Modeling Complex Shapes

Bezier Curves

- Can use line/polygon primitives to approximate
- But complex objects-->huge number of primitives
- Better to use more complex primitives
- Use curves (2-D) or surfaces (3-D)
Curves in Space

- Three forms:
 - Explicit
 - Implicit
 - Parametric

Explicit Form (2-D)

- $y = f(x)$
- example--line:
 - $y = m^x + b$
 - But this is not a finite line segment
- Not all curves can be put into this form
Implicit Form (2-D)

- \(f(x,y) = 0 \)
- Example--circle:
 \((x-h)^2 + (y-k)^2 - R^2 = 0\)
- Indicates if a point \(x, y\) is on the curve
- Can be difficult to plot
 - May need to use approximation methods
 - Marching Squares
- In some cases can be cast into explicit form

Parametric Form

- \(x \) and \(y \) expressed as explicit functions of a parameter, \(t \)
 \[x = f(t) \]
 \[y = g(t) \]
- Range of parameter is also given
 - Delimits the extent of the curve
- To plot, let \(t \) vary over its range
 - Points on curve are generated
- Easily extended to curves in 3-D
 \[z = h(t) \]
Parametric Equations for a Line Segment in 2-D

- Given endpoints P1(x1,y1), P2(x2,y2)
- Assume:
 - t=0: endpoint P1
 - t=1: endpoint P2
- Linear equation ==>
 - x = a*t + b
 - y = c*t + d
- Need to get constants a,b,c,d

\[
x = a^*t + b, \quad y = c^*t + d
\]

Apply boundary conditions:

\[
t=0 \implies x=x1, y=y1
\]
\[
x1 = a^*0 + b, \quad \text{so} \quad b=x1
\]
\[
y1 = c^*0 + d, \quad \text{so} \quad d=y1
\]
\[
t=1 \implies x=x2, y=y2
\]
\[
x2 = a^*1 + b, \quad \text{so} \quad a = x2 - b, \quad \text{or} \quad a = x2 - x1
\]
\[
y2 = c^*1 + d, \quad \text{so} \quad c = y2 - d, \quad \text{or} \quad c = y2 - y1
\]

Resulting Parametric equations:

\[
x = (x2-x1)^t + x1
\]
\[
y = (y2-y1)^t + y1
\]
\[
0<=t<=1
\]

- Easy to extend to 3-D
 - Z = (z2-z1)^t + z1
Polynomials

- Explicit Form of n-degree polynomial:
 \[y = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \]
- Assume we have a set of n+1 known control points: \((x_i, y_i)\)
- Get polynomial coefficients \(a_i\) from the control points
- Two Methods:
 - Interpolation
 - Approximation

Interpolating Polynomial, degree n

- Curve passes through all \(n+1\) control points \((x_i, y_i)\)
- Given \((x_0, y_0), (x_1, y_1), (x_2, y_2) \ldots (x_n, y_n)\):
 \[y_0 = a_0 + a_1x_0 + a_2x_0^2 \ldots + a_nx_0^n \]
 \[y_1 = a_0 + a_1x_1 + a_2x_1^2 \ldots + a_nx_1^n \]
 \[\ldots \]
 \[y_n = a_0 + a_1x_n + a_2x_n^2 \ldots + a_nx_n^n \]
- \(n+1\) equations in \(n+1\) unknown constants:
 \[a_0, a_1, a_2, \ldots, a_n \]
May not be good in graphics
- Many control points \rightarrow high degree polynomial
- Many calculations
- Polynomial “wiggle”

Segmented Interpolating Polynomials
- Break curve into segments
- Each with different low-degree polynomial
- Easier computations
Joining Segmented Curves

- Join points called knots
- kth knot at $x=x_k$
- Level-0 continuity: $P(x_k)=Q(x_k)$
 - Continuous, but not smooth (kinks)
- Level-1 continuity: $P'(x_k)=Q'(x_k)$
 - First derivative --> smoother curve
- Level-2 continuity: $P''(x_k)=Q''(x_k)$
 - Second derivative --> still smoother

Approximating Polynomials

- Curve determined by control points
- But does NOT go through all of them
- Control Points act as magnets
- Better for many graphics applications
- Most commonly used:
 - Bezier curves
 - B-spline curves
Bezzer Curves

- See CS-460/560 Notes:
 - Bezier Polynomial Curves
 http://www.cs.binghamton.edu/~reckert/460/bezier.htm

- B-Spline Curves
 - See CS-460/560 Notes:
 - B-spline Polynomial Curves
 http://www.cs.binghamton.edu/~reckert/460/bspline.htm
Bezier Polynomial Curves

- Parametric equations for a 2-D cubic polynomial curve:
 \[\begin{align*}
 x &= a_x t^3 + b_x t^2 + c_x t + d_x \\
 y &= a_y t^3 + b_y t^2 + c_y t + d_y \\
 0 &\leq t \leq 1
 \end{align*} \]

- Shape of curve determined by constant polynomial coefficients:
 \((a_x, b_x, c_x, d_x, a_y, b_y, c_y, d_y) \)

Easily extended to 3-D

- Just add a third parametric equation:
 \[z = a_z t^3 + b_z t^2 + c_z t + d_z \]
Control Points

- Want to easily determine shape of curve
- Specify four control points:
 P0 (x0, y0, z0), P1(x1, y1, z1), P2(x2, y2, z2),
 P3(x3, y3, z3)
- Could use interpolating polynomial
- More useful: approximating polynomial
 - Doesn't interpolate all control points
 - Many ways to do the approximating

Uniform Cubic Bezier Polynomial

- Important kind of approximating polynomial
- Assume a generic parametric cubic polynomial:
 \[P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1 \]
- Determined by control points P0, P1, P2, P3
 - P could be x, y, or z
 - a could be ax, ay, or az
 - same with b, c, d
 - P0 could be x0, y0, z0
 - same with P1, P2, P3
Uniform Bezier Polynomial

\[P = a t^3 + b t^2 + c t + d, \quad 0 \leq t \leq 1 \]

- Control points uniformly separated in \(t \)
 - \(P_0 \) at \(t=0 \), \(P_1 \) at \(t=1/3 \), \(P_2 \) at \(t=2/3 \), \(P_3 \) at \(t=1 \)

Boundary conditions:

\[P = a t^3 + b t^2 + c t + d, \quad 0 \leq t \leq 1 \]

1. Curve must interpolate control point \(P_0 \)
 - \(P=P_0 \) when \(t=0 \)
 - So \(P_0 = d \)

2. Curve must interpolate control point \(P_3 \)
 - \(P=P_3 \) when \(t=1 \)
 - So \(P_3 = a + b + c + d \)
Uniform Cubic Bezier Curve

\[P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1 \]

3. Slope of curve at \(t=0 \) must be equal to that of the line that joins control points \(P_0 \) and \(P_1 \)
 - \(\frac{dP}{dt}(at \ t=0) = \text{slope of } P_0-P_1 \)
 - \[\frac{dP}{dt} = 3*a*t^2 + 2*b*t + c \]
 - slope of \(P_0-P_1 = \frac{(P_1-P_0)/(1/3-0)}{1} \)
 - So: \(c = 3*(P_1-P_0) \)

4. Slope of curve at \(t=1 \) must be equal to that of the line that joins control points \(P_2 \) and \(P_3 \)
 - \(\frac{dP}{dt}(at \ t=1) = \text{slope of } P_2-P_3 \)
 - \[3*a + 2*b + c = \frac{(P_3-P_2)/(1 - 2/3)}{1} \]
 - \[3*a + 2*b + c = 3*(P_3-P_2) \]
Solving for Polynomial Coefficients

- Equations:

\[
\begin{align*}
0 + 0 + 0 + d &= P_0 \\
a + b + c + d &= P_3 \\
0 + 0 + c + 0 &= 3*(P_1-P_0) \\
3*a + 2*b + c + 0 &= 3*(P_3-P_2)
\end{align*}
\]

This can be expressed in matrix form:

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
-3 & 2 & 1 & 0
\end{bmatrix} \begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix} = \begin{bmatrix}
P_0 \\
P_3 \\
3*(P_1-P_0) \\
3*(P_3-P_2)
\end{bmatrix}
\]

In other words:

\[
A \cdot C = V
\]

\[A = \text{the above 4X4 matrix}\]

\[C = [a, b, c, d], \text{the coefficient vector – the unknowns}\]

\[V = [P_0, P_3, 3*(P_1-P_0), 3*(P_3-P_2)]\]
To solve, multiply by A-inverse
\[A^{-1} \cdot A \cdot C = A^{-1} \cdot V \]
\[C = A^{-1} \cdot V \]

Use Gauss-Jordan elimination or other techniques to get A-inverse

Result:
\[
\begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

So: \[C = A^{-1} \cdot V \]

\[
\begin{bmatrix}
a \\ b \\ c \\ d
\end{bmatrix}
= \begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
P0 \\ P3 \\ 3(P1-P0) \\ 3(P3-P2)
\end{bmatrix}
\]

Final Result (after rearranging):

\[
\begin{bmatrix}
a \\ b \\ c \\ d
\end{bmatrix}
= \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
P0 \\ P1 \\ P2 \\ P3
\end{bmatrix}
\]
Uniform Cubic Bezier Result

- Polynomial Coefficients:
 - A constant 4 X 4 matrix multiplied by a vector whose components are the control points
 - Constant matrix called the Bezier geometry matrix
 - Other kinds of polynomial curves will have their polynomial coefficients given by a similar equation
 - Matrix elements of the constant 4 X 4 geometry matrix will change

Writing Bezier Result in Compact Form

- Points P on curve are given by:
 \[P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1 \]
- Can be written in a more compact form:
 \[P = T \ast Bg \ast Pc \]
 T: row vector of parameter powers \([t^3 \quad t^2 \quad t \quad 1]\)
 Bg: the constant 4 X 4 Bezier Geometry matrix
 Pc: column vector of the control points
Blending Function Representation

- Multiply matrix equation & rearrange:

\[P = (1-t)^3P_0 + 3t(1-t)^2P_1 + 3t^2(1-t)P_2 + t^3P_3 \]

\[P = \sum_{i=0}^{3} P_i * B_i(t) \]

- \(P_i \): the control points (P0, P1, P2, P3)
- \(B_i(t) \): "Bernstein Blending Functions"

Blending Function form:
- A weighted sum of the control points
- Weighting factors: the Blending Functions
- Value of Blending function gives "pull" of corresponding control point on curve at any point \(t \)

The blending functions are given by:
\[B_i(t) = C(3,i) * t^i * (1-t)^{(3-i)} \]
- \(C(3,i) \) is the number of combinations of 3 things taken \(i \) at a time:
- \(C(3,i) = 3! / (i! * (3-i)!) \)
The Berstein Blending Functions

- For the cubic Bezier polynomial:

\[B_0(t) = (1-t)^3 \]
\[B_1(t) = 3 * t * (1-t)^2 \]
\[B_2(t) = 3 * t^2 * (1-t) \]
\[B_3(t) = t^3 \]
• B0 has maximum value of 1 (100%) at t=0
 – All other blending functions give 0 there
 • Control point P0 pulls with 100% "force" at t=0
 • None of the other control points pulls at all
 • So curve must go through P0 (as we know)
• B3 has maximum value of 1 (100%) at t=1
 – All other blending functions give 0 there
 – So curve must go through P3

• B1 has its maximum value at t=1/3
 – Value is less than 1 (<100% pull)
 – Other Blending functions are non-zero but with values < B1
 – So curve cannot pass through P1
 – Curve pulled hardest by P1
• Similarly, at t=2/3, P2 pulls hardest
Properties of Bezier Curves

- $B_k \leq 1$, so:
 - Control points lie outside curve
 - curve lies inside “Convex Hull” of control points
 - Important for clipping

![Bezier Curve Diagram]

More Bezier Curve Properties

- “Pull” of a control point is proportional to “distance” (in t) from the control point
- Bezier Curves are invariant under affine transformations
 - So to transform a Bezier curve, just transform the control points and redraw the curve
Plotting Bezier Curves

- Brute Force Method:
 1. Get control points $P_0=(x_0,y_0)$, $P_1=(x_1,y_1)$, $P_2=(x_2,y_2)$, $P_3=(x_3,y_3)$.
 - Could use interactive locator device (mouse)
 2. Compute values of a, b, c, d from control points
 - Really ax,bx,cx,dx and ay,by,cy,dy
 - Use matrix equations
 - (Alternative: use blending functions)

3. for ($t=0$; $t<=1$; $t+=\text{delta}$)
 Compute P (x & y) from polynomial equations
 if ($t==0$)
 MoveTo(x,y)
 else
 LineTo(x,y)

- delta: a small increment (e.g. 0.05)
- Would give an approximation to the curve consisting of straight-line segments
Improving Performance

- Brute force is much too much work (too slow)
 \[P = a*t^3 + b*t^2 + c*t + d \]
 - Each iteration: 5 floating point multiplies
 \[c*t, t*t, b*(t*t), t*(t*t), a*(t*(t*t)) \]
 - and 3 floating point adds

- Using Horner's rule for polynomial evaluation:
 \[P = ((a*t+b)*t+c)*t \]
 - 3 multiplies and 3 adds

- Can do much better
 - Use technique of Forward Differences
 - Will improve performance
 - only 3 floating point adds during each iteration!
Forward Differences

- Get new x,y values from old while stepping
 \(x_{i+1} = x_i + \Delta x \)

- Look at x equation:
 \(x = at^3 + bt^2 + ct + d \)

- Assume equal increments in t, \(\delta t = \delta \)

 \[
 t_{i+1} = t_i + \delta, \quad \Delta x = x_{i+1} - x_i \\
 \Delta x = a(t+\delta)^3 + b(t+\delta)^2 + c(t+\delta) + d - (at^3 + bt^2 + ct + d)
 \]

- Result (first forward difference):
 \(\Delta x = 3a\delta t^2 + (3a\delta^2 + 2b\delta)t + a\delta^3 + b\delta^2 + c\delta \)

 Reduced to quadratic in t

- Do again to simplify \(\Delta x \)
 \[
 \Delta x = \Delta x + \Delta(\Delta x) = \Delta x + \Delta^2 x \\
 \Delta^2 x = \Delta x(t+\delta) - \Delta x(t) \\
 \Delta^2 x = 3a\delta(t+\delta)^2 + (3a\delta^2 + 2b\delta)(t+\delta) + k \\
 -3a\delta t^2 - (3a\delta^2 + 2b\delta)t - k \\
 \]

 where \(k = a\delta^3 + b\delta^2 + c\delta \)

- Result (second forward difference):
 \(\Delta^2 x = 6a\delta^2 t + 6a\delta^3 + 2b\delta^2 \)

 Reduced to linear equation in t

 For next step let \(k_1 = 6a\delta^3 + 2b\delta^2 \)
Do again to simplify $\Delta^2 x$

$\Delta^2 x = \Delta^2 x + \Delta(\Delta^2 x) = \Delta^2 x + \Delta^3 x$

$\Delta^3 x = \Delta^3 x(t+\delta) - \Delta^2 x(t)$

$\Delta^3 x = 6a\delta^2(t+\delta) + k1 - 6a\delta^2 t - k1$

- **Result (third forward difference):**

 $\Delta^3 x = 6a\delta^3$

 Finally a constant result

- **Final Results (recurrence relations):**

 $x = x + \Delta x$

 $\Delta x = \Delta x + \Delta^2 x$

 $\Delta^2 x = \Delta^2 x + \Delta^3 x$

 Three adds on each iteration

Initial Values

- **Need to calculate only once**

 $x_0 = a*t_0^3 + b*t_0^2 + c*t_0 + d$

 $\Delta x_0 = 3a\delta*t_0^2 + (3a\delta^2 + 2b\delta)*t0 + a\delta^3 + b\delta^2 + c\delta$

 $\Delta^2 x_0 = 6a\delta^2 t0 + 6a\delta^3 + 2b\delta^2$

 $\Delta^3 x_0 = 6a\delta^3$
Example Using Forward Difference Calculations

\[x = t^3 + 2t^2 + 3t + 1, \quad 0 \leq t \leq 10 \]

To illustrate, take \(\delta = 1 \)

And \(a=1, \ b=2, \ c=3, \ d=1 \)

\(t_0 = 0 \)

\(x_0 = 1 \)

\[\Delta x_0 = 1 + 2 + 3 = 6 \]

\[\Delta^2 x_0 = 6 + 2 \times 2 = 10 \]

\[\Delta^3 x_0 = 6 \]

\[x_0 = a \times t_0^3 + b \times t_0^2 + c \times t_0 + d \]

\[\Delta x_0 = 3a \delta \times t_0^2 + (3a \delta^2 + 2b \delta) \times t_0 + a \delta^3 + b \delta^2 + c \delta \]

\[\Delta^2 x_0 = 6a \delta^2 \times t_0 + 6a \delta^3 + 2b \delta^2 \]

\[\Delta^3 x_0 = 6a \delta^3 \]

Example Forward Difference Calculations

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>7</td>
<td>23</td>
<td>55</td>
<td>109</td>
<td>191</td>
</tr>
<tr>
<td>Δx</td>
<td>6</td>
<td>16</td>
<td>32</td>
<td>54</td>
<td>82</td>
<td>116</td>
</tr>
<tr>
<td>Δ²x</td>
<td>10</td>
<td>16</td>
<td>22</td>
<td>28</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Δ³x</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Higher Degree Bezier Curves

- Cubic (n=3) ==> 4 control points
- 4th degree ==> 5 control points
- nth degree ==> n+1 control points
- In general:

\[P(t) = \sum_{i=0}^{n} B^{n}_{i}(t) * P_{i} \]

\[B^{n}_{i}(t) = C(n,i) * t^{i} * (1 - t)^{n-i} \]

- Higher Degree Bezier curves:
 - Can represent complex shapes
 - But moving any control point affects entire curve
 - Want local control
 - Moving a control point affects only one section of the curve
 - One way: use segmented Bezier curves
A Segmented Cubic Bezier Curve

Conditions at Knots

- Curves PA and PB
 - Determined by Control Points
 - PA0, PA1, PA2, PA3; PB0, PB1, PB2, PB3
- Level-0 continuity at knot:
 PA(at t=1) = PB(at t=0), i.e. at knot
 So PA3 = PB0 (Same control point)
- Level-1 continuity:
 \[\frac{dPA}{dt}(at t=1) = \frac{dPB}{dt}(at t=0) \]
 - So segments PA2-PA3 and PB0-PB1 must be colinear
 - (Recall Bezier Boundary Conditions)