
3-D Graphics

Overview of 3-D Computer 
Graphics

� Display image of real or imagined 3-D 
scene on a 2-D screen



� Modeling and Rendering
– Wireframe Models
– Polygon Mesh Models

� Rendering
– Types of Projections
– The Viewing Pipeline
– Hidden surface removal
– Shading

Some Aspects of 3-D 
Graphics

Problem # 1: Modeling

� Representing objects in 3-D space
� First need to represent points
� Use a 3-D coordinate system, e.g.:

– Cartesian: (x, y, z)
– Spherical: (rho, theta, phi)
– Cylindrical: (r, theta, z) 



Conversions
� Spherical to Cartesian

x = ρ * sin(φ) * cos(θ)
y = ρ * sin(φ) * sin(θ)
z = ρ * cos(φ)

RH Coord System
Could be LH

Viewing system

Types of 3-D Models

� 1. Boundary Representation (B-Rep)
– Surface descriptions
– Two common ones:

• A. Polygonal
• B. Bicubic parametric surface patches

� 2. Solid Representation
– Solid modeling



Polygonal Models
� Object surfaces approximated by a 

mesh of planar polygons
Scene -->

Objects -->
Sub-objects -->

Polygons -->
Vertices (points)

Polygon Mesh Model 
Example Scene



Bicubic Parametric Surface 
Patches

� Objects represented by nets of   
elements called surface patches
– Polynomials in two parametric variables
– Usually cubic 

• Bezier surface patches
• B-Spline surface patches



Bicubic Parametric Surface 
Patches

Solid Representation--
Solid Modeling

� Objects represented exactly by 
combinations of elementary solid objects
– e.g., spheres, cylinders, boxes, etc
– Called geometric primitives



Constructive Solid 
Geometry (CSG)

� Complex objects built up by combining 
geometric primitives using Boolean set 
operations
– union, intersection, difference

� and linear transformations
� Object stored as a tree

– Leaves contain primitives
– Nodes store set operators or transformations



Problem # 2: Rendering
� Displaying a 2-D view of a 3-D model

A. Projection
� Going from 3-D to 2-D

– Every world coordinate point in scene 
(xw,yw,zw) maps to a point on device 
viewing screen (xs,ys)

� Camera model
– Construct projection rays

• From points in scene through projection plane 
terminating on “Center of Projection”

– Camera point or view point

– Projection Point:
• Intersection of projection ray with projection plane



Two Basic Types of 
Projection

� 1. Parallel projection
– Center of Projection at infinity
– So projection rays are parallel
– Equal-size objects at different distances 

from screen project to same size images
– Parallel lines in scene project to parallel 

lines on screen
– Useful in CAD



� 2. Perspective projection
– Center of Projection at finite distance from 

screen
– Far objects of the same size project to 

smaller images than close objects
• Farther objects appear to be smaller
• More realistic images
• Parallel lines in scene don’t necessarily project 

to parallel lines on screen



B. Hidden surface removal
� Surfaces facing away from viewer are 

invisible
– Should not be displayed 

• Backface culling

� Surfaces blocked by objects closer to 
viewer are invisible
– Should not be displayed

• General hidden surface removal algorithms

C. Shading
� Projections of surfaces should be 

colored (shaded)
� Color depends on intensity of light 

reflected from surface into viewer’s eye
� Need an illumination/reflection model 

– Must take into account:
• Material properties of surfaces
• How light interacts with them



D. Other effects
� Shadows
� Transparency
� Multiple reflections
� Atmospheric absorption
� Surface textures
� Lots of others
� Physics and Optics!!

The Viewing Pipeline

� Chain of transformations/operations 
needed to go from a 3-D model to a 2-D 
image on the viewing screen



1. Local coordinate space (3-D):
Individual object descriptions given

|
| Modeling Transformations
| (Geometric transformations)
v

2. World coordinate space (3-D):
Scene is composed
Objects, lights positioned

|
|
| 3-D Viewing Transformation
v

3. Viewing coordinate space (3-D):
Eye/camera coordinate system

|
| 3-D clipping
| Backface culling
|
v

4. 3-D viewing volume:
Eye/camera coordinate system

|
| Projection Transformation
|
v



5. 2-D projection plane description:
2-D World coordinate system window

|
| 2-D Viewing xformation (window to viewport)
| 2-D clipping
| Hidden surface removal
| Shading
| Other effects
|
v

6. 2-D Device coordinate space:
2-D Screen coordinate system viewport

3-D Modeling with Polygons
� Two types of polygon models

1. Wireframe
• Store the polygon edges 
• List of edge endpoints
• Not useful for shaded images

2. Polygon Mesh
• Store the polygon faces:
• Array of vertex lists
• One list for each polygon



Data structures
� Polygons represent/approximate object 

surfaces
� In either case we must store 3-D world 

coordinates of each vertex
– Use an array of 3-D points:

struct point3d {float x; float y; float z};
// a single 3-D point

Struct point3d  w_pts[ ];             // w_pts is the 3-D 
// points array

Storing Polygons in a 
Wireframe Model

� Store polygon edges as an array
� Each element a pair of indices into the 

3D points array:
int edges[ ][2]; // Each second-index value gives the  

// position of an edge’s endpoint vertex 
// in the 3-D points array



Storing Polygons in a 
Polygon Mesh Model

� Object: Can be represented as an array 
of polygons

� Each polygon consists of:
– (a) the number of vertices in the polygon
– (b) a list of indices into the 3-D points array

• (An index gives the position of a vertex in the 3-D 
points array)

struct polygon {int n; int *inds};
// n: The number of vertices
// inds: List of indices into the points array 

// Specifies which vertices form the polygon

struct polygon object[ ];
// The object being modeled
// An array of polygons



Example--A Pyramid
� Pyramid below has 5 vertices, 8 edges 

and 5 polygon faces

Vertex Coordinates
vertex xw yw zw

------------------------

0 0 0 0

1 150 0 0

2 150 150 0

3 0 150 0

4 75 75 150



The Pyramid’s Points Array
struct point3d  w_pts[5];

// Pyramid vertices in world coords.
int b=150, h=75 ;    // Dimensions of pyramid

//  Set up world coordinate points array
w_pts[0].x=w_pts[0].y=w_pts[0].z=0;
w_pts[1].x=b; w_pts[1].y=w_pts[1].z=0;
w_pts[2].x=w_pts[2].y=b; w_pts[2].z=0;
w_pts[3].x=w_pts[3].z=0; w_pts[3].y=b;
w_pts[4].x=w_pts[4].y=b/2; w_pts[4].z=h;

Edge Array (Wireframe)
Edge Endpoints

(points array indices)

-----------------------------

0 0, 1

1 1, 2

2 2, 3

3 3, 0

4 0, 4

5 1, 4

6 2, 4

7 3, 4



Edge Array
� Edge array could be generated by:

int edges[8][2] = 
{{0,1},{1,2},{2,3},{3,0},{0,4},{1,4},{2,4},{3,4}};

Polygons Array (Mesh)
polygon  # vertices   vertices
--------------------

0 3 0,1,4

1 3 1,2,4

2 3 2,3,4

3 3 0,4,3

4 4 0,3,2,1



� Polygon array could be generated by:
struct polygon object[5];

// Allocate Space:
for (i=0;i<=3;i++) 

{ object[i].n=3; object[i].inds = (int *) calloc(3,sizeof(int)); }
object[4].n=4; object[4].inds = (int *) calloc(4,sizeof(int));

// Define the polygons in the object
// define the side triangles
object[0].inds[0]=0; object[0].inds[1]=1; object[0].inds[2]=4;
object[1].inds[0]=1; object[1].inds[1]=2; object[1].inds[2]=4;
object[2].inds[0]=2; object[2].inds[1]=3; object[2].inds[2]=4;
object[3].inds[0]=0; object[3].inds[1]=4; object[3].inds[2]=3;
// define the square base
object[4].inds[0]=0; object[4].inds[1]=3;object[4].inds[2]=2; 
object[4].inds[3]=1;

More Complex 3-D Objects

� Approximate surfaces with polygons
� Often points, edges, and/or polygons 

arrays can be generated procedurally



Example 1: A Cone
� Approximate with n triangular sides
� n+1 vertices (apex  +  n in the base)
� And a Base polygon with n sides 

(example, n=12)



Cone Points Array

� Base points:
x = R * cos ( i * θ );
y = R * sin (i * θ );

// θ = 360/n
z = 0;

� Apex point:
x = y = 0;
z = h; // (height of cone)

Cone Polygons Array
poly[0] = {12, {12,11,10,9,8,7,6,5,4,3,2,1}};
poly[1] = {3, {1,2,0}};
poly[2] = {3, {2,3,0}};
poly[3] = {3, {3,4,0}};
poly[4] = {3, {4,5,0}};
…
poly[12] = {3,{12,1,0}};
� The triangles can be generated in a loop



Example 2: A Sphere
� Divide with n lines of latitude and m lines of longitude
� Gives triangles and quadrilaterals
� Latitude/Longitude intersection points used as 

approximating-polygon vertices
� Number of vertices = m*n+2
� Number of polygons = (n+1)*m
� Example n=3, m=8

Example: n=3, m=8
8 * 3 + 2 = 26 vertices
Can get x, y, z from spherical coordinates
Loop j: 0->n-1 (latitudes),   i: 0->m-1 (longitudes)

x = R * sin(i*θ) * cos(j*φ);
y = R * sin(i*θ) * sin(j*φ);
z = R * cos(j*φ);



(3+1)*8 = 32 polygons
Number them in a consistent way

poly[0] = {4, {1,2,10,9}};
poly[1] = {4. {2,3,11,10}};
etc.
poly[8] = {3, {0,9,10}};
poly[9] = {3, {0,10,11}};
etc.

These can be 
generated in a loop

// Upper Hemisphere

3-D Geometric 
Transformations

� Move objects in a 3-D scene
� Extension of 2-D Affine Transformations
� Three important ones:

– Translation
– Scaling
– Rotations



Representing 3-D Points

� Homogeneous coordinates
� P (x,y,z) --> P’ (x’,y’,z’)

_  _          _   _
|  x  |         |  x’ |
|  y  |  -->  |  y’ |
|  z  |         |  z’ |
|_1_|         |_1_|

Translations
� Given 3-D translation vector T=(tx, ty, tz)
� Component equations

x' = x + tx
y' = y + ty
z' = z + tz

� Represent translation as matrix equation
P' = T * P

� T is a 4 X 4 Homogeneous Matrix



Homogeneous Translation 
Matrix

_             _
|   1 0 0 tx |

T =  |   0 1 0 ty |
|   0 0 1 tz |
|_ 0 0 0 1 _|

� Notice obvious extension from 2-D to 3-D

Scaling with respect to origin
� Given three scaling factors sx, sy, sz

P' = S * P
� S is the following 4 X 4 scaling matrix:

_                   _ 
|   sx 0   0   0  |

S = |   0   sy 0   0  |
|   0   0   sz 0  |
|_ 0   0   0   1_|

� Again obvious extension from 2D



Rotations
� Need to specify angle of rotation
� And axis about which the rotation is to be 

performed
� Infinite number of possible rotation axes

– Rotation about any axis: linear combinations 
of rotations about x-axis,  y-axis, z-axis

Rotations about z-axis

� Consider rotation of point P=(x,y,z) by 
angle theta about the z-axis giving 
rotated point P'=(x',y',z')
– Same x,y equations as in the 2-D case
– z will not change



Z-Axis Rotation Component 
Equations

x' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)
z' = z

� Represented as homogeneous matrix 
equation:

P' = Rz * P

Z-Axis Rotation Matrix
_                                            _

| cos(theta)  -sin(theta)    0   0  |
Rz = | sin(theta)   cos(theta)    0   0   |

|     0                    0          1   0  |
|_   0                    0          0   1_|



Rx Matrix for rotations about 
x-axis

� Symmetry argument
y              z
|                |                    Make replacements:
|                |                         x --> y                  
|                |                         y --> z
------x       ------y                z --> x

/                /
/                /

z                x
about z          about x

� Original rotation about z-axis equations:
x' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)
z' = z

� x->y, y->z, z->x transformed equations:
y' = y*cos(theta) - z*sin(theta)
z' = y*sin(theta) + z*cos(theta)
x' = x

� Represented as matrix equation:
P' = Rx * P

_                                              _  
|  1         0                 0            0   |

Rx =  |  0   cos(theta)  -sin(theta)    0   |
|  0   sin(theta)   cos(theta)     0   |
|_0          0                 0           1_ |



Ry Rotation Matrix
� Symmetry:

y               x
|                |                  Replacements:
|                |                        x --> z
|                |                        y --> x
------x       ------z                z --> y 

/                /
/                /

z                y
about z          about y

x --> z
y --> x
z --> y

z' = z*cos(theta) - x*sin(theta)
x' = z*sin(theta) + x*cos(theta)
y' = y



P' = Ry * P
_                                           _

|  cos(theta)  0  sin(theta)    0  |
Ry = |         0         1         0           0  |

| -sin(theta)   0  cos(theta)   0  |
|_       0        0         0          1 _|

Rotation Sense

� Positive sense 
– Defined as counter clockwise as we look 

down the rotation axis toward the origin


