

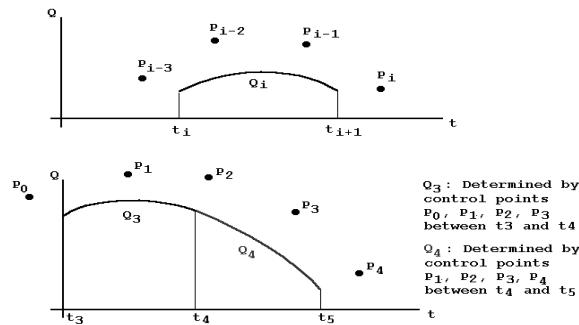
B-Spline Polynomials

B-Spline Polynomials

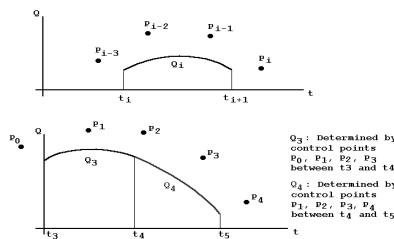
- Draftman's spline
 - Flexible metal strip used to lay out object surfaces
 - If not stressed too much, get level-2 (2nd derivative) continuity curve
- Want local control
- Smoother curves
- B-spline curves:
 - Segmented approximating curve
 - 4 control points affect each segment
 - Local control
 - Level-2 continuity everywhere
 - Very smooth

Cubic B-Spline Polynomial Curves

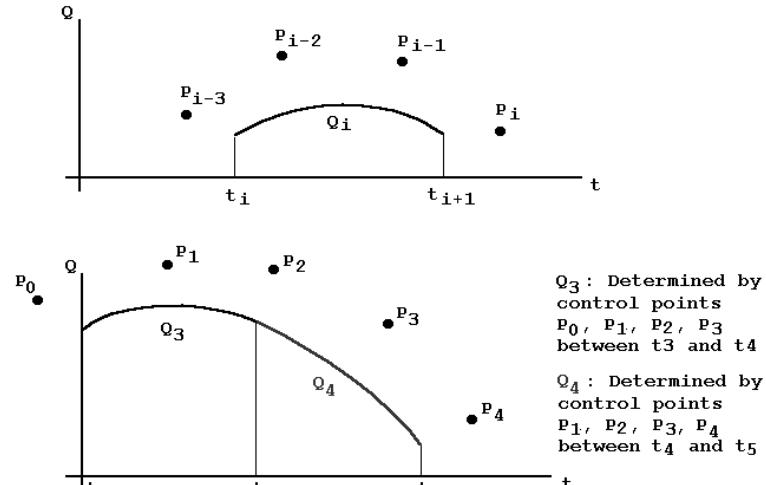
- Approximate $m+1$ control points P_i ($i=0,1,2,\dots,m$) with a curve consisting of $m-2$ cubic polynomial curve segments Q_i ($i=3,4,\dots,m$), $m \geq 3$
- Each Q_i defined in terms of:
 - parameter t : $t_i \leq t \leq t_{i+1}$ and by four of the $m+1$ control points



- Segment Q_i determined by control points: $P_{i-3}, P_{i-2}, P_{i-1}, P_i$ between t_i and t_{i+1}
- Q_i begins at $t = t_i$ and ends at $t = t_{i+1}$,
- Q_{i+1} joins Q_i at t_{i+1}
 - Join point called a knot.
- For example
 - First segment is Q_3 , begins at t_3 , ends at t_4
 - Is determined by control points P_0, P_1, P_2, P_3
- Each segment is affected by only 4 control points
- Each control point affects at most 4 curve segments



Uniform Cubic B-Spline Curves



Uniform Cubic B-Splines

- A special case where we assume that:
- $t_{i+1} = t_i + 1$
- Polynomial equation for segment Q_i :
- $Q_i(t) = a*(t-t_i)^3 + b*(t-t_i)^2 + c*(t-t_i) + d$,
 $t_i \leq t \leq t_{i+1}$
- Take independent variable as $t-t_i$
 - Will vary from 0 to 1 for any interval

- Need to get polynomial coefficients (a,b,c,d)
 - from control points
- Find a "B-Spline Basis Matrix"
 - as for Bezier curves
 - but must do computation for each interval

$$\begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix} = M_{BS} * \begin{vmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_i \end{vmatrix}$$

- M_{BS} is the desired matrix

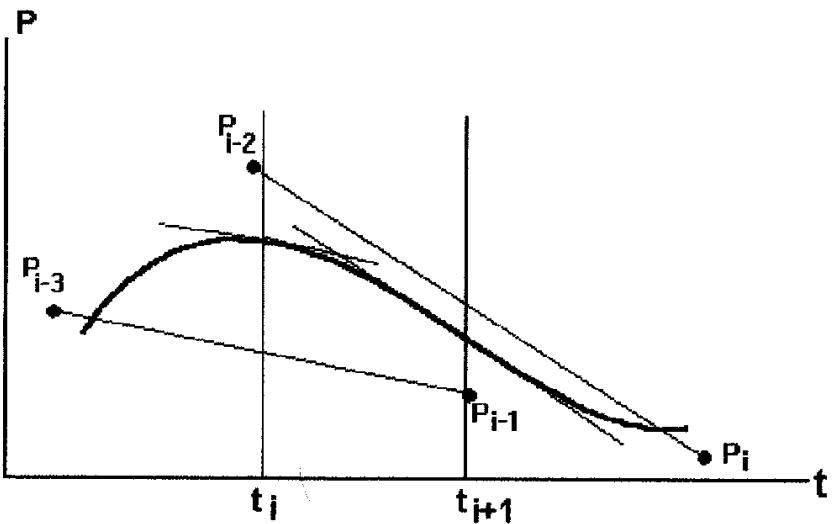
B-Spline Continuity Conditions

- Conditions on 1st & 2nd derivatives:
 1. dQ_i/dt (at $t=t_i$) = slope of line segment joining P_{i-3} and P_{i-1}
 2. dQ_i/dt (at $t=t_{i+1}$) = slope of line segment joining P_{i-2} and P_i
 3. $(dQ_i/dt)' (t=t_i)$ = rate of change in slope at t_i :

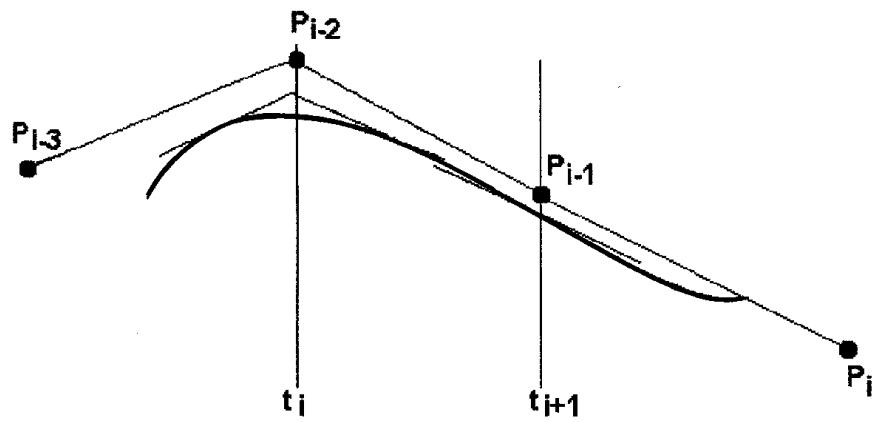
$$(\text{slope of } [P_{i-3}-P_{i-2}] - \text{slope of } [P_{i-2}-P_i]) / \Delta t$$
 4. $(dQ_i/dt)' (t=t_{i+1})$ = rate of change in slope at t_{i+1} :

$$(\text{slope of } [P_{i-2}-P_{i-1}] - \text{slope of } [P_{i-1}-P_i]) / \Delta t$$

Continuity Conditions 1 and 2



Continuity Conditions 3 and 4



$$Q_i = a^*(t-t_i)^3 + b^*(t-t_i)^2 + c^*(t-t_i) + d$$

$$dQ_i/dt = 3*a^*(t-t_i)^2 + 2*b^*(t-t_i) + c$$

$$(dQ_i/dt)' = 6a^*(t-t_i) + 2*b$$

- Condition 1: $c = (P_{i-1} - P_{i-3})/2$
- Condition 2: $3*a + 2*b + c = (P_i - P_{i-2})/2$
- Condition 3: $2*b = ((P_{i-1} - P_{i-2}) - (P_{i-2} - P_{i-3})) / 1$
- Condition 4: $6*a + 2*b = ((P_i - P_{i-1}) - (P_{i-1} - P_{i-2})) / 1$
- These four equations are not independent
 - Solving gives only a, b, c, but not d

Solution

$$a = (1/6) * (-P_{i-3} + 3*P_{i-2} - 3*P_{i-1} + P_i)$$

$$b = (1/6) * (3*P_{i-3} - 6*P_{i-2} + 3*P_{i-1})$$

$$c = (1/6) * (-3*P_{i-3} + 3*P_{i-1})$$

Need another condition to get d

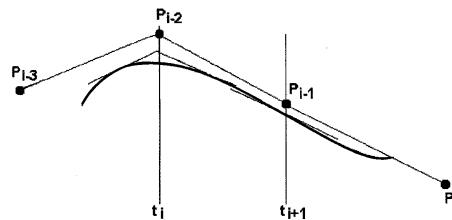
- Choose the following condition:

$$Q \text{ (at } t=t_i) = (1/6) * (P_{i-3} + 4*P_{i-2} + P_{i-1})$$

– i.e., control point at t_i (P_{i-2}) pulls 4 times as hard at $t=t_i$ as control points on either side of t_i

- Substitute in polynomial equation -->

$$d = (1/6) * (P_{i-3} + 4*P_{i-2} + P_{i-1})$$



Uniform Cubic B-Spline Coefficient Matrix Equation

$$\begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix} = (1/6) * \begin{vmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ -1 & 4 & 1 & 0 \end{vmatrix} * \begin{vmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_i \end{vmatrix}$$

Could also be written in terms of blending functions

$$Q_i(t) = \sum_{j=0}^3 B_{i-j,4}(t) * P_{i-j}$$

$$B_{i-3,4} = 1/6 * (1-t)^3$$

$$B_{i-2,4} = 1/6 * (3t^3 - 6t^2 + 4)$$

$$B_{i-1,4} = 1/6 * (-3t^3 + 3t^2 - 3t + 1)$$

$$B_{i,4} = 1/6 * t^3$$

See Foley & Van Dam

Plotting Uniform Cubic B-Splines

- Given $m+1$ control points $P_0, P_1, P_2, \dots, P_m$
 - (Recall that each has an x and y coordinate)
 - i.e., $P_0 \rightarrow x_0$ and y_0 , etc.
- The following is a "brute force" algorithm to plot the curve
 - δ is a very small increment (e.g., 0.05)

Brute Force Algorithm

For (i=3 to m)

 Compute ax,bx,cx,dx and ay,by,cy,dy
 from control points i-3, i-2, i-1, i

 For (t=0; t<=1; t+=delta)

$x = ax*t^3 + bx*t^2 + cx*t + dx$

$y = ay*t^3 + by*t^2 + cy*t + dy$

 If (t==0)

 MoveTo(x,y)

 Else

 LineTo(x,y)

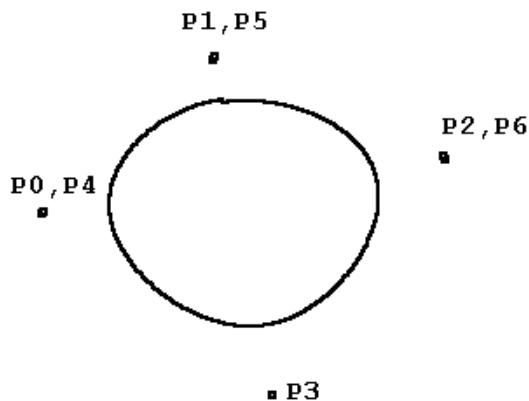
- To increase performance, use forward differences

Closed Cubic B-Splines

Make last 3 control points coincide with 1st 3

0 <--> m-2, 1 <--> m-1, 2 <--> m

Example: m=6



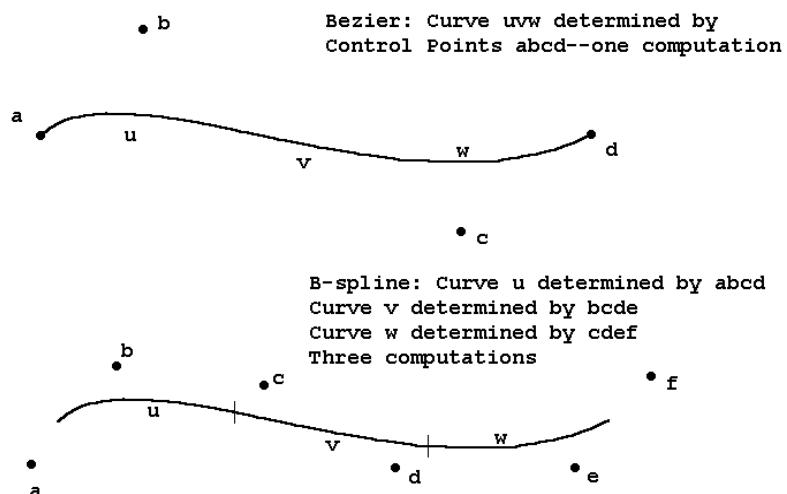
Forcing Interpolation

- Reproduce a control point three times
- Curve will then go through that point

Properties of Uniform B-Splines

1. Local Control
 - Each segment determined by only 4 control points
2. Approximates control points; doesn't interpolate
(However it will interpolate triplicated control points)
3. Lies inside convex hull of control points
 - Each segment lies inside convex hull of its 4 control points
4. Invariant under affine transformations
5. Very smooth
 - Level-2 continuity everywhere
6. More computations required than for "equivalent" Bezier curve

Bezier vs. B-Spline Curves



Non-uniform Cubic B-Splines

- Greater variety of curve shapes
- Can have cusps and discontinuities
- Intervals between successive knots varies
- Knot values must be specified

$t_0, t_1, t_2, t_3, t_4, \dots, t_{m-2}$

NON-UNIFORM CUBIC B-SPLINES

Variable size intervals between successive knot values

Must specify knot values --> the knot vector,
a non-decreasing sequence
e.g., (0,0,0,0,1,1,2,3,4,4,...)

Can have multiple knots

The curve segment Q_i is determined by control points: $P_{i-3}, P_{i-2}, P_{i-1}, P_i$

and by blending functions: $B_{i-3,4}(t), B_{i-2,4}(t), B_{i-1,4}(t), B_{i,4}(t)$

[4 = the order (degree-3 plus 1) of the polynomials]

is given by:

$$Q_i(t) = P_{i-3} B_{i-3,4}(t) + P_{i-2} B_{i-2,4}(t) + P_{i-1} B_{i-1,4}(t) + P_i B_{i,4}(t)$$

$3 \leq i \leq m, \quad t_i \leq t < t_{i+1} \quad \text{defined between } t_3 \text{ and } t_{m+1}$

If $t_i = t_{i+1}$ then the curve segment Q_i degenerates to a point.

The Blending functions $B(t)$ are defined recursively:

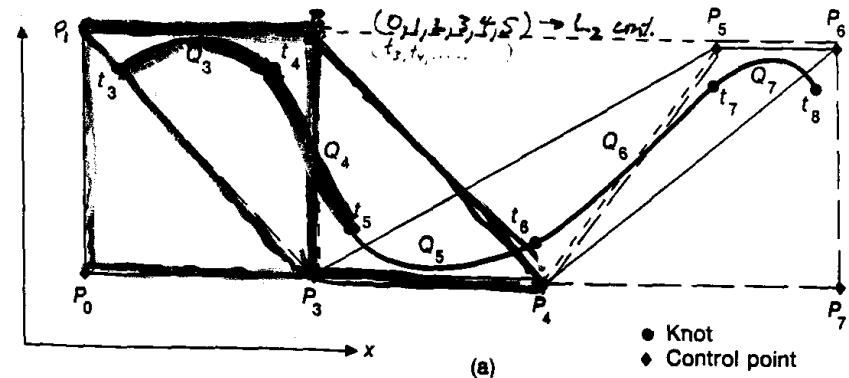
$$\begin{aligned}
 B_{i,1}(t) &= \begin{cases} 1, & t_i \leq t < t_{i+1} \\ 0, & \text{otherwise} \end{cases} \\
 B_{i,2}(t) &= \frac{t - t_i}{t_{i+1} - t_i} B_{i,1}(t) + \frac{t_{i+2} - t}{t_{i+2} - t_{i+1}} B_{i+1,1}(t) \\
 B_{i,3}(t) &= \frac{t - t_i}{t_{i+2} - t_i} B_{i,2}(t) + \frac{t_{i+3} - t}{t_{i+3} - t_{i+1}} B_{i+1,2}(t) \\
 B_{i,4}(t) &= \frac{t - t_i}{t_{i+3} - t_i} B_{i,3}(t) + \frac{t_{i+4} - t}{t_{i+4} - t_{i+1}} B_{i+1,3}(t)
 \end{aligned}$$

In these equations, $0/0$ is defined to be equal to 0.

Case A (Level-2 Continuity)

- Knot vector: $(0,1,2,3,4,5,\dots)$
 - Just our friend the uniform B-spline
- Q3 determined by P_0, P_1, P_2, P_3
- Q4 determined by P_1, P_2, P_3, P_4
- Q3 and Q4 share control points P_1, P_2, P_3
 - Three constraints $\Rightarrow L_0, L_1, L_2$ continuity

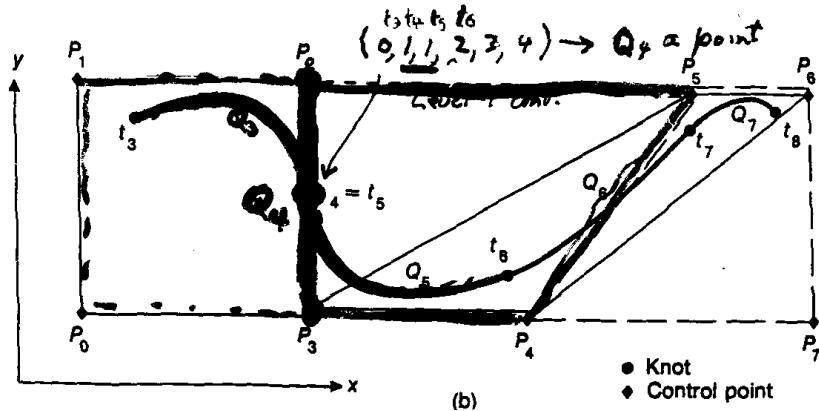
Case A (Level-2 Continuity)



Case B (Level-1 Continuity)

- Knot vector: $(0, 1, 1, 2, 3, 4, \dots)$
- Segment Q_4 becomes a point
 - (since $t_4 = t_5$)
- Q_3 determined by P_0, P_1, P_2, P_3
- Q_5 determined by P_2, P_3, P_4, P_5
- So Q_4 must lie on line connecting P_2 & P_3
- Q_3 and Q_5 share control points P_2 & P_3
 - Two constraints $\Rightarrow L_0, L_1$ continuity

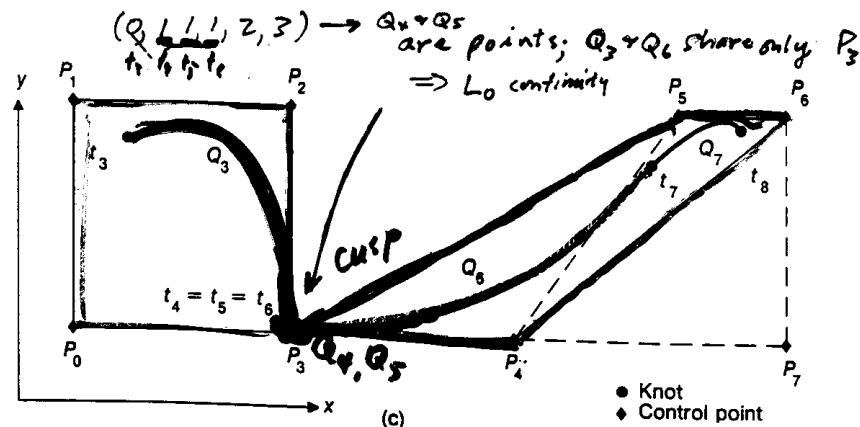
Case B (Level-1 Continuity)



Case C (Level-0 continuity)

- Knot vector: $(0,1,1,1,2,3,\dots)$
- Q_4 and Q_5 become points
 - (since $t_4=t_5=t_6$)
- Q_3 determined by P_0, P_1, P_2, P_3
- Q_6 determined by P_3, P_4, P_5, P_6
- So Q_4/Q_5 must lie on control Point P_3
 - (interpolates it)
- Q_3 and Q_6 share control point P_3
 - One constraint $\Rightarrow L_0$ continuity

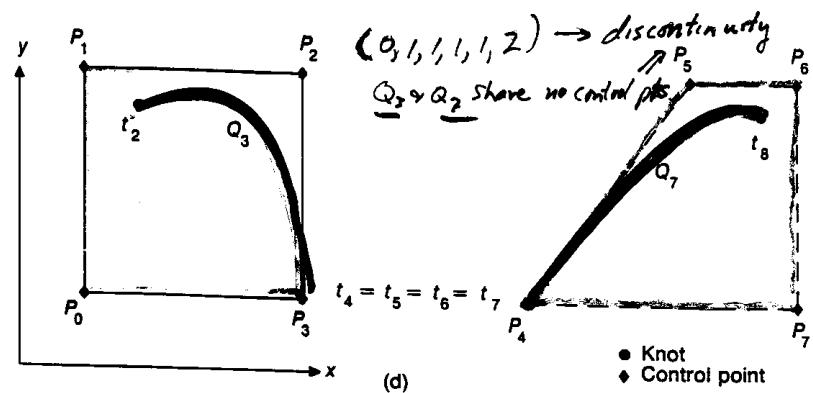
Case C (Level-0 continuity)



Case D (No Continuity-Gaps)

- Knot vector: $(0,1,1,1,1,2,\dots)$
- Q_4, Q_5, Q_6 become points
 - (since $t_4=t_5=t_6=t_7$)
- Q_3 determined by P_0, P_1, P_2, P_3
- Q_7 determined by P_4, P_5, P_6, P_7
- There is no overlap
- Q_3 and Q_7 share no control points
 - No constraints \Rightarrow discontinuity

Case D (No Continuity)



3-D Graphics

Overview of 3-D Computer Graphics

- Display image of real or imagined 3-D scene on a 2-D screen

Introduction to 3-D Graphics

- Modeling and Rendering
- Polygon Mesh Models
- Bicubic Patch Models
- Solid Models

Problem # 1: Modeling

- Representing objects in 3-D space
- First need to represent points
- Use a 3-D coordinate system, e.g.:
 - Cartesian: (x, y, z)
 - Spherical: (rho, theta, phi)
 - Cylindrical: (r, theta, z)

Conversions

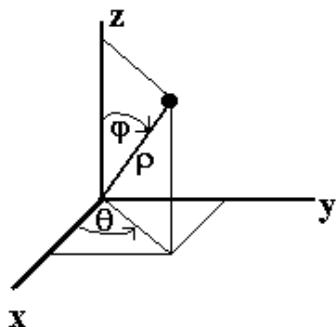
- Spherical to Cartesian

$$x = \rho * \sin(\phi) * \cos(\theta)$$

$$y = \rho * \sin(\phi) * \sin(\theta)$$

$$z = \rho * \cos(\phi)$$

RH Coord System
Could be LH
Viewing system



Types of 3-D Models

- 1. Boundary Representation (B-Rep)
 - Surface descriptions
 - Two common ones:
 - A. Polygonal
 - B. Bicubic parametric surface patches
- 2. Solid Representation
 - Solid modeling

Polygonal Models

- Object surfaces approximated by a mesh of planar polygons

Scene -->

Objects -->

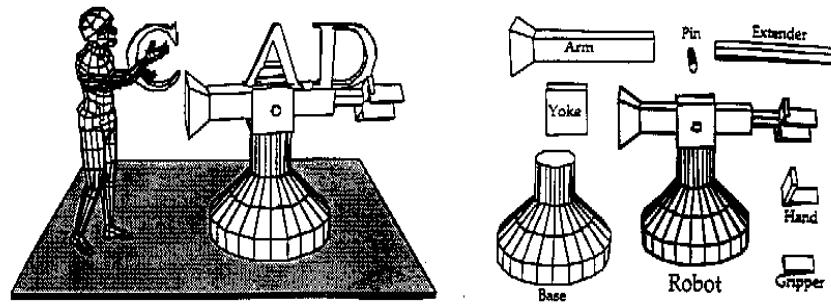
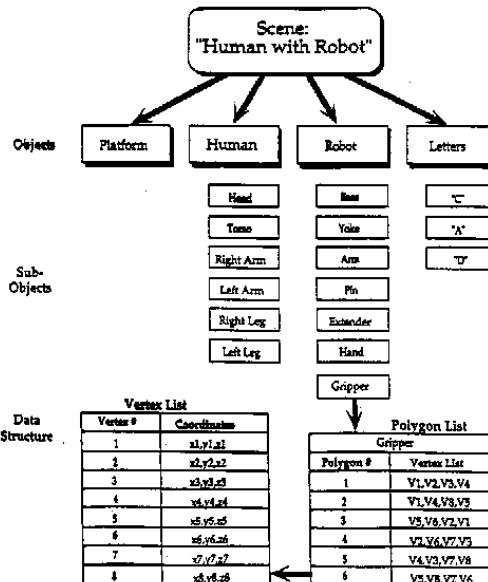
Sub-objects -->

Polygons -->

Vertices (points)

Polygon Mesh Model

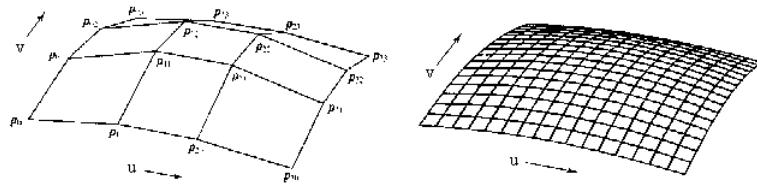
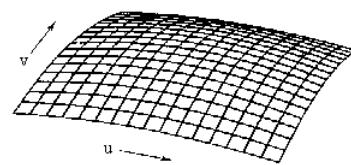
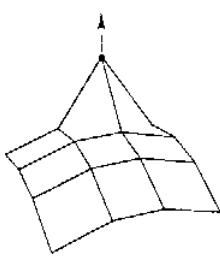
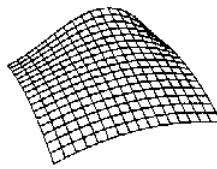
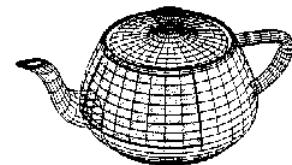
Example Scene



Bicubic Parametric Surface Patches

- Objects represented by nets of elements called surface patches
 - Polynomials in two parametric variables
 - Usually cubic
 - Bezier surface patches
 - B-Spline surface patches

Bicubic Parametric Surface Patches



Solid Representation-- Solid Modeling

- Objects represented exactly by combinations of elementary solid objects
 - e.g., spheres, cylinders, boxes, etc
 - Called geometric primitives

Constructive Solid Geometry (CSG)

- Complex objects built up by combining geometric primitives using Boolean set operations
 - union, intersection, difference
- and linear transformations
- Object stored as a tree
 - Leaves contain primitives
 - Nodes store set operators or transformations

