3-D Graphics

Overview of 3-D Computer
Graphics

e Display image of real or imagined 3-D
scene on a 2-D screen

Some Aspects of 3-D
Graphics

e Modeling and Rendering
— Wireframe Models
— Polygon Mesh Models

e Rendering
— Types of Projections
— The Viewing Pipeline
— Hidden surface removal
— Shading

Problem # 1: Modeling

e Representing objects in 3-D space
e First need to represent points
e Use a 3-D coordinate system, e.g.:
— Cartesian: (x, Y, z)
— Spherical: (rho, theta, phi)
— Cylindrical: (r, theta, z)

Conversions
e Spherical to Cartesian
X =p *sin(@) * cos(6)
y = p *sin(g) * sin(6)
Z=p *cos(yp z

RH Coord System

Could be LH P
Viewing system

Types of 3-D Models

e 1. Boundary Representation (B-Rep)
— Surface descriptions

— Two common ones:
» A. Polygonal
* B. Bicubic parametric surface patches

e 2. Solid Representation
— Solid modeling

Polygonal Models

e Object surfaces approximated by a
mesh of planar polygons

Scene -->
Objects -->
Sub-objects -->
Polygons -->
Vertices (points)

Polygon Mesh Model
Example Scene

Sube
Objacts

Data Vectes # [Poivgon Liat
Structure 1 alylat Grippe

] yre | Palyyem & Farax List
3 1 VLVLIVAVA
L] vhyizd H VELY4V3VE
L] S5 31 N8I
¥ wiybian i VLYEYTY)
L L e+ A H V4VIYTVE
] xby828 L) VEVE VTV

Bicubic Parametric Surface
Patches

e Objects represented by nets of
elements called surface patches
— Polynomials in two parametric variables
— Usually cubic

» Bezier surface patches
» B-Spline surface patches

Bicubic Parametric Surface
Patches

Solid Representation--
Solid Modeling

e Objects represented exactly by
combinations of elementary solid objects
—e.g., spheres, cylinders, boxes, etc
— Called geometric primitives

Constructive Solid
Geometry (CSG)

e Complex objects built up by combining
geometric primitives using Boolean set
operations
— union, intersection, difference

e and linear transformations
e Object stored as a tree

— Leaves contain primitives
— Nodes store set operators or transformations

Problem # 2: Rendering

e Displaying a 2-D view of a 3-D model

A. Projection

e Going from 3-D to 2-D
— Every world coordinate point in scene
(xw,yw,zw) maps to a point on device

viewing screen (Xs,ys)

e Camera model

— Construct projection rays

* From points in scene through projection plane
terminating on “Center of Projection”
— Camera point or view point
— Projection Point:

* Intersection of projection ray with projection plane

Viewpoint

Projection
Object P pay
Point
Projection
Plane

Two Basic Types of
Projection

e 1. Parallel projection
— Center of Projection at infinity
— So projection rays are parallel

— Equal-size objects at different distances
from screen project to same size images

— Parallel lines in scene project to parallel
lines on screen

— Useful in CAD

Paraltelpiped
View Volume

Frustum
View Volume

Front
Plane

Parallel Projaction
(a}

=~ meno >\ Projection
Reference
Paint

Front
Plane

Perspective
Projaction
b

e 2. Perspective projection

— Center of Projection at finite distance from
screen

— Far objects of the same size project to
smaller images than close objects
 Farther objects appear to be smaller
* More realistic images

« Parallel lines in scene don’t necessarily project
to parallel lines on screen

B. Hidden surface removal

e Surfaces facing away from viewer are
invisible
— Should not be displayed
» Backface culling
e Surfaces blocked by objects closer to
viewer are invisible

— Should not be displayed
» General hidden surface removal algorithms

C. Shading

e Projections of surfaces should be
colored (shaded)

e Color depends on intensity of light
reflected from surface into viewer’'s eye

e Need an illumination/reflection model

— Must take into account:
» Material properties of surfaces
* How light interacts with them

D. Other effects

e Shadows

e Transparency

e Multiple reflections

e Atmospheric absorption
e Surface textures

e Lots of others

e Physics and Optics!!

The Viewing Pipeline

e Chain of transformations/operations
needed to go from a 3-D model to a 2-D
image on the viewing screen

1. Local coordinate space (3-D):
Individual object descriptions given
|
| Modeling Transformations
| (Geometric transformations)
%
2. World coordinate space (3-D):
Scene is composed
Objects, lights positioned
|
|

| 3-D Viewing Transformation
v

3. Viewing coordinate space (3-D):
Eye/camera coordinate system
I
| 3-D clipping
| Backface culling
I
v
4. 3-D viewing volume:
Eye/camera coordinate system k=

| Projection Transformation

\Y

5. 2-D projection plane description:
2-D World coordinate system window
I
| 2-D Viewing xformation (window to viewport)
| 2-D clipping
| Hidden surface removal
| Shading
| Other effects
I
v
6. 2-D Device coordinate space:
2-D Screen coordinate system viewport

3-D Modeling with Polygons

e Two types of polygon models

1. Wireframe

* Store the polygon edges

* List of edge endpoints

* Not useful for shaded images
2. Polygon Mesh

* Store the polygon faces:

* Array of vertex lists

* One list for each polygon

Data structures

e Polygons represent/approximate object
surfaces

e In either case we must store 3-D world
coordinates of each vertex

— Use an array of 3-D points:

struct point3d {float x; float y; float z};
/[a single 3-D point
Struct point3d w_pts[]; /I w_pts is the 3-D
/Il points array

Storing Polygons in a
Wireframe Model

e Store polygon edges as an array

e Each element a pair of indices into the
3D points array:

int edges|][2]; // Each second-index value gives the
/Il position of an edge’s endpoint vertex
//'in the 3-D points array

Storing Polygons in a
Polygon Mesh Model

e Object: Can be represented as an array
of polygons

e Each polygon consists of:
— (a) the number of vertices in the polygon

— (b) a list of indices into the 3-D points array

* (An index gives the position of a vertex in the 3-D
points array)

struct polygon {int n; int *inds};
/I n: The number of vertices
/[inds: List of indices into the points array
/I Specifies which vertices form the polygon

struct polygon object] |;
/I The object being modeled
/I An array of polygons

Example--A Pyramid
e Pyramid below has 5 vertices, 8 edges
and 5 polygon faces

ZW

yu

XW

Vertex Coordinates

vert ex XW yw ZW

The Pyramid’s Points Array

struct point3d w_pts[5];
I/l Pyramid vertices in world coords.
int b=150, h=75; // Dimensions of pyramid

/I Set up world coordinate points array
w_pts[0].x=w_pts[0].y=w_pts[0].z=0;
w_pts[1].x=b; w_pts[1].y=w_pts[1].z=0;
w_pts[2].x=w_pts[2].y=b; w_pts[2].z=0;
w_pts[3].x=w_pts[3].z=0; w_pts[3].y=b;
w_pts[4].x=w_pts[4].y=b/2; w_pts[4].z=h;

Edge

~N o Ok WN PP O

Edge Array (Wireframe)

Endpoi nt s
(points array indices)

R e i
AABMPMOWNEPR

Edge Array

e Edge array could be generated by:

int edges[8][2] =
{{0,1},{1,2},{2,3}.{3,0}.,{0,4}.{1,4}.{2,4}.{3,4}};

Polygons Array (Mesh)

polygon # vertices vertices

Polygons:
"""""""""" 0: Left 3
0 3 O, 1’ 4 1: F]f‘ont
2: Right
1 3 1, 2’ 4 Z:: Back
: Base
2 3 2,3,4
3 3 0,4,3 a
4 4 0,3,2,1

e Polygon array could be generated by:
struct polygon object[5];

/I Allocate Space:
for (i=0;i<=3;i++)

{ object[i].n=3; object[i].inds = (int *) calloc(3,sizeof(int)); }
object[4].n=4; object[4].inds = (int *) calloc(4,sizeof(int));
/I Define the polygons in the object
/I define the side triangles
object[0].inds[0]=0; object[0].inds[1]=1; object[0].inds[2]=4;
object[1].inds[0]=1; object[1].inds[1]=2; object[1].inds[2]=4;
object[2].inds[0]=2; object[2].inds[1]=3; object[2].inds[2]=4; e olygons:
object[3].inds[0]=0; object[3].inds[1]=4; object[3].inds[2]=3; 1; Rq,,t
/I define the square base vese
object[4].inds[0]=0; object[4].inds[1]=3;0bject[4].inds[2]=2;
object[4].inds[3]=1;

W
]

More Complex 3-D Objects

e Approximate surfaces with polygons

e Often points, edges, and/or polygons
arrays can be generated procedurally

Example 1. A Cone

e Approximate with n triangular sides
e n+1 vertices (apex + nin the base)

e And a Base polygon with n sides
(example, n=12)

Cone Points Array

e Base points:

o n = 12
X=R*cos(i*8); " 8 - 360/n
y=R*sin(i*0);
/16 =360/n \
z=0; 'y« 7
e Apex point: — 3
x=y=0; *

z = h; /I (height of cone)

Cone Polygons Array

poly[0] = {12, {12,11,10,9,8,7,6,5,4,3,2,1}};
poly[1] = {3, {1,2,0};
poly[2] = {3, {2,3,0};
poly[3] = {3, {3,401
poly[4] = {3, {4,5,0}};

poly[12] = {3,{12,1,0}};
e The triangles can be generated in a loop

Example 2: A Sphere

e Divide with n lines of latitude and m lines of longitude
e Gives triangles and quadrilaterals

e Latitude/Longitude intersection points used as
approximating-polygon vertices

e Number of vertices = m*n+2
e Number of polygons = (n+1)*m
e Example n=3, m=8

8 = 360/m

¢ = 180/(n+1)

Example: n=3, m=8

8 * 3+ 2 =26 vertices

Can get x, y, z from spherical coordinates

Loop j: 0->n-1 (latitudes), i: 0->m-1 (longitudes)
X = R * sin(i*0) * cos(j*@);
y =R *sin(i*0) * sin(j*@);
z =R * cos(j*);

8 = 360/m

¢ = 180/¢(n+1)

(3+1)*8 = 32 polygons

Number them in a consistent way
poly[0] = {4, {1,2,10,9}}; Il Upper Hemisphere
poly[1] = {4. {2,3,11,10}};
etc.
poly[8] = {3, {0,9,10}};
poly[9] = {3, {0,10,11}};
etc.

These can be

generated in a loop

3-D Geometric
Transformations

e Move objects in a 3-D scene
e Extension of 2-D Affine Transformations
e Three important ones:

— Translation

— Scaling

— Rotations

Representing 3-D Points

e Homogeneous coordinates
o P (X,y,2) -->P (X\y,2)

| x| | X |
ly |l -—=>1Yy |
| z | | 7 |
|_1 | |_1 |

Translations

e Given 3-D translation vector T=(tx, ty, tz)

e Component equations

X'= X+ X
y=y+ty
Z'=z+1tz

e Represent translation as matrix equation

P =T*P
e T is a 4 X 4 Homogeneous Matrix

Homogeneous Translation
Matrix

| 100tx |
T=1] 010ty |
| 001tz |
| 0001 |

e Notice obvious extension from 2-D to 3-D

Scaling with respect to origin

e Given three scaling factors sx, sy, sz
P'=S*P
e S is the following 4 X 4 scaling matrix:

| sx 0O 0O O |
S=| 0 sy 0 0|
| O O sz O |
| 0 0 O 1|
e Again obvious extension from 2D

Rotations

e Need to specify angle of rotation

e And axis about which the rotation is to be
performed
e Infinite number of possible rotation axes

— Rotation about any axis: linear combinations
of rotations about x-axis, y-axis, z-axis

Rotations about z-axis

e Consider rotation of point P=(x,y,z) by
angle theta about the z-axis giving
rotated point P'=(x",y',z")

— Same X,y equations as in the 2-D case
— z will not change

Z-Axis Rotation Component

Equations
X' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)
z'=2
e Represented as homogeneous matrix
equation:
P'=Rz*P

Z-AXIs Rotation Matrix

| cos(theta) -sin(theta) O O |
Rz =| sin(theta) cos(theta) 0 0 |
| O 0 1 0|
| O 0 0 1 |

Rx Matrix for rotations about

X-aXIS
e Symmetry argument
y z
| | Make replacements:
I I X->y
I I y->2
------ X —-—mny Z-->X
/ /
/ /
z X
about z about x

e Original rotation about z-axis equations:
X' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)
z'=z
e X->y, y->z, z->x transformed equations:
y' = y*cos(theta) - z*sin(theta)
Z' = y*sin(theta) + z*cos(theta)
X' =X
e Represented as matrix equation:
P'=Rx*P

| 1 0 0 0
Rx = | 0 cos(theta) -sin(theta) O
| 0 sin(theta) cos(theta) O
|0 0 0 1

Ry Rotation Matrix

e Symmetry:
y X
| | Replacements:
| | X -->2Z
I | y-—->X
X z z-->y
/ /
/ /
z y
about z abouty
X-->Z
y --> X
zZ-->Yy
z' = z*cos(theta) - x*sin(theta)

X' = z*sin(theta) + x*cos(theta)
y =y

P'=Ry*P

| cos(theta) O sin(theta) O |

Ry = | 0 1 0 0 |
| -sin(theta) O cos(theta) O |
| 0 0 0 1 |

Rotation Sense

e Positive sense

— Defined as counter clockwise as we look
down the rotation axis toward the origin

