
B-Spline Polynomials

B-Spline Polynomials
� Draftman’s spline

– Flexible metal strip used to lay out object surfaces
– If not stressed too much, get level-2 (2nd derivative) 

continuity curve
� Want local control
� Smoother curves
� B-spline curves:

– Segmented approximating curve
– 4 control points affect each segment

• Local control
– Level-2 continuity everywhere

• Very smooth



Cubic B-Spline Polynomial Curves
� Approximate m+1 control points Pi (i=0,1,2,…,m) 

with a curve consisting of m-2 cubic polynomial curve 
segments Qi (i=3,4,...m),  m>=3

� Each Qi defined in terms of:
– parameter t:  ti<=t<=ti+1 and by four of the m+1 control points

� Segment Qi determined by control points:
Pi-3, Pi-2, Pi-1, Pi between ti and ti+1

� Qi begins at t = ti  and ends at t = tI+1,

� Qi+1 joins Qi at ti+1
– Join point called a knot.

� For example
– First segment is Q3, begins at t3, ends at t4
– Is determined by control points P0,P1,P2,P3

� Each segment is affected by only 4 control points
� Each control point affects at most 4 curve segments



Uniform Cubic B-Spline Curves

Uniform Cubic B-Splines
� A special case where we assume that:
� ti+1 = ti + 1
� Polynomial equation for segment Qi:
� Qi(t) = a*(t-ti)3 + b*(t-ti)2 + c*(t-ti) + d,      

ti<=t<=ti+1
� Take independent variable as t-ti

– Will vary from 0 to 1 for any interval



� Need to get polynomial coefficients 
(a,b,c,d)
– from control points

� Find a "B-Spline Basis Matrix”
– as for Bezier curves
– but must do computation for each interval
_     _                     _        _
| a | | Pi-3 |

| b | = MBS * | Pi-2 |

| c | | Pi-1 |

|_d_| |_Pi _|

� MBS is the desired matrix 

B-Spline Continuity Conditions
� Conditions on 1st & 2nd derivatives:
1. dQi/dt (at t=ti) = slope of line segment joining  

Pi-3 and Pi-1

2. dQi/dt (at t=ti+1) = slope of line segment joining 
P i-2 and Pi

3. (dQi/dt)' (t=ti) = rate of change in slope at ti  :
( slope of [Pi-3-P i-2] - slope of [P i-2-Pi] ) / ∆t

4. (dQi/dt)' (t=ti+1) = rate of change in slope at ti+1 :
( slope of [Pi-2-Pi-1] - slope of [Pi-1-Pi] ) / ∆t



Continuity Conditions 1 and 2

Continuity Conditions 3 and 4



Qi = a*(t-ti)3 + b*(t-ti)2 + c*(t-ti) + d
dQi/dt = 3*a*(t-ti)2 + 2*b*(t-ti) + c
(dQi/dt)' = 6a*(t-ti) + 2*b
� Condition 1:  c = ( Pi-1 - Pi-3)/2
� Condition 2:  3*a + 2*b + c = (Pi - P i-2)/2
� Condition 3:  2*b = ((Pi-1 - Pi-2) - (Pi-2 - Pi-3)) / 1
� Condition 4:  6*a + 2*b = ((Pi-Pi-1)-(Pi-1-Pi-2)) / 1
� These four equations are not independent

– Solving gives only a, b, c, but not d

Solution

a = (1/6) * (-Pi-3 + 3*Pi-2 - 3*Pi-1 + Pi)
b = (1/6) * (3*P i-3 - 6*P i-2 + 3*P i-1)
c = (1/6) * (-3*P i-3 + 3*P i-1)



Need another condition to get d
� Choose the following condition:

Q (at t=ti) = (1/6) * (P i-3 + 4*P i-2 + P i-1)
– i.e., control point at ti (Pi-2) pulls 4 times as hard at t=ti 

as control points on either side of ti
� Substitute in polynomial equation -->

d = (1/6) * (P i-3 + 4*P i-2 + P i-1)

Uniform Cubic B-Spline 
Coefficient Matrix Equation

_     _                     _                       _          _        _
| a | |-1 3 -3 1 | | Pi-3 |

| b | = (1/6)*| 3 -6 3 0 | * | Pi-2 |

| c | |-3 0 3 0 | | Pi-1 |

|_d_| |_1 4 1 0_| |_Pi _|



Could also be written in 
terms of blending functions

3

Qi(t) = Σ Bi-j,4 (t) * P i-j
j=0

Bi-3,4 = 1/6 * (1-t)3

Bi-2,4 = 1/6 * (3t3 - 6t2 + 4)
Bi-1,4 = 1/6 * (-3t3 + 3t2 - 3t +1)
Bi,4 = 1/6 * t3

See Foley & Van Dam

Plotting Uniform Cubic 
B-Splines

� Given m+1 control points 
P0,P1,P2,...Pm
– (Recall that each has an x and y 

coordinate)
• i.e., P0 --> x0 and y0, etc.

� The following is a "brute force" 
algorithm to plot the curve
– delta is a very small increment (e.g., 0.05)



For (i=3 to m)
Compute ax,bx,cx,dx and ay,by,cy,dy 

from control points i-3, i-2, i-1, i
For (t=0; t<=1; t+=delta)

x = ax*t3 + bx*t2 + cx*t + dx
y = ay*t3 + by*t2 + cy*t + dy
If (t==0)

MoveTo(x,y)
Else

LineTo(x,y)

Brute Force Algorithm

� To increase performance, use 
forward differences



Closed Cubic B-Splines
Make last 3 control points coincide with 1st 3

0 <--> m-2,  1 <--> m-1,  2 <--> m
Example: m=6

Forcing Interpolation

� Reproduce a control point three times
� Curve will then go through that point



Properties of Uniform 
B-Splines

1. Local Control
– Each segment determined by only 4 control points

2. Approximates control points; doesn’t interpolate
(However it will interpolate triplicated control points)

3. Lies inside convex hull of control points
– Each segment lies inside convex hull of its 4 control points

4. Invariant under affine transformations
5. Very smooth

– Level-2 continuity everywhere

6. More computations required than for "equivalent" Bezier 
curve

Bezier vs. B-Spline Curves



Non-uniform Cubic B-Splines

� Greater variety of curve shapes
� Can have cusps and discontinuities
� Intervals between successive knots 

varies
� Knot values must be specified

t0, t1, t2, t3, t4, …, tm-2



Case A (Level-2 Continuity)

� Knot vector: (0,1,2,3,4,5,...)
– Just our friend the uniform B-spline

� Q3 determined by P0, P1, P2, P3
� Q4 determined by P1, P2, P3, P4
� Q3 and Q4 share control points 

P1,P2,P3
– Three constraints ==> L0, L1, L2 continuity



Case A (Level-2 Continuity)

Case B (Level-1 Continuity)
� Knot vector: (0,1,1,2,3,4,...)
� Segment Q4 becomes a point

– (since t4 = t5)
� Q3 determined by P0, P1, P2, P3
� Q5 determined by P2, P3, P4, P5
� So Q4 must lie on line connecting P2 & P3
� Q3 and Q5 share control points P2 & P3

– Two constraints ==> L0, L1 continuity



Case B (Level-1 Continuity)

Case C (Level-0 continuity)
� Knot vector: (0,1,1,1,2,3,...)
� Q4 and Q5 become points

– (since t4=t5=t6)
� Q3 determined by P0, P1, P2, P3
� Q6 determined by P3, P4, P5, P6
� So Q4/Q5 must lie on control Point P3

– (interpolates it)
� Q3 and Q6 share control point P3

– One constraint ==> L0 continuity



Case C (Level-0 continuity)

Case D (No Continuity-Gaps)
� Knot vector: (0,1,1,1,1,2,...)
� Q4, Q5, Q6 become points

– (since t4=t5=t6=t7)
� Q3 determined by P0, P1, P2, P3
� Q7 determined by P4, P5, P6, P7
� There is no overlap
� Q3 and Q7 share no control points

– No constraints ==> discontinuity



Case D (No Continuity)

3-D Graphics



Overview of 3-D Computer 
Graphics

� Display image of real or imagined 3-D 
scene on a 2-D screen

� Modeling and Rendering
� Polygon Mesh Models
� Bicubic Patch Models
� Solid Models

Introduction to 3-D Graphics



Problem # 1: Modeling

� Representing objects in 3-D space
� First need to represent points
� Use a 3-D coordinate system, e.g.:

– Cartesian: (x, y, z)
– Spherical: (rho, theta, phi)
– Cylindrical: (r, theta, z) 

Conversions
� Spherical to Cartesian

x = ρ * sin(φ) * cos(θ)
y = ρ * sin(φ) * sin(θ)
z = ρ * cos(φ)

RH Coord System
Could be LH

Viewing system



Types of 3-D Models

� 1. Boundary Representation (B-Rep)
– Surface descriptions
– Two common ones:

• A. Polygonal
• B. Bicubic parametric surface patches

� 2. Solid Representation
– Solid modeling

Polygonal Models
� Object surfaces approximated by a 

mesh of planar polygons
Scene -->

Objects -->
Sub-objects -->

Polygons -->
Vertices (points)



Polygon Mesh Model 
Example Scene



Bicubic Parametric Surface 
Patches

� Objects represented by nets of   
elements called surface patches
– Polynomials in two parametric variables
– Usually cubic 

• Bezier surface patches
• B-Spline surface patches

Bicubic Parametric Surface 
Patches



Solid Representation--
Solid Modeling

� Objects represented exactly by 
combinations of elementary solid objects
– e.g., spheres, cylinders, boxes, etc
– Called geometric primitives

Constructive Solid 
Geometry (CSG)

� Complex objects built up by combining 
geometric primitives using Boolean set 
operations
– union, intersection, difference

� and linear transformations
� Object stored as a tree

– Leaves contain primitives
– Nodes store set operators or transformations




