B-Spline Polynomials

B-Spline Polynomials

e Draftman’s spline
— Flexible metal strip used to lay out object surfaces
— If not stressed too much, get level-2 (2"d derivative)
continuity curve
e Want local control
e Smoother curves

e B-spline curves:
— Segmented approximating curve
— 4 control points affect each segment
* Local control
— Level-2 continuity everywhere
« Very smooth




Cubic B-Spline Polynomial Curves
e Approximate m+1 control points Pi (i=0,1,2,...,m)
with a curve consisting of m-2 cubic polynomial curve
segments Q; (i=3,4,...m), m>=3
e Each Q, defined in terms of:
— parameter t: t<=t<=t,, and by four of the m+1 control points
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e Segment Q, determined by control points:
Pis Pio Piy, Py betweent and t,,
e Qbeginsatt=t andendsatt=t,,
e Q,, joinsQatt,,
— Join point called a knot.
e For example
— First segment is Q,, begins at t;, ends at t,
— Is determined by control points PO,P1,P2,P3
e Each segment is affected by only 4 control points
e Each control point affects at most 4 curve segments
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Uniform Cubic B-Spline Curves
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Uniform Cubic B-Splines

e A special case where we assume that:
ot =t +1
e Polynomial equation for segment Qi:
e Qi(t) = a*(t-ti)® + b*(t-ti)? + c*(t-ti) + d,
ti<=t<=ti+1
e Take independent variable as t-ti
— Will vary from 0 to 1 for any interval




e Need to get polynomial coefficients
(a,b,c,d)
— from control points
e Find a "B-Spline Basis Matrix”
— as for Bezier curves
— but must do computation for each interval
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e Mg is the desired matrix

B-Spline Continuity Conditions

e Conditions on 1st & 2nd derivatives:
1. dQ/dt (at t=t;) = slope of line segment joining
P.;and P,
2. dQ/dt (at t=t,,,) = slope of line segment joining
P.,and P;
3. (dQydt)' (t=t,) = rate of change in slope at t; :
( slope of [P, 5-P ;] - slope of [P ,,-P}] ) / At
4. (dQi/dt)' (t=t,,) = rate of change in slope at t,, :
( slope of [P, ,-P;,] - slope of [P, ;-P;] ) / At




Continuity Conditions 1 and 2

Continuity Conditions 3 and 4




Qi = a*(t-ti)3 + b*(t-ti)? + c*(t-ti)) + d

dQi/dt = 3*a*(t-ti)? + 2*b*(t-ti) + c

(dQi/dt)' = 6a*(t-ti) + 2*b

e Condition 1: c=(P_, - P,3)/2

e Condition 2: 3*a+2*b+c=(P;-P .,)/2

e Condition 3: 2*b = ((P;; - Pi,) - (P, -Pi3) /1

e Condition 4: 6*a + 2*b = ((P-P_1)-(P,.1-P;,)) / 1

e These four equations are not independent
— Solving gives only a, b, ¢, but not d

Solution

a=(1/6) * (-Pi3 + 3*P, - 3*P;y + P))
b= (1/6) * (3*P i3 - 6"P i, + 3*P )
¢ =(1/6) * (-3*P i3+ 3*P ;)




Need another condition to get d
e Choose the following condition:
Q(att=ti)=(1/6)* (P 3+ 4*P L, + P,y
— i.e., control point at ti (P;_,) pulls 4 times as hard at t=ti
as control points on either side of ti

e Substitute in polynomial equation -->
d=(1/6)*(Pi3+4*P i, +Py)
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Uniform Cubic B-Spline
Coefficient Matrix Equation
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Could also be written in
terms of blending functions

3
Q) =2 Bys () *P
j=0
Biss = 1/6 * (1-t)3
Bi,, = 1/6* (3t3 - 6t2 + 4)
Biis = 1/6* (-3t3 + 3t2 - 3t +1)
B, =1/6*t3
See Foley & Van Dam

Plotting Uniform Cubic
B-Splines

e Given m+1 control points
PO,P1,P2,...Pm
— (Recall that each has an x and y
coordinate)
* i.e., PO --> x0 and yO0, etc.
e The following is a "brute force
algorithm to plot the curve
— delta is a very small increment (e.g., 0.05)




Brute Force Algorithm
For (i=3 to m)
Compute ax,bx,cx,dx and ay,by,cy,dy
from control points i-3, i-2, i-1, |
For (t=0; t<=1; t+=delta)
X = ax*t3 + bx*t2 + cx*t + dx
y = ay*t3 + by*t? + cy*t + dy
If (t==0)
MoveTo(x,y)
Else
LineTo(x,y)

e To increase performance, use
forward differences




Closed Cubic B-Splines
Make last 3 control points coincide with 1st 3
0<-->m-2, 1<->m-1, 2<-->m

Example: m=6
P1l,P5
]

P2,P6

PO, P4

s P3

Forcing Interpolation

e Reproduce a control point three times
e Curve will then go through that point




Properties of Uniform
B-Splines

. Local Control

— Each segment determined by only 4 control points

. Approximates control points; doesn’t interpolate
(However it will interpolate triplicated control points)
. Lies inside convex hull of control points

— Each segment lies inside convex hull of its 4 control points
. Invariant under affine transformations

. Very smooth

— Level-2 continuity everywhere

. More computations required than for "equivalent” Bezier
curve

Bezier vs. B-Spline Curves

e b Bezier: Curve uvw determined by
Control Points abcd--one computation

a
u
wd
h's

®c
B-spline: Curve u determined by abecd
Curve v determined by bode
Curve w determined by cdef
b Three computations
eC *r




Non-uniform Cubic B-Splines

e Greater variety of curve shapes
e Can have cusps and discontinuities

e Intervals between successive knots
varies

e Knot values must be specified
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NON-UNIFORM CUBIC B-SPLINES
Variable size intervals between successive knot values
Must specify knot values --> the knot vector,
a non-decreasing sequence
e.g., {(0,0,0,0,1,1,2,3,4,4,....)
Can have multiple knots

The curve segment Q is determined by control points: P , P , P
i i-3 i-2 i-1 i

and by blending functions: B (t), B (t), B {t), B (£)
i-3,4 i-2,4 i-1,4 i.4

[4 = the order (degree-3 plus 1) of the polynomials]
is given by:

Ql(t) = P B (t) + P B (ty + P B (t) + P B (t)

i i-3 i-3,4 i-2 i-2,4 i-1 i-1,4 i i,4
3 <= i <= m, t<=t <t defined between t and t
i i+l 3 m¥l
If t=t then the curve segment o degenerates to a point.

i i+l i




The Blending functions B(t} are defined recursively:
1, t <=t < ¢t

B (t) = i i+l
i,l 0, otherwise
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In these eguations, 0/0 js defined to be equal to 0.

Case A (Level-2 Continuity)

e Knot vector: (0,1,2,3,4,5,...)

— Just our friend the uniform B-spline
e Q3 determined by PO, P1, P2, P3
e Q4 determined by P1, P2, P3, P4

e Q3 and Q4 share control points
P1,P2,P3
— Three constraints ==> L0, L1, L2 continuity




Case A (Level-2 Continuity)

Case B (Level-1 Continuity)
e Knot vector: (0,1,1,2,3,4,...)
e Segment Q4 becomes a point
— (since t4 = t5)
e Q3 determined by PO, P1, P2, P3
e Q5 determined by P2, P3, P4, P5
e S0 Q4 must lie on line connecting P2 & P3

e Q3 and Q5 share control points P2 & P3
— Two constraints ==> L0, L1 continuity




Case B (Level-1 Continuity)
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Case C (Level-0 continuity)

e Knot vector: (0,1,1,1,2,3,...)

e Q4 and Q5 become points
— (since t4=t5=t6)

e Q3 determined by PO, P1, P2, P3

e Q6 determined by P3, P4, P5, P6

e S0 Q4/Q5 must lie on control Point P3
— (interpolates it)

e Q3 and Q6 share control point P3
— One constraint ==> L0 continuity




Case C (Level-0 continuity)
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Case D (No Continuity-Gaps)

e Knot vector: (0,1,1,1,1,2,...)
e Q4, Q5, Q6 become points

— (since t4=t5=t6=t7)
e Q3 determined by PO, P1, P2, P3
e Q7 determined by P4, P5, P6, P7
e There is no overlap

e Q3 and Q7 share no control points
— No constraints ==> discontinuity




Case D (No Continuity)

e Knot

3-D Graphics




Overview of 3-D Computer
Graphics

e Display image of real or imagined 3-D
scene on a 2-D screen

Introduction to 3-D Graphics

e Modeling and Rendering
e Polygon Mesh Models

e Bicubic Patch Models

e Solid Models




Problem # 1: Modeling

e Representing objects in 3-D space
e First need to represent points
e Use a 3-D coordinate system, e.g.:
— Cartesian: (x, Y, z)
— Spherical: (rho, theta, phi)
— Cylindrical: (r, theta, z)

Conversions
e Spherical to Cartesian
X =p * sin(g) * cos()
y = p * sin(g) * sin(8)

Z=p*cos(y
RH Coord System :
Could be LH .
Viewing system




Types of 3-D Models

e 1. Boundary Representation (B-Rep)
— Surface descriptions
— Two common ones:
» A. Polygonal
* B. Bicubic parametric surface patches
e 2. Solid Representation

— Solid modeling

Polygonal Models

e Object surfaces approximated by a
mesh of planar polygons

Scene -->
Objects -->
Sub-objects -->
Polygons -->

Vertices (points)




Polygon Mesh Model
Example Scene

o
)
=

2 trtex Soordinsim Poiygon List
Strusture 1 alytal Gripper

1 iyt Polyyen Varvax Lat
3 1 VLYLVAVL
! xbydad ? VLVAVIVE
L s5y53 1 MeNVY
¥ 16 1 IS
L Folal 5 VAVAVTVE
L] E-TE- L VSVB.YT.NE




Bicubic Parametric Surface
Patches
e Objects represented by nets of
elements called surface patches
— Polynomials in two parametric variables
— Usually cubic
» Bezier surface patches

» B-Spline surface patches

Bicubic Parametric Surface
Patches
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Solid Representation--
Solid Modeling

e Objects represented exactly by
combinations of elementary solid objects
—e.g., spheres, cylinders, boxes, etc
— Called geometric primitives

Constructive Solid
Geometry (CSG)

e Complex objects built up by combining
geometric primitives using Boolean set
operations

— union, intersection, difference
e and linear transformations
e Object stored as a tree

— Leaves contain primitives
— Nodes store set operators or transformations







