3*9y)
etc.

Plotting 3D Surfaces,
continued

e Result is a wireframe that represents the
surface

e Could be broken

up into polygons @

z

Ve

Parametric Representation

of 3D Surfaces
e Need two parameters, say tand s
e X = X(t,8), y=y(t,8), z=z(t,s)
e both t and s vary over a range (0 to 1)

e To plot:

— Fix values of s and for each vary t over range
* gives one family of isoparametric curves

— Fix values of t and for each vary s over range
* gives another family of isoparametric curves

Cubic Bezier Curves (Review)

e In matrix form, points on curve P [P = x,y] are
given in terms of paramter t and four control
points PO, P1, P2, P3

e Result:

P=a*3+b*?+c*t+d, O<=t<=1

— Can be written in a more compact form:
P=T*Bg*Pc
T: row vector of parameter powers [t3 t2 t 1]
Bg: the constant 4 X 4 Bezier Geometry matrix
Pc: column vector of the control points

Bicubic Bezier Surface Patches
e Define 4-vectors Sand T:

S:|__s35251__|, 0 <=s <=1

T=] t3t2t 1|, 0<=t <=1
e Define points on surface patch Q(s,t) [Q =X,y,Z] as:

Qisv)

Q(s.t) =S *Mg*| PO(t) |
| P1(t) |
| P2(t) |
|_P3(t)_| s

Control points PO, P1, P2, P3 are themselves parameterized by t
Mg is the Bezier Geometry Matrix we’ve seen before

So PO(t) = T*Mg*| POO |

o
o
N

Transposi ng: k
PO(t) = | _POO PO1 PO2 PO3_| * MT* TT
Do the sane for P1(t), P2(t), P3(t)

Resul t: . .

| POO PO1 P02 PO3 |
Q(s,t)=S*Mg*| P10 P11 P12P13 |*MgT* TT

| P20 P21 P22 P23 |

| P30 P31 P32 P33 |

A Bicubic Bezier Surface Patch

Q(s,t)

Expanding and Rearranging
Terms -- X(s,t) Equation

)= (1-5)" [(1-) -t)° :
X&2)= (1-s) [xb(/ 42X)L+ 2%, (4-2) 4 4 X, f?j
2 4
t ?(!—S) s Exlo (I_f) f 2 Xn (/—t)lt-/.;)(“f (/_‘t)tv-"" ><I,? —f?_]
./.«3(!.-5) gl[xzty <(_t)?+ ;\)Xz; ({‘T)Lt +}XZL (l—-t) tLL+ Xzyf?]
+ §? [;X?n (’—f)z‘f‘ Kx_?/(l“t)?‘t + EXK’L (l_t)quL X37f2j

e Similar equation for y(s,t)

Plotting One Set of Isoparametric Curves

For (s=0; s<=1; s+=0)

Compute & store x(s,0), y(s,0), z(s,0)

Project to screen and store --> xs(s,0), ys(s,0)

MoveTo(xs(s,0), ys(s,0))

For (t=0; t<=1; t+=9)
Compute & store x(s,t), y(s,t), z(s,t)
Project to screen and store --> xs(s,t), ys(s,t)
LineTo(xs(s,t), ys(s,t)) Qs

Plotting the Other Set of
Isoparametric Curves

For (t=0; t<=1; t+=0)
MoveTo(xs(0,t), ys(0,t))
For (s=0; s<=1; s+=0)

LineTo(xs(s,t), ys(s,t))

Introduction to 3D
Graphics with OpenGL

3D Graphics Using OpenGL

e Building Polygon Models

e ModelView & Projection Transformations
e Quadric Surfaces

e User Interaction

e Hierarchical Modeling

e Animation

OpenGL 3D Coordinate System

e A Right-handed coordinate system
— Viewpoint is centered at origin initially

Y Axis

ZAxis X Axis

Defining 3D Polygons in
OpenGL

e e.g., front face of a cube

glBegin(GL_POLYGON)
glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);

glENd();

e need to define the other faces

Projection Transformation

First tell OpenGL you're using the projection matrix
glMatrixMode(GL_PROJECTION);
Then Initialize it to the Identity matrix
glLoadldentity();
Then define the viewing volume, for example:
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
— (left, right, bottom, top, near, far)
* near & far are positive distances, near < far
— Viewing volume is the frustum of a pyramid
— Used for perspective projection
or glOrtho(-1.0, 1.0,-1.0, 1.0, 2.0, 7.0);
— Viewing volume is a rectangular solid
— for parallel projection

For both the viewpoint (eye) is at (0,0,0)

The Viewing Volume
e Everything outside viewing volume is clipped
e Think of near plane as being window’s client area

Far
Flane

Near

Plane ™~

Eye

Modelview Transformation
Our cube is not visible

It lies in front of near clipping plane

QCriginal Near Clipping Far Clipping
3-D Canes__l:nan Grid F:_Iane Viewing Volume P\!\ane
Cube - N
~ \
Y
Eye—1 | P
------ i —]
i I 1 T | 1 T 1 1
1 0 1 -2 3 4 5 -6 -7

Positioning the Camera
e By default it's at (0,0,0), pointing in —z
direction, up direction is y-axis
e Can set the camera point
e And the “lookat” point
e And the up direction
gluLookAt(xc,yc,zc,xa,ya,za,xu,yu,zu);
(xc,yc,zc) coordinates of virtual camera

(xa,ya,za) coordinates of lookat point
(xu,yu,zu) up direction vector
e Example:
gluLookAt(2.0,2.0,2.0,0.0,0.0,0.0,0.0,0.0,1.0);
camera at (2,2,2), looking at origin, z-axis is up

Modelview Transformation

e Used to perform geometric translations,
rotations, scalings

e Also implements the viewing transformation

e If we don't position the camera, we need to
move our cube into the viewing volume
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslate(0.0f, 0.0f, -3.5f);
— Translates cube down z-axis by 3.5 units

e OpenGL performs transformations on all
vertices

e First modelview transformation
e Then projection transformation
e The two matrices are concatenated

e Resulting matrix multiplies all points in
the model

OpenGL Geometric Transformations
e “Modeling” Transformations

glScalef(2.0f, 2.0f, 2.0f); // twice as big
parameters: sx, Sy, Sz

glTranslatef(2.0f, 3.5f, 1.8f); // move object
parameters: tx, ty, tz

glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // 30 degrees about z-axis
parameters:
— angle
— (x,y,2) -> coordinates of vector about which to rotate

OpenGL Composite Transformations

e Combine transformation matrices

e Example: Rotate by 45 degrees about a line
parallel to the z axis that goes through the point
(xf,yf,zf) — the fixed point
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslate(xf,yf,zf);
glRotate(45, 0.0,0.0,1.0);
glTranslate(-xf,-yf,-zf);

e Note last transformation specified is first applied

— Because each transformations in OpenGL is applied to
present matrix by postmultiplication

Typical code for a polygon mesh model
glMatrixMode(GL_PROJECTION);
glLoadldentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef(0.0f, 0.0f, -3.5f); /I translate into viewing frustum
glRotatef(30.0f, 0.0f, 0.0f, 1.0f); /I rotate about z axis by 30
glClearColor(1.0f, 1.0f, 1.0f, 1.0f); /I set background color
glClear(GL_COLOR_BUFFER_BIT); // clear window
glColor3f(0.0f, 0.0f, 0.0f); I/l drawing color
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
gIBegin(GL_POLYGON);

//define polygon vertices here
glEnd();

e See 3dxform example program

The OpenGL Utility Library
(GLU) and Quadric Surfaces

e Provides many modeling features
— Quadric surfaces
« described by quadratic equations in X,y,z
« spheres, cylinders, disks
« Polygon Tesselation
— Approximating curved surfaces with polygon facets

— Non-Uniform Rational B-Spline Curves & Surfaces
(NURBS)
e Routines to facilitate setting up matrices for
specific viewing orientations & projections

Modeling & Rendering a
Quadric with the GLU

1. Get a pointer to a quadric object
2. Make a new quadric object

3. Set the rendering style

4. Draw the object

5. When finished, delete the object

OpenGL GLU Code to
Render a Sphere

GLUquadricObj *mySphere;
mySphere=gluNewQuadric();
gluQuadricDrawStyle(mySphere,GLU_FILL);

I/l some other styles: GLU_POINT, GLU_LINE
gluSphere(mySphere,1.0,12,12);

/I radius, # longitude lines, # latitude lines

The GLUT and Quadric Surfaces

e Many predefined quadric surface objects
— glutWire***()
— glutSolid***()
— Some examples:
* glutWireCube(size); glutSolidCube(size);
* glutWireSphere(radius,nlongitudes,nlatitudes);
* glutWireCone(rbase,height,nlongitudes,nlatitudes);
* glutWireTeapot(size);
* Lots of others

— See cone_perspective example program

Interaction in OpenGL

e OpenGL GLUT Callback Functions
— GLUT’s version of event/message handling

— Programmer specifies function to be called
by OS in response to different events

— Specify the function by using glut***Func(ftn)

» We've already seen glutDisplayFunc(disp_ftn)
« disp_ftn called when client area needs to be
repainted
— Like Windows response to WM_PAINT messages
— All GLUT callback functions work like MFC
On***() event handler functions

Some Other GLUT Callbacks

e glutReshapeFunc(ftn(width,height))
— Identifies function ftn() invoked when user
changes size of window
« height & width of new window returned to ftn()
e glutkeyboardFunc(ftn(key,x,y))

— Identifies function ftn() invoked when user presses
a keyboard key

— Character code (key) and position of mouse cursor
(x,y) returned to ftn()

e glutSpecialFunction(ftn(key,x,y))
— For special keys such as function & arrow keys

Mouse Callbacks

e glutMouseFunc(ftn(button, state, X, y))

— Identifies function ftn() called when mouse
events occur
* Button presses or releases
 Position (x,y) of mouse cursor returned
* Also the state (GLUT_UP or GLUT_DOWN)

» Also which button

— GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or
GLUT_MIDDLE_BUTTON

Mouse Motion

e Move event: when mouse moves with a
button pressed —
— glutMotionFunctionFunc(ftn(x,y))
« ftn(x,y) called when there’s a move event
 Position (x,y) of mouse cursor returned
e Passive motion event: when mouse moves
with no button pressed
— glutPassiveMotionFunctionFunc(ftn(x,y))

« ftn(x,y) called when there’s a passive motion event
 Position (x,y) of mouse cursor returned

GLUT Menus

e Can create popup menus and add menu
items with:

— glutCreateMenu (menu-ftn(ID))

« Menu-ftn(ID) is callback function called when user
selects an item from the menu

« ID identifies which item was chosen
— glutAddMenuEntry(name, ID_value)
< Adds an entry with name displayed to current menu
« ID_value returned to menu_ftn() callback
— glutAttachMenu(button)
« Attaches current menu to specified mouse button
« When that button is pressed, menu pops up

Hierarchical Models

e In many applications the parts of a model
depend on each other

e Often the parts are arranged in a hierarchy
- Represent as a tree data structure

— Transformations applied to parts in parent nodes are
also applied to parts in child nodes
— Simple example: a robot arm
» Base, lower arm, and upper arm
» Base rotates = lower and upper arm also rotate
< Lower arm rotates =» upper arm also rotates

Simple Robot Arm Hierarchical
Model

Base

L

Lower Arm

A}

‘ 435;_‘ Upper Arm

Use of Matrix Stacks in OpenGL
to Implement Hierarchies

e Matrix stacks store projection & model-view
matrices

e Push and pop matrices with:
— glPushMatrix();
— glPopMatrix();

e Can use to position entire object while also
preserving it for drawing other objects

e Use in conjunction with geometrical
transformations

e Example: Robot program

OpenGL Hierarchical Models

e Set up a hierarchical representation of scene
(atree)

e Each object is specified in its own modeling
coordinate system

e Traverse tree and apply transformations to
bring objects into world coordinate system

e Traversal rule:

— Every time we go to the left at a node with another
unvisited right child, do a push

— Every time we return to that node, do a pop

— Do a pop at the end so number of pushes & pops
are the same

GLUT Animation

e Simple method is to use an “idle” callback
— Called whenever window’s event queue is empty

— Could be used to update display with the next
frame of the animation

— ldentify the idle function with:
« glutldleFunc(idle_ftn())
— Simple Example:
void idle_ftn()
{ glutPostRedisplay(); }

« Posts message to event queue that client area needs to
be repainted

» Causes display callback function to be invoked
« Effectively displays next frame of animation

Double Buffering

Use two display buffers
Front buffer is displayed by display hardware
Application draws into back buffer

Swap buffers after new frame is drawn into back
buffer

e Implies only one access to display hardware per
frame

e Eliminates flicker

e In OpenGL, implement by replacing glFlush() with
glutSwapBuffers() in display callback

e |n initialization function, must use:
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

e See anim_square & cone_anim examples

