3-D Geometric Transformations
3-D Viewing Transformation
Projection Transformation

3-D Geometric
Transformations

e Move objects in a 3-D scene
e Extension of 2-D Affine Transformations
e Three important ones:

— Translation

— Scaling

— Rotations




Representing 3-D Points

e Homogeneous coordinates
o P (X,y,2) -->P (X\y,2)

| x| | X |
ly |l -—=>1Yy |
| z | | 7 |
|_1 | |_1 |

Homogeneous Translation
Matrix

e Given three translation components tx, ty, tz
P =T*P
e T is the following 4 X 4 scaling matrix:

| 100tx |
T=] 010ty |
| 001tz |
| 0001 |




Scaling with respect to origin

e Given three scaling factors sx, sy, sz
P'=S*P
e S is the following 4 X 4 scaling matrix:

| sx0 0 O |
S=| 0 sy 0 O |
| 0 0 sz O |
L0 0 0 1|

Rotations

e Need to specify angle of rotation

e And axis about which the rotation is to be
performed

e Infinite number of possible rotation axes

— Rotation about any axis: linear combinations
of rotations about x-axis, y-axis, z-axis




Z-AXxis Rotation Matrix

| cos(theta) -sin(theta) 0 O |
Rz =| sin(theta) cos(theta) 0 0 |
| O 0 1 0|
| O 0 0 1 |

X-AXxIs Rotation matrix

1 0 0 0 |
0 cos(theta) -sin(theta) O |
0 sin(theta) cos(theta) 0O |
0 0 0 1 |

|
Rx = |




Y-AXxis Rotation Matrix

| cos(theta) O sin(theta) O |

Ry = | 0 1 0 0 |
| -sin(theta) O cos(theta) O |
| 0 0 0 1 |

Rotation Sense

e Positive sense

— Defined as counter clockwise as we look
down the rotation axis toward the origin




Composite 3-D Geometric
Transformations

e Series of consecutive transformations
— Represented by homogeneous transformation
matrices T1, T2, ..., Tn
e Equivalent to a single transformation
— Represented by composite transformation matrix T
— T is given by the matrix product:
T =Tn*. *T2*T1
— First one on the left, last one on the right
e Just like in 2-D, except matrices are 4 X 4

Library of 3-D
Transformation Functions

e 3-D Transformation Package
e Straightforward Extension of 2-D

e Enables setting up and transforming
points & polygons

e 4 X 4 Matrices have 12 non-trivial matrix
elements

e Package Might contain the following
functions:




3-D Transformation
Functions

void settranslate3d(a[12], tx, ty, tz);

void setscale3d(a[12], sx, Sy, S2);

void setrotatex3d(a[12], theta);

void setrotatey3d(a[12], theta);

void setrotatez3d(a[12], theta);

void combine3d(c[12], a[12], b[12]); //C=A*B
void xformcoord3d(c[12], vi, *v0); //vo=C*vi
void xformpoly3d(inpoly[], outpoly][], float c[12]);
e a, b, and c are arrays

— Contain 12 non-trivial matrix elements of a 4 X4
homogeneous transformation matrix

e viand vo are 3-D point structures; inpoly and outpoly are
polygons

Rotation about an Arbitrary
AXIS
e Rotate point P by angle a about a line
e Given: endpoints P1=(x1,y1,z1) & P2=(x2,y2,z2)
e Convert problem into rotation about x-axis

1. Translate so that P1 is at origin: T1 = T(-x1,-y1,-z1)

2. Compute spherical coordinates of the other endpoint:
p = sqrt((x2-x1)? + (y2-y1)? + (z2-z1)?)
¢ = arccos((z2-z1)/rho)

0 = arctan((y2-y1)/(x2-x1))




— 3. Rotate about z-axis by -8 so line lies in x-z plane:
T2 = Rz(-0)
— 4. Rotate about y-axis by (90-¢)
to make line coincide with x-axis:
T3 = Ry(90-¢)

— 5. Rotate about x-axis by given angle a: T4 = Rx(a)
— 6. Rotate back to undo step 4: T5 = Ry(¢-90)

— 7. Rotate back to undo step 3: T6 = Rz(0)

— 8. Translate back to undo step 1: T7 = T(x1,y1,z1)

e Composite transformation then will be:
T = TT*T6*T5*T4*T3*T2*T1

3-D Coordinate System
Transformations
e There’s a symmetrical relationship between 3-D
geometric transformations
— (moving the object)
and 3-D coordinate system transformations
— (moving the coordinate system)
e For translations, relationship is:
Tcoord(x,y,z) = Tgeom(-X,-y,-2)
e For each principal-axis, rotation relationship is:
Rcoord(6) = Rgeom(-6)
e Useful in deriving 3-D viewing transformation




3D Viewing and Projection

e See CS-460/560 notes on 3-D Viewing

and Projection Transformations
http://www.cs.binghamton.edu/~reckert/460/3dview.htm

3D Viewing/Projection

Transformations
® 3-D points in model must be transformed to
viewing coordinate system
— the Viewing Transformation
® Then projected onto a projection plane
— Projection Transformation




3-D Viewing Transformation

e Converts world coordinates (xw,yw,zy)
of a point to viewing coordinates
(xv,yv,zv) of the point
— As seen by a "camera" that is going to

"photograph" the scene

(XW,YW,ZW) ========mm=mmmmmmmmmneee > (Xv,yv,zv)
Viewing transformation

3-D Viewing Transformation

il

by
*n Yo FJF:;::JK
LV,

7

Projection

Plane




Projection Transformation

e Converts viewing coordinates (xv,yv,zv)
of a point to 2-D coordinates (xp,yp) of
that point’s projection onto a projection
plane

e Think of projection plane as containing
screen upon which the image is to be
displayed

(XV,YV,ZV) -====mmmmmmmmmmmoooeoee e > (Xp,yp)
Projection transformation

Viewing Setups

e Specify position/orientation of
coordinate systems & projection plane

e Many possible viewing setups
e We'll use a simple, 4-parameter viewing
setup

— Camera located at origin of viewing
coordinate system

— Somewhat restricted
— But adequate for most common situations




4-Parameter Viewing Setup

Projection

Flane

Parameters

e Position of viewpoint (camera location)
— Position of origin of Viewing Coordinate
System (VCS)
— Specify in spherical coordinates

» distance p from world coordinate system (WCS)
origin

» azimuthal angle 6

* polar angle ¢

e Distance d of Projection
Plane from viewpoint




Viewing Setup Properties

e VCS zv-axis points toward WCS origin

— So objects we want to be visible must be placed
close to WCS origin

e Proj. Plane is perpendicular to zv-axis at a
distance d from VCS origin
So p must be greater than d

e Center of projection
coincides with VCS origin

e VCS’s yv-axis is parallel to projection of WCS’s zw-axis
— So WCS zw-axis defines "screen up" direction

e VCS’s xv-axis is chosen so that xv-yv-zv axes form a
left-handed coordinate system
— objects far from the VCS’s origin have large zv

e 2-D Projection Plane coordinate system's origin is at
intersection of p and Projection Plane

— Its xp-yp-axes are projections of xv-yv axes onto Proj. Plane
* i.e., xv-yv translated a distance d along zv axis




3-D Viewing Transformation

e Must convert Xw-yw-zw to xv-yv-zv system
e A coordinate system transformation

e Perform the following steps:
1. Translate origin by distance p in direction (6, @)

2. Rotate by -(90-8) degrees about z-axis to bring new y-
axis into plane of zw and p

3. Rotate by (180-¢) about x-axis to point transformed z-
axis toward origin of world coordinate system

4. Invert x-axis

Viewing Xform: 1. Translate by p

2

W

Wi

]




2. Rotate by -(90-8) about z

r s

3. Rotate by (180-¢) about x

y

II

188-¢




4. Invert x-axis

1'.II

1. Translate by p

e Homogeneous transformation matrix for
translation by (x,y,z):
| 100x |
Tgeom= | 010y |

| 001z |
| 0001 |

e Use relationship between coordinate system
transformations & geometric transformations:
Tcoord(x,y,z) = Tgeom(-X,-y,-2)




e So first transformation matrix, T1:

| 100-x |
T1=| 010-y |
| 001-z |
|_000 1_|
e Express X, y, z in terms of p, 6, @ (spherical
coordinates)

X = p*sin(@)*cos(0)
y = p*sin(@)*sin(6)
z = p*cos(¢)

2. Rotate by -(90-8) about z

e Use relationship between coordinate
system rotations & geometric rotations:
Tcoord(alpha) = Tgeom(-alpha)
e So transformation is T2 = Rz(90-6):

| cos(90-6) -sin(90-8) O
T2 =| sin(90-6) cos(90-6) 0
| 0 0 1
| O 0 0




3. Rotate by (180-¢) about x

e Again use relationship between
geometric & coordinate system
rotations:

So T3 = Rx((-180):

| 1 0 0 0 |
T3=| 0 cos(¢-180) -sin(g-180) O |
| O sin(@180) cos(¢-180) O |
|_O0 0 0 1 |

4. Invert x-axis
e Result of step 3: x-axis points opposite from
direction it should

— Because WCS is right-handed, while VCS is left-
handed

e So need to reflect across y"-z” plane
— Will convert x to -x

oo ok,
O O -~ O
oOrR o o




Composite Viewing
Transformation Matrix

o Tv=T4*T3*T2*T1
e Result (after simplification):

| -sin(B) cos(0) 0
Tv = | -cos(@*cos(8) -cos(@)*sin(B) sin(@)

| -sin(@)*cos(B) -sin(@*sin(B) -cos(g)

| O 0 0

= T O o

Projection Transformation

e Look down xv axis at viewing setup:
Triangles OAP' & OBP are similar
So set up proportion:

yW o zv
Solve for yp:
yp = (yv*d)/zv

Look down yv axis for xp:
Result: xp = (xv*d)/zv




Plotting Points on Screen

e Get screen coordinates (xs,ys) from
Projection Plane coordinates (xp,yp)
e Final Transformation:
2D Window-to Viewport Transformation
(xs,ys) <--- (Xp.,yp)
See earlier notes

* Replace xv,yv with xs,ys
* Replace xw,yw with xp,yp

Skeleton Pyramid Program:

Data Structures
/I Build and display a polygon mesh model of a 4-sided pyramid:
struct point3d {float x; float y; float z;}; // a 3d point
struct polygon {int n; int *inds;}; /I a polygon
struct point3d w_pts[5]; // 5 world coordinate vertices
struct point3d v_pts[5]; // 5 viewing coordinate vertices
POINT s_pts[5]; /I'5 screen coordinate vertices
struct polygon polys[5]; // 5 polygons define the pyramid

/I global variables:
float v11,v12,v21,v22,v23,v31,v32,v33,v34; // view xform matrix elements
int screen_dist; float rho, theta, phi; // viewing parameters
int xmax,ymax; /I Screen dimensions

int num_vertices=5, num_polygons=5;




Skeleton Pyramid Program:
Function Prototypes

void coeff (float r, float t, float p); // calculates viewing transformation
/I matrix elements, vii
void convert (float x, float y, float z,
float *xv, float *yv, float *zv,

int *xs, int *ys); /I converts a 3D world coordinate point to
/I 3D viewing & 2D screen coordinates

I/l i.e., viewing and projection transformations

void build_pyramid (void); // sets up pyramid points and polygons
Il arrays (see last set of notes)

void draw_polygon (int p); // draws polygon p

Skeleton Pyramid Program:
Function Skeletons

// Main Function--Called whenever pyramid is to be displayed
void main_ftn ()
{
/I Get or set values of rho, theta, phi, and screen_dist here
build_pyramid (void); // build polygon model of the pyramid
coeff (rho,theta,phi); // compute transformation matrix elements
for (int i=0; i<num_vertices; i++)
{ /I Loop to convert polygon vertices from world coordinates
/ to viewing and screen coordinates; must call convert () each time}
for (int f=0; f<num_polygons; f++)
{ /I Loop to draw each polygon face
// must call draw_polygon (f) }




void coeff (float r, float t, float p)
{ ! Code to compute non-trivial viewing transformation matrix
/I elements: v11,v12,v21,v22,v23,v31,v32,v33,v43 }

void convert (float x, float y, float z,
float *xv, float *yv, float *zv, int *xs, int *ys)

{ I Code to compute viewing coordinates and screen coordinates of
/[ a point from its 3-D world coordinates. Must implement viewing,
/I projection, and window-to-viewport transformations described
/I inclass }

void build_pyramid (void)
{ /I Code to define the pyramid by setting up w_pts & polys arrays }

void draw_polygon (int p)
{
/l Code to draw polygon p by:
// obtaining its vertex numbers from the polys array
I getting the screen coordinates of each vertex from the s_pts array
/l making appropriate calls to the system polygon-drawing primitive




