3-D Geometric Transformations
3-D Viewing Transformation
Projection Transformation

3-D Geometric Transformations

- Move objects in a 3-D scene
- Extension of 2-D Affine Transformations
- Three important ones:
 - Translation
 - Scaling
 - Rotations
Representing 3-D Points

- Homogeneous coordinates
- $P (x,y,z) \rightarrow P' (x',y',z')$

\[
\begin{bmatrix}
 x & x' \\
 y & y' \\
 z & z' \\
 1 & 1 \\
\end{bmatrix}
\]

Homogeneous Translation Matrix

- Given three translation components tx, ty, tz
- $P' = T \times P$

T is the following 4 X 4 scaling matrix:

\[
\begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Scaling with respect to origin

- Given three scaling factors \(sx, sy, sz \)
 \[P' = S \cdot P \]
- \(S \) is the following \(4 \times 4 \) scaling matrix:
 \[
 S = \begin{bmatrix}
 sx & 0 & 0 & 0 \\
 0 & sy & 0 & 0 \\
 0 & 0 & sz & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]

Rotations

- Need to specify angle of rotation
- And axis about which the rotation is to be performed
- Infinite number of possible rotation axes
 - Rotation about any axis: linear combinations of rotations about x-axis, y-axis, z-axis
Z-Axis Rotation Matrix

\[
Rz = \begin{array}{cccc}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\]

X-Axis Rotation matrix

\[
Rx = \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0 \\
0 & \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\]
Y-Axis Rotation Matrix

\[
R_y = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Rotation Sense

- Positive sense
 - Defined as counter clockwise as we look down the rotation axis toward the origin
Composite 3-D Geometric Transformations

- Series of consecutive transformations
 - Represented by homogeneous transformation matrices T_1, T_2, \ldots, T_n
- Equivalent to a single transformation
 - Represented by composite transformation matrix T
 - T is given by the matrix product:
 $$T = T_n \cdots T_2 T_1$$
 - First one on the left, last one on the right
- Just like in 2-D, except matrices are 4×4

Library of 3-D Transformation Functions

- 3-D Transformation Package
- Straightforward Extension of 2-D
- Enables setting up and transforming points & polygons
- 4 X 4 Matrices have 12 non-trivial matrix elements
- Package Might contain the following functions:
3-D Transformation Functions

void settranslate3d(a[12], tx, ty, tz);
void setscale3d(a[12], sx, sy, sz);
void setrotate3d(a[12], theta);
void setrotatey3d(a[12], theta);
void setrotatez3d(a[12], theta);
void combine3d(c[12], a[12], b[12]); // C = A * B
void xformcoord3d(c[12], vi, *vo); // vo = C * vi
void xformpoly3d(inpoly[], outpoly[], float c[12]);

- a, b, and c are arrays
 - Contain 12 non-trivial matrix elements of a 4 X 4 homogeneous transformation matrix
- vi and vo are 3-D point structures; inpoly and outpoly are polygons

Rotation about an Arbitrary Axis

- Rotate point P by angle α about a line
- Given: endpoints $P1=(x1,y1,z1)$ & $P2=(x2,y2,z2)$
- Convert problem into rotation about x-axis
 1. Translate so that P1 is at origin: $T1 = T(-x1,-y1,-z1)$
 2. Compute spherical coordinates of the other endpoint:
 $\rho = \sqrt{(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2}$
 $\phi = \arccos((z2-z1)/\rho)$
 $\theta = \arctan((y2-y1)/(x2-x1))$
3-D Coordinate System Transformations

- There’s a symmetrical relationship between 3-D geometric transformations
 - (moving the object)
 - and 3-D coordinate system transformations
 - (moving the coordinate system)

- For translations, relationship is:
 \[T_{\text{coord}}(x,y,z) = T_{\text{geom}}(-x,-y,-z) \]

- For each principal-axis, rotation relationship is:
 \[R_{\text{coord}}(\theta) = R_{\text{geom}}(-\theta) \]

- Useful in deriving 3-D viewing transformation
3D Viewing and Projection

- See CS-460/560 notes on 3-D Viewing and Projection Transformations
 http://www.cs.binghamton.edu/~reckert/460/3dview.htm

3D Viewing/Projection Transformations
- 3-D points in model must be transformed to viewing coordinate system
 – the Viewing Transformation
- Then projected onto a projection plane
 – Projection Transformation
3-D Viewing Transformation

- Converts world coordinates \((x_w, y_w, z_w)\) of a point to viewing coordinates \((x_v, y_v, z_v)\) of the point
 - As seen by a "camera" that is going to "photograph" the scene

\[(x_w, y_w, z_w) \rightarrow (x_v, y_v, z_v)\]

Viewing transformation
Projection Transformation

- Converts viewing coordinates \((x_v,y_v,z_v)\) of a point to 2-D coordinates \((x_p,y_p)\) of that point’s projection onto a projection plane
- Think of projection plane as containing screen upon which the image is to be displayed

\[
\begin{align*}
(x_v,y_v,z_v) & \quad \longrightarrow \quad (x_p,y_p) \\
\text{Projection transformation}
\end{align*}
\]

Viewing Setups

- Specify position/orientation of coordinate systems & projection plane
- Many possible viewing setups
- We’ll use a simple, 4-parameter viewing setup
 - Camera located at origin of viewing coordinate system
 - Somewhat restricted
 - But adequate for most common situations
4-Parameter Viewing Setup

Parameters

- Position of viewpoint (camera location)
 - Position of origin of Viewing Coordinate System (VCS)
 - Specify in spherical coordinates
 - distance ρ from world coordinate system (WCS) origin
 - azimuthal angle θ
 - polar angle ϕ

- Distance d of Projection Plane from viewpoint
Viewing Setup Properties

- VCS zv-axis points toward WCS origin
 - So objects we want to be visible must be placed close to WCS origin
- Proj. Plane is perpendicular to zv-axis at a distance d from VCS origin
 - So ρ must be greater than d
- Center of projection coincides with VCS origin

- VCS’s yv-axis is parallel to projection of WCS’s zw-axis
 - So WCS zw-axis defines “screen up” direction
- VCS’s xv-axis is chosen so that xv-yv-zv axes form a left-handed coordinate system
 - objects far from the VCS’s origin have large zv
- 2-D Projection Plane coordinate system’s origin is at intersection of ρ and Projection Plane
 - Its xp-yp-axes are projections of xv-yv axes onto Proj. Plane
 - i.e., xv-yv translated a distance d along zv axis
3-D Viewing Transformation

- Must convert xw-yw-zw to xv-yv-zv system
- A coordinate system transformation
- Perform the following steps:
 1. Translate origin by distance ρ in direction (θ, ϕ)
 2. Rotate by $-(90-\theta)$ degrees about z-axis to bring new y-axis into plane of zw and ρ
 3. Rotate by $(180-\phi)$ about x-axis to point transformed z-axis toward origin of world coordinate system
 4. Invert x-axis

Viewing Xform: 1. Translate by ρ
2. Rotate by \(-(90-\theta)\) about \(z\)

3. Rotate by \((180-\phi)\) about \(x\)
4. Invert x-axis

1. Translate by \(\rho \)

- Homogeneous transformation matrix for translation by \((x,y,z)\):

\[
T_{\text{geom}} = \begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Use relationship between coordinate system transformations & geometric transformations:

\[
T_{\text{coord}}(x,y,z) = T_{\text{geom}}(-x,-y,-z)
\]
So first transformation matrix, T_1:

\[
T_1 = \begin{bmatrix}
 1 & 0 & 0 & -x \\
 0 & 1 & 0 & -y \\
 0 & 0 & 1 & -z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

- Express x, y, z in terms of ρ, θ, ϕ (spherical coordinates):
 - $x = \rho \sin(\phi) \cos(\theta)$
 - $y = \rho \sin(\phi) \sin(\theta)$
 - $z = \rho \cos(\phi)$

2. Rotate by $-(90-\theta)$ about z

- Use relationship between coordinate system rotations & geometric rotations:

 $T_{\text{coord}}(\alpha) = T_{\text{geom}}(-\alpha)$

- So transformation is $T_2 = R_z(90-\theta)$:

\[
T_2 = \begin{bmatrix}
 \cos(90-\theta) & -\sin(90-\theta) & 0 & 0 \\
 \sin(90-\theta) & \cos(90-\theta) & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
3. Rotate by \((180-\phi)\) about \(x\)

- Again use relationship between geometric & coordinate system rotations:

 So \(T3 = R_x(\phi - 180) \):

 \[
 T3 = \begin{vmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos(\phi - 180) & -\sin(\phi - 180) & 0 \\
 0 & \sin(\phi - 180) & \cos(\phi - 180) & 0 \\
 0 & 0 & 0 & 1 \\
 \end{vmatrix}
 \]

4. Invert \(x\)-axis

- Result of step 3: \(x\)-axis points opposite from direction it should

 - Because WCS is right-handed, while VCS is left-handed

- So need to reflect across \(y''-z''\) plane

 - Will convert \(x\) to \(-x\)

 \[
 T4 = \begin{vmatrix}
 -1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{vmatrix}
 \]
Composite Viewing Transformation Matrix

- $Tv = T_4 * T_3 * T_2 * T_1$
- Result (after simplification):

\[
Tv = \begin{bmatrix}
 -\sin(\theta) & \cos(\theta) & 0 & 0 \\
 -\cos(\phi)\cos(\theta) & -\cos(\phi)\sin(\theta) & \sin(\phi) & 0 \\
 -\sin(\phi)\cos(\theta) & -\sin(\phi)\sin(\theta) & -\cos(\phi) & \rho \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Projection Transformation

- Look down xv axis at viewing setup:

 Triangles OAP' & OBP are similar
 So set up proportion:
 \[
 \frac{yp}{yv} = \frac{d}{zv}
 \]
 Solve for yp:
 \[
 yp = \frac{yv \cdot d}{zv}
 \]

 Look down yv axis for xp:
 Result: $xp = \frac{xv \cdot d}{zv}$
Plotting Points on Screen

- Get screen coordinates \((xs,ys)\) from Projection Plane coordinates \((xp,yp)\)
- Final Transformation:
 \[
 \begin{align*}
 (xs,ys) &<--- (xp,yp) \\
 \text{See earlier notes} \\
 &\bullet \text{ Replace } xv,yv \text{ with } xs,ys \\
 &\bullet \text{ Replace } xw,yw \text{ with } xp,yp
 \end{align*}
 \]

Skeleton Pyramid Program: Data Structures

// Build and display a polygon mesh model of a 4-sided pyramid:
struct point3d {float x; float y; float z;}; // a 3d point
struct polygon {int n; int *inds;}; // a polygon
struct point3d w_pts[5]; // 5 world coordinate vertices
struct point3d v_pts[5]; // 5 viewing coordinate vertices
POINT s_pts[5]; // 5 screen coordinate vertices
struct polygon polys[5]; // 5 polygons define the pyramid

// global variables:
int screen_dist; float rho, theta, phi; // viewing parameters
int xmax,ymax; // Screen dimensions
int num_vertices=5, num_polygons=5;
Skeleton Pyramid Program:
Function Prototypes

void coeff (float r, float t, float p); // calculates viewing transformation
 // matrix elements, vii

void convert (float x, float y, float z,
 float *xv, float *yv, float *zv,
 int *xs, int *ys); // converts a 3D world coordinate point to
 // 3D viewing & 2D screen coordinates
 // i.e., viewing and projection transformations

void build_pyramid (void); // sets up pyramid points and polygons
 // arrays (see last set of notes)

void draw_polygon (int p); // draws polygon p

Skeleton Pyramid Program:
Function Skeletons

// Main Function--Called whenever pyramid is to be displayed
void main_ftn ()
{
 // Get or set values of rho, theta, phi, and screen_dist here
 build_pyramid (void); // build polygon model of the pyramid
 coeff (rho,theta,phi); // compute transformation matrix elements
 for (int i=0; i<num_vertices; i++)
 {
 // Loop to convert polygon vertices from world coordinates
 // to viewing and screen coordinates; must call convert () each time
 for (int f=0; f<num_polygons; f++)
 {
 // Loop to draw each polygon face
 // must call draw_polygon (f) }
 }
}
void coeff (float r, float t, float p)
{ // Code to compute non-trivial viewing transformation matrix

void convert (float x, float y, float z,
 float *xv, float *yv, float *zv, int *xs, int *ys)
{ // Code to compute viewing coordinates and screen coordinates of
 // a point from its 3-D world coordinates. Must implement viewing,
 // projection, and window-to-viewport transformations described
 // in class }

void build_pyramid (void)
{ // Code to define the pyramid by setting up w_pts & polys arrays }

void draw_polygon (int p)
{
 // Code to draw polygon p by:
 // obtaining its vertex numbers from the polys array
 // getting the screen coordinates of each vertex from the s_pts array
 // making appropriate calls to the system polygon-drawing primitive
}