CS 460

Computer Graphics
Professor Richard Eckert
Lecture#1

January 27, 2009

CS-460
Computer Graphics

Richard R. Eckert

T,R 10:05-11:30 A.M.
SW-327

Lecture 1 - 1/27/2009

Contacting Me or the TA

Office: EB-N6

Office Hours: W 10-11:30 A.M., R 1-2:30 P.M.

Office Phone: 607-777-4365

Department phone: 607-777-4802

email: reckert@binghamton.edu

My web front page: www.cs.binghamton.edu/~reckert/
— See link to: CS-460/560 (Computer Graphics)

| Listserv: CS460-L@listserv.binghamton.edu

— Activated during the first week of classes

| TA: Yibo Sun, sunyibo@gmail.com
| TA's Office hours: TBA

Course Materials

| Text book

— D. Hearn and M.P. Baker, "Computer Graphics with
OpenGL*, 3rd Edition, Prentice Hall
| Online notes

— CS-460/560 link on my home page
» Lots of information available there

— CS-360 link on my home page

* Information on using Visual Studio, VC++, C#, Example
Programs

| PowerPoint slides in PDF format
— Will be online at course notes web site

Software

Microsoft Visual Studio 2005/2008
Professional Edition
— In all Pods & Watson School Microlab
— Available to Watson School students (free)
» Through Microsoft Academic Alliance
— Go to:
* msdn04.e-academy.com/binghamton_watson

— Search for product
* To download you will need a password
* You should have it or it will be emailed to you

Course Prerequisites

Data Structures (CS-240)

Basic Knowledge of Linear Algebra
— Matrix/Vector Manipulation

C or C++ Programming
— Visual C++ Ideal

» But we will do a quick review

» Extensive notes/examples at CS-360 web pages
Some Knowledge of Computer Organization
- e.g., CS-220

Course Evaluation

| 2 Term Exams (20% each)
| Programming Assignments (40%)
| Final Exam (20%)

Course Schedule (by weeks)

| Introduction/Applications, Introduction to
Windows and OpenGL Programming

| Computer Graphics Hardware and Software

| Graphics Output Primitives: Scan converting
lines, polygons, circles, curves, text

| Display Attributes and Area Fill Algorithms
| 2-Dimensional Geometric Transformations
| 2-D Windows, Viewports, and Clipping

*** Term Examination # 1 ***

Course Schedule (by weeks)

Interactive 2-D Graphics: Input Devices, GUI
Techniques

Segmentation, Hierarchical Modeling; PHIGS,
OpenGL

Curved lines and surfaces, parametric
equations, Bezier and B-spline curves

Animation, Sprites, Game Development, DirectX
3-D Graphics: Modeling & Transformations
3-D Graphics: Viewing and Projections

Course Schedule (by weeks)

| Hidden Surface Removal
*** Term Examination # 2 ***

I lllumination, Reflection, Shading,
Texturing, Ray Tracing, Radiosity

| Fractals, Iterated Function Systems, L-
Systems, Particle Systems, Escape-time
algorithms, Chaos

Introduction to
Computer Graphics

Computer Graphics

| Using a computer to generate visual images

| Definition of Computer Graphics:

— Creation, storage, manipulation, and display of
models of scenes using a computer

| Interactive Computer Graphics:

— User dynamically controls displayed image
attributes by means of interactive input devices

Motivation

| Human visual channel highly developed

| Efficient for communicating complex
ideas

Related Field: Image
Processing

Image enhancement/understanding
Reconstruction of objects from images
Computer Graphics--Synthesis of images
Image Processing--Analysis of images
Image Processing subfields:

— image enhancement

— Image understanding

— computer vision

— pattern recognition (A.l. important)

Computer Graphics & Image
Processing

Scene

Image

Three Phases of Computer
Graphics

| Modeling

— Representing objects/scenes
mathematically

| Rendering

— Producing an image from a model
| Animation

— Making an image move

Features of Computer
Graphics Models

Output primitives:
— building blocks

Data structures:
— how primitives relate to each other

Levels of Complexity of
Computer Graphics

2-D line Drawings: Primitives

2-D colored images: Area fill

3-D line drawings: 3-D to 2-D projection

3-D colored images: Hidden surface removal,
color, shading

3-D photorealistic images: materials
properties, lighting, reflection, transparency,
shadows (physics), complex object models

Animation at all levels: Movement

2-D Line Drawing

The Harduare

Resistor LED Buff
SDKBG

’

pe3 [Hicrocomputen

?

PB2 8255
Parallel
Port
PB1
B

H

PBO

2-D Colored Image

— v

3-D Line Drawing

3-D Line Drawing (some hidden
surfaces removed

3-D Colored Image (flat shaded)

3-D Colored Image (smooth shaded)

3-D Colored Image Smooth
Shaded with Specular Highlights

3-D Photorealistic Image (ray traced
Image with texture mapping)

— - o=

3-D Photorealistic Image (fractal
mountains, L-system plants)

An Animation of a 3D Scene
| Frames generated by ray tracing

Some Applications of

Computer Graphics

Data Presentation (statistics, business,
scientific, demographics...)

CAD, CAM, CIM
Painting/Drawing systems
TV Commercials

Entertainment

— Video Games

— Motion Picture Industry
Cartography
Computer Art

Graphics Applications

| Computer Aided Nesinn (CCAD)

m o=

Graphics Applications

| Entertainment: Cinema

Video Games

| Microsoft Xbox 360
| Sony PlayStation 3

| Nintendo Wi
— Wireless controller — Wii Remote

Video Games - Nintendo Wi

Graphics Applications

| Desktop Publishing
| Architectural Design

| Simulation of Reality
— Flight simulators
— Ground vehicle simulators
— Arcade games

— Virtual reality
e Second Life

Simulation

Driving Simulation

Flicht Simulation
{Bvepis & Sutherlardd) =

(MASA)

V|rtual Worlds — Second Llfe

|Search Second Lie
Read mo

Graphics Applications

Scientific Simulation/Visualization

— Use graphics to make sense of vast amounts of
scientific data

— Use when too dangerous/expensive or impossible to
do real experiments

Hypermedia

— Integrate broadcasting, computing, publishing
Education and Training

CASE

Graphics Applications

| Scientific Visualization

Graphics Applications

| Image Processing/Enhancement

| Medicine
— Computed Tomography (CT Scan)
— X-ray, ultrasound, NMR, PET:
— All can give 3-D images of human anatomy
— Computer-aided Surgery
| GUIs
| World Wide Web Development

| New Stuff--can't even be imagined

Graphics Applications

| Medical Visualization

108[01d UBWNH B|ISIA 8YL

MIT: Image-Guided Surgery Project

Computer Graphics--

| A huge, fast-moving, exciting field that
integrates the best of art and science
| Needs new Renaissance men & women

— Bright and analytic enough to understand
the science & math

— Sensitive and creative enough to do the art

| Both left and right sides of the brain
required!

Microsoft Visual Studio .NET:
An Integrated Windows
Program Development

Environment

Using Microsoft Visual
Studio .NET

| Self-contained environment for Windows
program development:
— creating
— compiling
— linking
— testing/debugging

| IDE that accompanies Visual C++, Visual
Basic, Visual C#, and other Microsoft
Windows programming languages

.NET Architecture

Microsoft NET Fr)ame.wor‘k Architecture

[sim e
Crevmandd

Microsoft
4 JScript® a4

Common Lan:g_uaigg Specification

Framework Class Library

Common Language Runtime

r

Windows LINUX

=
=
3
W
o
=
=
w
=
A
»
—
&
=
S
(=3
=
m
—‘

Visual Studio Capabilities

| Generate starter applications without
writing code

View a programming project in many
different ways

Edit source, header, and include files

Build the application’s user interface
visually

Build (compile and link) an application
Debug an application while it runs
Obtain online help

Lots of others (Wizards)

VC++ Program Build Process

.Cpp source

C++ Compiler Resource Compiler

—|Linker .1ib files

Compilation in the .NET Framework ‘

| Compiler ‘ ‘ Compiler ‘ Compiler

MSTL Assembly

Unmanaged Code

| Common Language Runtime JIT Compiler |

Managed Code
¢ Common

‘ CLE Services ‘ LangLIEge
Runtime

Wm32APT + Operating System

Using Visual Studio .NET

| To prepare many kinds of applications
—Win32 Console Applications (DOS programs)
—Win32 API Apps in C or VC++
— MFC Apps in VC++
—DLLs

— .NET Windows Forms Apps in Managed C#,
VB, C++, and other languages

— ASP.NET Web Apps and Services
— ADO.NET Data Base Apps
— Others including OpenGL

View Project Buid Debug Tools Window Community Help

- EdHe e a LI b opeg - w2 s HAsssen

resource.h | resourceln P win32applcpp| Start Page |

lobal Scope) LH 9 \WinMain(HINSTANCE hInstance, HINSTANCE

E hPrevInstance, LPSTR 9_'_;

int PRSCAL

T S iles.
b € Win32app2.opp

elo

© HowDol Q Search | ghIndex

55 sclution ... j:,/%c!ass View |@Resol

1 Help

Wisual Studio Samples
How to: stomize Dynsmic Hely

Solutions and Projects

| Solution
— A single application
— Can contain one or more projects

* In Managed applications, projects can be in different languages|
— Overall solution information stored in a .SLN file

— Open this when you want to work on a solution
| Project

— Basic component of an application

— Collection of files:

» Source, headers, resources, settings, configuration information,
many more

An Introduction to Windows
Programming
Using VC++

| Two approaches:

—Win32 API
» Most basic

—MFC
* Encapsulates API functions into classes
» For most apps, easiest to use

Win32 APl Programming

| Additional notes at:
http://www.cs.binghamton.edu/~reckert/360/class2a.htm
http://www.cs.binghamton.edu/~reckert/360/class3a.htm

Windows Programming
| Event-driven paradigm

| Example: User clicks mouse over a
program's window area (a mouse event)--
— Windows decodes HW signals from mouse
— figures out which window user has selected

— sends a message to that window's program:
* "User has clicked over (X,Y)”
 "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows

Tindows Events and Hezgagas

(Harshnre Events) Send Heccge

Memmage ipplication 1

e Adpp 3 He=zaage Qama=
]I megaage LﬂDDl
Tindow

hpp 3 Heezage Quene
Procedur=

T
App 1 Hesaage Cueus \L

D=fanlt
Uindow
Fogt Bedeare

Pracedure

Essential Parts of a Windows
Program

|. The source program (.c/.cpp file):

— A. WinMain() function
* 0. declarations, initialization, etc.
* 1. register window “class”
2. create a window based on a registered “class”
3. show window, make it update its client area

* 4. the message loop

— get messages from Windows and forward to callback
message-processing function

— B. WndProc(): the message-processing
function
* a big switch/case statement
» handles messages of interest

— Under Win32 API, programmer must write
WinMain() and the WndProc()
— Under MFC, .NET Wizards do most of the work
« WinMain() and WndProc() are buried in the framework
« Write “message mapped handler functions” instead

lI. The resource script (.rc file)

 Contains resource (Windows static) data

» Determine “look and feel’ of the application

» Separate from code and dynamic data

» Compiled by a separate "Resource Compiler”

» Examples:

— Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box, Fonts, Icons, Menus, String Tables

» Separation of resources and program code
* Visual Studio can generate this file

The Main Message Loop

Application’s
Windows System WinMain{) function

CreateWindowi)

Exit
WinMain()

Run
other
App=

no I= there a message
for this application's
window? I
yes | no Process
0 returned? this
WH_QUIT I message
Fill in fields of returns 0 yes
M3G structure I

Windows Messages, Details

Hindows Bystem
Foske becrages Sewt Nexsages
UP_cRiR Un_CREATE
OP_EEThOm Tn_comnany
or_mETOR UB_DESTROY
UI_LETT TR0 LLE
UB_LEOTTOROP on_zsInT
UP_RODSEROVE Un_5 I3k
oE_GuIT erc.
etz @
A DeflindouPeac ||
s
Beesage
Queus
BeTrieven
Bmazag=
wo_tmIT (@)
Exica i "
o Bmasa
progrey B =
Applicatian

o= =

Eog Handler 1
Boq HAndler
H5] Hamdler &

E=g Hapdlec 4

Default

WINDOWS WM DESTROY MESSAGE PROCESSING

Windows System

Posts a WH_QUIT message on the Queue
App's (wParasw = arcument = 0]
Nessage
Queue
FostQuitMessage (0)
Retrieved
Message

Application

ndProc(}

M=y Handler 1
Msg Handler 2
WM DESTROY Should call:
M=y Handler

Default

Some Other important messages

I WM_COMMAND--User clicked on menu item
— LOWORD(wParam)=menu item ID

I WM_*BUTTONDOWN--left/right mouse button pressed
- *=L R,orM
— |Param=x,y coordinates

I WM_MOUSEMOVE--mouse moved

— IParam=x,y coordinates

I ' WM_CHAR--User pressed valid ANSI code character or
keyboard key combination
— wParam=ANSI code
I WM_PAINT--window was exposed, should be redrawn
I WM_KEYDOWN--keyboard key pressed

— wParam=virtual key code

The Resource Script (.rc file)

| Resources--static data
| Example: a menu

| Defined in a script (.rc) file--
#i ncl ude "resource. h"

MYMENU MENU
BEG N
MENUI TEM "&Ci rcl e", | D_Cl RCLE
MENUI TEM " &Qui t ", IDQUT

END

The Resource header (.h file)

/] resource.h
#define | D O RCLE 40006
#define ID QU T 40007

| Must #include in .CPP and .RC files

| Can use Visual Studio's resource editors to
prepare .rc and .h files visually
— ID numbers generated automatically

Text and Graphics Output

| Displaying something in a window

| Text and graphics are done one pixel at a
time

| Any size/shape/position possible

| Design goal: Device Independence

Device Independent
Graphics Interface
I Windows programs don't access hardware

devices directly

| Make calls to generic drawing functions
within the Windows ‘Graphics Device
Interface’ (GDI) -- a DLL

| The GDI translates these into HW commands

Program —>| GDI —>> Hardware

Device Context

| Windows programs don't draw directly on the
hardware
| Draw on “Device Context” (DC)
— Is associated with a physical device
— Abstracts the device it represents
— Like a painter’s canvas

— Specifies drawing attributes
* e.g., text color
— Contains drawing objects
* e.g., pens, brushes, bitmaps, fonts

The DC and the GDI

Windows Drawing Using the G6DI and the DC

Davice
Context
(DC)

Drawitug
Commatds

Graphics

Application Device Hardware
GDI Interface Hardware
functions (DI Commands

Some GDI Attributes

ATTRIBUTE DEFAULT FUNCTION
Background color white SetBkColor()
Background mode OPAQUE SetBkMode()
Current Position (0,0) MoveTo()
Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()

Text Color Black SetTextColor()

Some GDI Drawing Objects

Object Default What it is

Bitmap none image object
Brush WHITE_BRUSH area fill object
Font SYSTEM_FONT text font object

Pen BLACK_PEN line-drawing object

Color Palette DEFAULT_PALETTE color combinations

| Can be created with GDI functions
| Must be “selected” into a DC to be used

Windows Drawing "Objects"™ and the DC

A Device
SelectObject () Context
(DC)
Drawing
CreatePen() Commands
CreateSolidBrushi)
Graphics
Application Device Hardware
GDI Interface Hardware
functions (ZDI) Comnmands

Colors in Windows
| Uses 4-byte numbers to represent colors

| Simplest method--direct color:
—typedef DWORD COLORREF;

— MSB=0:
» ==> RGB direct color used (default)
» Other bytes specify R, G, B intensities

RGB() Macro

| Specify Red, Green, Blue intensities
| RGB() generates a COLORREF value

| Can be used in color-setting ftns), e.g.
COLORREF cr;
cr=RGB (0,0,255); /* blue */

| Example usage in a program
SetTextColor(RGB(255,0,0)); //red text
SetBkColor(RGB(0,0,255)); //blue bkgnd

A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP;

HDC hDC;

hDC = GetDC(hWnd);

hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOIdP = (HPEN)SelectObject(hDC, hNewP);

[NOW DO SOME DRAWING WITH THE NEW PEI]
SelectObject(hDC,hOIdP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted
ReleaseDC(hWnd,hDC);

Some GDI Drawing Primitives

| Arc(hDC,x1,y1,x2,y2,xStart,yStart,xEnd,yEnd);
| Ellipse (hDC,x1,y1,x2,y2);

| MovetoEx (hDC,x1,y1,p.Point);

| LineTo (hDC,x1,y1);

| Polygon (hDC,points_array,nCount);

| Polyline (hDC,points_array,nCount);

| Rectangle (hDC,x1,y1,x2,y2);
| SetPixel (hDC,x1,y1,colorref);
| Many more (see on-line help)

An Example Win32 API
Program

| Has Menu items to:
— Draw a circle

— Quit

I Types an “L” at cursor position when user left clicks the
mouse

| Has anicon

I On CS-460 Sample Programs web page
http://www.cs.binghamton.edu/~reckert/460/api.html

Creating the Example Win32 API
Application with Visual Studio

1. Startup
— click ‘Start’ on Task Bar — ‘All Programs’
— ‘Microsoft Visual Studio .NET 2005’ | ‘Microsoft
Visual Studio .NET 2005’
2. Create a new Win32 API solution
— ‘File’ |‘New | ‘Project’ from Menu Bar

— In‘New Project’ box, select ‘Visual C++ | ‘Win32’
from ‘Project Types:’ & click on ‘Win32 Project’ in
‘Templates’

— Set the ‘Location’ to a convenient directory & name
the project (e.g. api-ex) & click ‘OK’

« All solution files will be in a new directory with that name

3. Click ‘Application Settings’ in resulting
‘Win32 Application Wizard’ Box

— Select ‘Windows Application’ from ‘Application
Type’ radio buttons

— Select ‘Empty Project’ from ‘Additional Options’
check boxes

— Click ‘Finish’

4. Insert source files into project:

— Open a new C++ file & type or copy/paste the code
into the program:
« ‘File’ | ‘New’ | ‘File’ from menu
* Choose ‘Visual C++’ from ‘Categories’, C++ file (.cpp) from
‘Installed Templates’, & click ‘Open’
« Type or paste source code into the resulting Edit window
« Save the file in the project’s subdirectory as a C++ source file,
giving it an appropriate name (e.g., api-ex)
— Add the source file to the project:
¢ Choose ‘Project’ | ‘Add Existing Item’ from menu
* Click on the file you saved (e.g. api-ex.cpp)

« Confirm that it was added to the project by expanding ‘Source
Files’ in the Solution Explorer Window
— If Solution Explorer is not visible, select ‘View — Solution
Explorer’ from the menu

| Alternative Way of Adding a Source
File to a Project:
—You can also copy an existing source code
file into the project's subdirectory
— Then as before:

» Choose ‘Project’ | ‘Add Existing Item’ from the
menu
 Select the .cpp file & click ‘Open’

— Should appear in Solution Explorer window
— Open it by double clicking on it

5. Create an Icon Resource (and the .rc
resource script file)
» Select ‘Project | Add Resource | Icon | New
— Brings up icon editor
» Draw desired icon
* Click on IDI_ICONL1 in “Resource View’ to bring up

the “Properties” window and change the icon ID to
“MYICON”

— Don't forget the quote marks
» Give a name to .ico file (or leave the default name)

6. Add a Menu

Select ‘Project | Add Resource | Menu | New'
 Brings up the menu editor
— Type the caption: &Circle in the “Type Here” rectangle
— In resulting "Properties" box, Select “False” for “Pop-up”

— Click on the resulting Circle menu item to bring up the
“Properties” box again.

— Note the default ID of ID_CIRCLE
* Click on the next rectangle over in the menu editor
— Repeat the above steps using caption: &Quit
— Keep the default IDs
* Click on “IDI_MENUL1" in “Resource View” to bring up
“Properties” window; change menu ID to “MYMENU”

7. Build the Project
* ‘Build’ | ‘Build Solution’ from menu
* Project will be compiled/linked
» Messages/errors will appear in Output Window

8. Run the Program:

* ‘Debug’ | ‘Start’ from menu

— Shortcut key: F5
» Or ‘Debug’ | ‘Start Without Debugging’ from menu
» Shortcut key: Ctrl-F5

Copy Projectto a CD

Copy the entire topmost directory to your
diskette or CD-ROM

If using a public computer, delete the
workspace directory from the hard disk

