
CS 460

Computer Graphics

Professor Richard Eckert

Lecture # 1

January 27, 2009

CS-460
Computer Graphics

Richard R. Eckert

T,R 10:05-11:30 A.M.
SW-327

Lecture 1 - 1/27/2009

Contacting Me or the TA
l Office: EB-N6
l Office Hours: W 10-11:30 A.M., R 1-2:30 P.M.
l Office Phone: 607-777-4365
l Department phone: 607-777-4802
l email: reckert@binghamton.edu
l My web front page: www.cs.binghamton.edu/~reckert/

– See link to: CS-460/560 (Computer Graphics)
l Listserv: CS460-L@listserv.binghamton.edu

– Activated during the first week of classes
l TA: Yibo Sun, sunyibo@gmail.com
l TA’s Office hours: TBA

Course Materials
l Text book

– D. Hearn and M.P. Baker, "Computer Graphics with
OpenGL“, 3rd Edition, Prentice Hall

l Online notes
– CS-460/560 link on my home page

• Lots of information available there

– CS-360 link on my home page
• Information on using Visual Studio, VC++, C#, Example

Programs

l PowerPoint slides in PDF format
– Will be online at course notes web site

Software
l Microsoft Visual Studio 2005/2008

Professional Edition
– In all Pods & Watson School Microlab
– Available to Watson School students (free)

• Through Microsoft Academic Alliance

– Go to:
• msdn04.e-academy.com/binghamton_watson

– Search for product
• To download you will need a password
• You should have it or it will be emailed to you

Course Prerequisites
l Data Structures (CS-240)
l Basic Knowledge of Linear Algebra

– Matrix/Vector Manipulation

l C or C++ Programming
– Visual C++ Ideal

• But we will do a quick review
• Extensive notes/examples at CS-360 web pages

l Some Knowledge of Computer Organization
– e.g., CS-220

Course Evaluation

l 2 Term Exams (20% each)
l Programming Assignments (40%)
l Final Exam (20%)

Course Schedule (by weeks)

l Introduction/Applications, Introduction to
Windows and OpenGL Programming

l Computer Graphics Hardware and Software
l Graphics Output Primitives: Scan converting

lines, polygons, circles, curves, text
l Display Attributes and Area Fill Algorithms
l 2-Dimensional Geometric Transformations
l 2-D Windows, Viewports, and Clipping

*** Term Examination # 1 ***

Course Schedule (by weeks)

l Interactive 2-D Graphics: Input Devices, GUI
Techniques

l Segmentation, Hierarchical Modeling; PHIGS,
OpenGL

l Curved lines and surfaces, parametric
equations, Bezier and B-spline curves

l Animation, Sprites, Game Development, DirectX
l 3-D Graphics: Modeling & Transformations
l 3-D Graphics: Viewing and Projections

Course Schedule (by weeks)

l Hidden Surface Removal

*** Term Examination # 2 ***
l Illumination, Reflection, Shading,

Texturing, Ray Tracing, Radiosity
l Fractals, Iterated Function Systems, L-

Systems, Particle Systems, Escape-time
algorithms, Chaos

Introduction to
Computer Graphics

Computer Graphics
l Using a computer to generate visual images
l Definition of Computer Graphics:

– Creation, storage, manipulation, and display of
models of scenes using a computer

l Interactive Computer Graphics:
– User dynamically controls displayed image

attributes by means of interactive input devices

Motivation

l Human visual channel highly developed

l Efficient for communicating complex
ideas

Related Field: Image
Processing

l Image enhancement/understanding
l Reconstruction of objects from images
l Computer Graphics--Synthesis of images
l Image Processing--Analysis of images
l Image Processing subfields:

– image enhancement
– Image understanding
– computer vision
– pattern recognition (A.I. important)

Computer Graphics & Image
Processing

Three Phases of Computer
Graphics

l Modeling
– Representing objects/scenes

mathematically
l Rendering

– Producing an image from a model
l Animation

– Making an image move

Features of Computer
Graphics Models

l Output primitives:
– building blocks

l Data structures:
– how primitives relate to each other

Levels of Complexity of
Computer Graphics

l 2-D line Drawings: Primitives
l 2-D colored images: Area fill
l 3-D line drawings: 3-D to 2-D projection
l 3-D colored images: Hidden surface removal,

color, shading
l 3-D photorealistic images: materials

properties, lighting, reflection, transparency,
shadows (physics), complex object models

l Animation at all levels: Movement

2-D Line Drawing

2-D Colored Image

3-D Line Drawing

3-D Line Drawing (some hidden
surfaces removed)

3-D Colored Image (flat shaded)

3-D Colored Image (smooth shaded)

3-D Colored Image Smooth
Shaded with Specular Highlights

3-D Photorealistic Image (ray traced
image with texture mapping)

3-D Photorealistic Image (fractal
mountains, L-system plants)

An Animation of a 3D Scene
l Frames generated by ray tracing

Some Applications of
Computer Graphics

l Data Presentation (statistics, business,
scientific, demographics...)

l CAD, CAM, CIM
l Painting/Drawing systems
l TV Commercials
l Entertainment

– Video Games
– Motion Picture Industry

l Cartography
l Computer Art

Graphics Applications

l Computer Aided Design (CAD)

Graphics Applications

l Entertainment: Cinema

Pixar: Monster’s Inc.

Video Games

l Microsoft Xbox 360
l Sony PlayStation 3
l Nintendo Wii

– Wireless controller – Wii Remote

Video Games - Nintendo Wii

l Desktop Publishing
l Architectural Design
l Simulation of Reality

– Flight simulators
– Ground vehicle simulators
– Arcade games
– Virtual reality

• Second Life

Graphics Applications

Simulation

Virtual Worlds – Second Life

Graphics Applications

l Scientific Simulation/Visualization
– Use graphics to make sense of vast amounts of

scientific data
– Use when too dangerous/expensive or impossible to

do real experiments
l Hypermedia

– Integrate broadcasting, computing, publishing
l Education and Training
l CASE

Graphics Applications

l Scientific Visualization

Graphics Applications
l Image Processing/Enhancement
l Medicine

– Computed Tomography (CT Scan)
– X-ray, ultrasound, NMR, PET:
– All can give 3-D images of human anatomy
– Computer-aided Surgery

l GUIs
l World Wide Web Development
l New Stuff--can't even be imagined

Graphics Applications
l Medical Visualization

MIT: Image-Guided Surgery Project

The V
isible H

um
an P

roject

Computer Graphics--

l A huge, fast-moving, exciting field that
integrates the best of art and science

l Needs new Renaissance men & women
– Bright and analytic enough to understand

the science & math
– Sensitive and creative enough to do the art

l Both left and right sides of the brain
required!

Microsoft Visual Studio .NET:
An Integrated Windows
Program Development

Environment

Using Microsoft Visual
Studio .NET

l Self-contained environment for Windows
program development:
– creating
– compiling
– linking
– testing/debugging

l IDE that accompanies Visual C++, Visual
Basic, Visual C#, and other Microsoft
Windows programming languages

.NET Architecture

Visual Studio Capabilities
l Generate starter applications without

writing code
l View a programming project in many

different ways
l Edit source, header, and include files
l Build the application’s user interface

visually
l Build (compile and link) an application
l Debug an application while it runs
l Obtain online help
l Lots of others (Wizards)

Compilation in the .NET Framework

Common
Language
Runtime

Using Visual Studio .NET

l To prepare many kinds of applications
– Win32 Console Applications (DOS programs)
– Win32 API Apps in C or VC++
– MFC Apps in VC++
– DLLs
– .NET Windows Forms Apps in Managed C#,

VB, C++, and other languages
– ASP.NET Web Apps and Services
– ADO.NET Data Base Apps
– Others including OpenGL

Solutions and Projects
l Solution

– A single application
– Can contain one or more projects

• In Managed applications, projects can be in different languages

– Overall solution information stored in a .SLN file
– Open this when you want to work on a solution

l Project
– Basic component of an application
– Collection of files:

• Source, headers, resources, settings, configuration information,
many more

An Introduction to Windows
Programming
Using VC++

l Two approaches:
– Win32 API

• Most basic

– MFC
• Encapsulates API functions into classes
• For most apps, easiest to use

Win32 API Programming

l Additional notes at:
http://www.cs.binghamton.edu/~reckert/360/class2a.htm
http://www.cs.binghamton.edu/~reckert/360/class3a.htm

l Event-driven paradigm
l Example: User clicks mouse over a

program’s window area (a mouse event)--
– Windows decodes HW signals from mouse
– figures out which window user has selected
– sends a message to that window’s program:

• "User has clicked over (X,Y)”
• "Do something and return control to me”

– Program reads message data, does what's
needed, returns control to Windows

Windows Programming

Essential Parts of a Windows
Program

l I. The source program (.c/.cpp file):
– A. WinMain() function

• 0. declarations, initialization, etc.
• 1. register window “class”
• 2. create a window based on a registered “class”
• 3. show window, make it update its client area
• 4. the message loop

– get messages from Windows and forward to callback
message-processing function

– B. WndProc(): the message-processing
function

• a big switch/case statement
• handles messages of interest

– Under Win32 API, programmer must write
WinMain() and the WndProc()

– Under MFC, .NET Wizards do most of the work
• WinMain() and WndProc() are buried in the framework
• Write “message mapped handler functions” instead

• Contains resource (Windows static) data
• Determine “look and feel” of the application
• Separate from code and dynamic data
• Compiled by a separate "Resource Compiler”
• Examples:

– Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box, Fonts, Icons, Menus, String Tables

• Separation of resources and program code
• Visual Studio can generate this file

II. The resource script (.rc file)

Some Other important messages
l WM_COMMAND--User clicked on menu item

– LOWORD(wParam)=menu item ID

l WM_*BUTTONDOWN--left/right mouse button pressed
– * = L, R, or M
– lParam=x,y coordinates

l WM_MOUSEMOVE--mouse moved
– lParam=x,y coordinates

l WM_CHAR--User pressed valid ANSI code character or
keyboard key combination
– wParam=ANSI code

l WM_PAINT--window was exposed, should be redrawn
l WM_KEYDOWN--keyboard key pressed

– wParam=virtual key code

l Resources--static data
l Example: a menu
l Defined in a script (.rc) file--
#include "resource.h"
MYMENU MENU
BEGIN
MENUITEM "&Circle", ID_CIRCLE
MENUITEM "&Quit", ID_QUIT

END

The Resource Script (.rc file)

The Resource header (.h file)
// resource.h
#define ID_CIRCLE 40006
#define ID_QUIT 40007

l Must #include in .CPP and .RC files
l Can use Visual Studio's resource editors to

prepare .rc and .h files visually
– ID numbers generated automatically

l Displaying something in a window
l Text and graphics are done one pixel at a

time
l Any size/shape/position possible
l Design goal: Device Independence

Text and Graphics Output

Device Independent
Graphics Interface

l Windows programs don’t access hardware
devices directly

l Make calls to generic drawing functions
within the Windows ‘Graphics Device
Interface’ (GDI) -- a DLL

l The GDI translates these into HW commands

Program GDI Hardware

l Windows programs don’t draw directly on the
hardware

l Draw on “Device Context” (DC)
– Is associated with a physical device
– Abstracts the device it represents
– Like a painter’s canvas
– Specifies drawing attributes

• e.g., text color

– Contains drawing objects
• e.g., pens, brushes, bitmaps, fonts

Device Context

The DC and the GDI

Some GDI Attributes
ATTRIBUTE DEFAULT FUNCTION

Background color white SetBkColor()
Background mode OPAQUE SetBkMode()
Current Position (0,0) MoveTo()
Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()
Text Color Black SetTextColor()

Some GDI Drawing Objects

Object Default What it is
--
Bitmap none image object
Brush WHITE_BRUSH area fill object
Font SYSTEM_FONT text font object
Pen BLACK_PEN line-drawing object
Color Palette DEFAULT_PALETTE color combinations
--

l Can be created with GDI functions
l Must be “selected” into a DC to be used

Colors in Windows
l Uses 4-byte numbers to represent colors
l Simplest method--direct color:

– typedef DWORD COLORREF;
--
| 0 | Blue (0-255) | Green (0-255) | Red (0-255) |
--
– MSB=0:

• ==> RGB direct color used (default)
• Other bytes specify R, G, B intensities

RGB() Macro
l Specify Red, Green, Blue intensities
l RGB() generates a COLORREF value
l Can be used in color-setting ftns), e.g.

COLORREF cr;
cr = RGB (0,0,255); /* blue */

l Example usage in a program
SetTextColor(RGB(255,0,0)); //red text
SetBkColor(RGB(0,0,255)); //blue bkgnd

A Typical Sequence
With Drawing Objects:

HPEN hOldP, hNewP;
HDC hDC;
hDC = GetDC(hWnd);
hNewP = CreatePen(PS_SOLID, 3, RGB(0,0,255));
hOldP = (HPEN)SelectObject(hDC, hNewP);
// NOW DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOldP); //displace pen from DC
DeleteObject(hNewP); //now can be deleted
ReleaseDC(hWnd,hDC);

Some GDI Drawing Primitives

l Arc(hDC,x1,y1,x2,y2,xStart,yStart,xEnd,yEnd);
l Ellipse (hDC,x1,y1,x2,y2);
l MovetoEx (hDC,x1,y1,p.Point);
l LineTo (hDC,x1,y1);
l Polygon (hDC,points_array,nCount);
l Polyline (hDC,points_array,nCount);
l Rectangle (hDC,x1,y1,x2,y2);
l SetPixel (hDC,x1,y1,colorref);
l Many more (see on-line help)

An Example Win32 API
Program

l Has Menu items to:
– Draw a circle
– Quit

l Types an “L” at cursor position when user left clicks the
mouse

l Has an icon
l On CS-460 Sample Programs web page

http://www.cs.binghamton.edu/~reckert/460/api.html

Creating the Example Win32 API
Application with Visual Studio

1. Startup
– click ‘Start’ on Task Bar – ‘All Programs’
– ‘Microsoft Visual Studio .NET 2005’ | ‘Microsoft

Visual Studio .NET 2005’
2. Create a new Win32 API solution

– ‘File’ | ‘New’ | ‘Project’ from Menu Bar
– In ‘New Project’ box, select ‘Visual C++’ | ‘Win32’

from ‘Project Types:’ & click on ‘Win32 Project’ in
‘Templates’

– Set the ‘Location’ to a convenient directory & name
the project (e.g. api-ex) & click ‘OK’

• All solution files will be in a new directory with that name

3. Click ‘Application Settings’ in resulting
‘Win32 Application Wizard’ Box
– Select ‘Windows Application’ from ‘Application

Type’ radio buttons
– Select ‘Empty Project’ from ‘Additional Options’

check boxes
– Click ‘Finish’

4. Insert source files into project:
– Open a new C++ file & type or copy/paste the code

into the program:
• ‘File’ | ‘New’ | ‘File’ from menu
• Choose ‘Visual C++’ from ‘Categories’, C++ file (.cpp) from

‘Installed Templates’, & click ‘Open’
• Type or paste source code into the resulting Edit window
• Save the file in the project’s subdirectory as a C++ source file,

giving it an appropriate name (e.g., api-ex)

– Add the source file to the project:
• Choose ‘Project’ | ‘Add Existing Item’ from menu
• Click on the file you saved (e.g. api-ex.cpp)
• Confirm that it was added to the project by expanding ‘Source

Files’ in the Solution Explorer Window
– If Solution Explorer is not visible, select ‘View – Solution

Explorer’ from the menu

l Alternative Way of Adding a Source
File to a Project:
– You can also copy an existing source code

file into the project’s subdirectory
– Then as before:

• Choose ‘Project’ | ‘Add Existing Item’ from the
menu

• Select the .cpp file & click ‘Open’
– Should appear in Solution Explorer window
– Open it by double clicking on it

5. Create an Icon Resource (and the .rc
resource script file)

• Select ‘Project | Add Resource | Icon | New’
– Brings up icon editor

• Draw desired icon
• Click on IDI_ICON1 in “Resource View” to bring up

the “Properties” window and change the icon ID to
“MYICON”

– Don’t forget the quote marks

• Give a name to .ico file (or leave the default name)

6. Add a Menu
Select ‘Project | Add Resource | Menu | New’

• Brings up the menu editor
– Type the caption: &Circle in the “Type Here” rectangle
– In resulting "Properties" box, Select “False” for “Pop-up”
– Click on the resulting Circle menu item to bring up the

“Properties” box again.

– Note the default ID of ID_CIRCLE

• Click on the next rectangle over in the menu editor
– Repeat the above steps using caption: &Quit
– Keep the default IDs

• Click on “IDI_MENU1” in “Resource View” to bring up
“Properties” window; change menu ID to “MYMENU”

7. Build the Project
• ‘Build’ | ‘Build Solution’ from menu
• Project will be compiled/linked
• Messages/errors will appear in Output Window

8. Run the Program:
• ‘Debug’ | ‘Start’ from menu

– Shortcut key: F5

• Or ‘Debug’ | ‘Start Without Debugging’ from menu
• Shortcut key: Ctrl-F5

Copy Project to a CD

l Copy the entire topmost directory to your
diskette or CD-ROM

l If using a public computer, delete the
workspace directory from the hard disk

