
Modeling Complex 
Shapes

Bezier Curves

Modeling Complex Shapes

� Can use line/polygon primitives to 
approximate

� But complex objects-->huge number of 
primitives

� Better to use more complex primitives
� Use curves (2-D) or surfaces (3-D)



Curves in Space

� Three forms:
– Explicit
– Implicit
– Parametric

Explicit Form (2-D)
� y = f(x)
� example--line:

y = m*x + b
But this is not a finite line segment

� Not all curves can be put into this form



Implicit Form (2-D)
� f(x,y)=0
� Example--circle:

(x-h)2 + (y-k)2 - R2 = 0
� Indicates if a point x,y is on the curve
� Can be difficult to plot

– May need to use approximation methods
• Marching Squares

� In some cases can be cast into explicit 
form

Parametric Form
� x and y expressed as explicit functions of 

a parameter, t
x = f(t)
y = g(t)

� Range of parameter is also given
– Delimits the extent of the curve

� To plot, let t vary over its range
– Points on curve are generated

� Easily extended to curves in 3-D
z = h(t)



Parametric Equations for a 
Line Segment in 2-D

� Given endpoints P1(x1,y1), P2(x2,y2)
� Assume:

t=0: endpoint P1
t=1: endpoint P2

� Linear equation ==>
x = a*t + b
y = c*t + d

� Need to get constants a,b,c,d

x = a*t + b,  y = c*t + d
� Apply boundary conditions:

t=0 ==> x=x1, y=y1
x1 = a*0 + b,  so  b=x1
y1 = c*0 + d,  so  d=y1

t=1 ==> x=x2, y=y2
x2 = a*1 + b,  so  a = x2 - b,  or  a = x2 - x1
y2 = c*1 + d,  so  c = y2 - d,   or  c = y2 - y1

� Resulting Parametric equations:
x = (x2-x1)*t + x1
y = (y2-y1)*t + y1

� Easy to extend to 3-D
Z = (z2-z1)*t + z1

0<=t<=1



Polynomials
� Explicit Form of n-degree polynomial:

y = a0 + a1*x + a2*x2 + ... an*xn

� Assume we have a set of n+1 known 
control points: (xi,yi)

� Get polynomial coefficients ai from the 
control points

� Two Methods:
– Interpolation
– Approximation

Interpolating Polynomial, 
degree n

� Curve passes through all n+1 control 
points (xi,yi)

� Given (x0,y0), (x1,y1), (x2,y2) ... (xn,yn):
y0 = a0 + a1*x0 + a2*x0

2 … an*x0
n

y1 = a0 + a1*x1 + a2*x1
2 … an*x1

n

…
yn = a0 + a1*xn + a2* xn

2 … an* xn
n

� n+1 equations in n+1 unknown constants:
a0, a1, a2, ... an



May not be good in graphics
� Many control points==>high degree 

polynomial
� Many calculations
� Polynomial “wiggle”

Segmented Interpolating Polynomials
� Break curve into segments
� Each with different low-degree polynomial
� Easier computations



Joining Segmented Curves
� Join points called knots
� kth knot at x=xk
� Level-0 continuity: P(xk)=Q(xk)

– Continuous, but not smooth (kinks)
� Level-1 continuity: P’(xk)=Q’(xk)

– First derivative-->smoother curve
� Level-2 continuity: P’’(xk)=Q’’(xk)

– Second derivative-->still smoother

Approximating Polynomials

� Curve determined by control points
� But does NOT go through all of them
� Control Points act as magnets
� Better for many graphics applications
� Most commonly used:

Bezier curves
B-spline curves



Bezier Curves

� Bezier Curves
– See CS-460/560 Notes:
– Bezier Polynomial Curves
http://www.cs.binghamton.edu/~reckert/460/bezier.htm

� B-Spline Curves
– See CS-460/560 Notes:
– B-spline Polynomial Curves
http://www.cs.binghamton.edu/~reckert/460/bspline.htm



Bezier Polynomial Curves
� Parametric equations for a 2-D cubic 

polynomial curve:
x = ax*t3 + bx*t2 + cx*t + dx
y = ay*t3 + by*t2 + cy*t + dy

0<=t<=1

� Shape of curve determined by constant 
polynomial coefficients:
– (ax,bx,cx,dx, ay,by,cy,dy)

Easily extended to 3-D

� Just add a third parametric equation:
z = az*t3 + bz*t2 + cz*t + dz



Control Points
� Want to easily determine shape of curve
� Specify four control points:

P0 (x0,y0,z0), P1(x1,y1,z1), P2(x2,y2,z2), 
P3(x3,y3,z3)

� Could use interpolating polynomial
� More useful: approximating polynomial

– Doesn’t interpolate all control points
– Many ways to do the approximating

Uniform Cubic Bezier Polynomial
� Important kind of approximating polynomial
� Assume a generic parametric cubic 

polynomial:
P = a*t3 + b*t2 + c*t + d,     0 <= t <= 1

� Determined by control points P0, P1, P2, P3
– P could be x, y, or  z
– a could be ax, ay, or az

• same with b, c, d
– P0 could be x0, y0, z0

• same with P1, P2, P3



Uniform Bezier Polynomial
P = a*t3 + b*t2 + c*t + d,     0 <= t <= 1
� Control points uniformly separated in t

P0 at t=0,  P1 at t=1/3,  P2 at t=2/3,  P3 at t=1

Boundary conditions:

P = a*t3 + b*t2 + c*t + d,     0 <= t <= 1
1. Curve must interpolate control point P0

P=P0 when t=0
So  P0 = d

2. Curve must interpolate control point P3
P=P3 when t=1
so  P3 = a + b + c + d



Uniform Cubic Bezier Curve

P = a*t3 + b*t2 + c*t + d,     0 <= t <= 1
3. Slope of curve at t=0 must be equal to that of 

the line that joins control points P0 and P1
dP/dt(at t=0) = slope of P0-P1
dP/dt = 3*a*t2 + 2*b*t + c
slope of P0-P1 = (P1-P0)/(1/3-0)
So:  c = 3*(P1-P0)

4. Slope of curve at t=1 must be equal to that of 
the line that joins control points P2 and P3

dP/dt(at t=1) = slope of P2-P3
3*a + 2*b + c = (P3-P2)/(1 - 2/3)
3*a + 2*b + c = 3*(P3-P2)



Solving for Polynomial 
Coefficients

� Equations:

0 + 0 + 0 + d = P0

a + b + c + d = P3

0 + 0 + c + 0 = 3*(P1-P0)

3*a + 2*b + c + 0 = 3*(P3-P2)

This can be expressed in matrix form:
_ _ _ _ _ _

| 0 0 0 1 | | a | | P0 |

| 1 1 1 1 | * | b | = | P3 |

| 0 0 1 0 | | c | | 3*(P1-P0) |

|_3 2 1 0_| |_d_| |_3*(P3-P2)_|

A           *     C    =       V
In other words:

A * C = V
C = [a, b, c, d], the coefficient vector – the unknowns
V = [P0, P3, 3*(P1-P0), 3*(P3-P2)]
A = the above 4X4 matrix



� To solve, multiply by A-inverse
A-1 * A * C = A-1 * V
C = A-1 * V

� Use Gauss-Jordan elimination or other 
techniques to get A-inverse

� Result: _                  _
|  2    -2    1    1  |

A-1 =   | -3     3   -2   -1  |
|   0    0    1    0  |
|_ 1    0    0    0_|  

So: C = A-1 * V

_ _ _ _ _ _

| a | | 2 -2 1 1 | | P0 |

C = | b | = | -3 3 -2 -1 | * | P3 |

| c | | 0 0 1 0 | | 3(P1-P0) |

|_d_| |_ 1 0 0 0_| |_3(P3-P2)_|

Final Result (after rearranging):

_ _ _ _ _ _

| a | |-1 3 -3 1 | | P0 |

| b | = | 3 -6 3 0 | * | P1 |

| c | |-3 3 0 0 | | P2 |

|_d_| |_1 0 0 0_| |_P3_|



Uniform Cubic Bezier Result
� Polynomial Coefficients:

– A constant 4 X 4 matrix multiplied by a vector 
whose components are the control points

– Constant matrix called the Bezier geometry 
matrix

– Other kinds of polynomial curves will have 
their polynomial coefficients given by a similar 
equation

• Matrix elements of the constant 4 X 4 geometry 
matrix will change

Writing Bezier Result in 
Compact Form

� Points P on curve are given by:
P = a*t3 + b*t2 + c*t + d,    0 <= t <= 1

� Can be written in a more compact form:
P = T * Bg * Pc
T: row vector of parameter powers  [ t3 t2 t  1 ]
Bg: the constant 4 X 4 Bezier Geometry matrix
Pc: column vector of the control points



Blending Function 
Representation

� Multiply matrix equation & rearrange:

P = (1-t)3*P0 + 3t(1-t)2*P1 + 3t2(1-t)*P2 + t3*P3

3

P =  Σ Pi * Bi(t)
i=0

� Pi:     the control points (P0, P1, P2, P3)
� Bi(t):  "Bernstein Blending Functions”

� Blending Function form: 
– A weighted sum of the control points
– Weighting factors: the Blending Functions
– Value of Blending function gives "pull" of 

corresponding control point on curve at any 
point t

� The blending functions are given by:
Bi(t) = C(3,i) * ti * (1-t)(3-i)

• C(3,i) is the number of combinations of 3 things 
taken i at a time:

• C(3,i) = 3! / (i! * (3-i)!)



The Berstein Blending 
Functions

� For the cubic Bezier polynomial:
B0(t) = (1-t)3

B1(t) = 3 * t * (1-t)2

B2(t) = 3 * t2 * (1-t)
B3(t) = t3

The Berstein Blending 
Functions



� B0 has maximum value of 1 (100%) at t=0
– All other blending functions give 0 there

• Control point P0 pulls with 100% "force" at t=0
• None of the other control points pulls at all
• So curve must go through P0 (as we know)

� B3 has maximum value of 1 (100%) at t=1
– All other blending functions give 0 there
– So curve must go through P3

� B1 has its maximum value at t=1/3
– Value is less than 1 (<100% pull)
– Other Blending functions are non-zero but 

with values < B1
– So curve cannot pass through P1
– Curve pulled hardest by P1

� Similarly, at t=2/3, P2 pulls hardest



Properties of Bezier Curves
� Bk <=1, so:

– Control points lie outside curve
• curve lies inside “Convex Hull” of control points

– Important for clipping

More Bezier Curve Properties

� “Pull” of a control point is proportional to 
“distance” (in t) from the control point

� Bezier Curves are invariant under affine 
transformations
– So to transform a Bezier curve, just 

transform the control points and redraw the 
curve



Plotting Bezier Curves
� Brute Force Method:

1. Get control points P0=(x0,y0), P1=(x1,y1), 
P2=(x2,y2), P3=(x3,y3).

• Could use interactive locator device (mouse)
2. Compute values of  a, b, c, d  from control 

points
• Really ax,bx,cx,dx and ay,by,cy,dy
• Use matrix equations
• (Alternative: use blending functions)

3. for (t=0; t<=1; t+=delta)
Compute P (x & y) from polynomial equations
if (t==0)

MoveTo(x,y)
else

LineTo(x,y)

� delta: a small increment (e.g. 0.05)
� Would give an approximation to the curve 

consisting of straight-line segments



Improving Performance
� Brute force is much too much work (too 

slow)
P = a*t3 + b*t2 + c*t + d
– Each iteration: 5 floating point multiplies

c*t,  t*t,  b*(t*t),  t*(t*t),  a*(t*(t*t))
– and 3 floating point adds

� Using Horner's rule for polynomial 
evaluation:
P = ((a*t+b)*t+c)*t
– 3 multiplies and 3 adds

� Can do much better
– Use technique of Forward Differences
– Will improve performance

• only 3 floating point adds during each iteration!



Forward Differences
� Get new x,y values from old while stepping

xi+1 = xi + ∆x
� Look at x equation:

x = at3 + bt2 +ct + d
� Assume equal increments in t,  δt=δ

ti+1 = ti + δ,    ∆x = xi+1 - xi
∆x = a(t+δ)3 + b(t+δ)2 + c(t+δ) + d   - (at3 + bt2 + ct + d)

� Result (first forward difference):
∆x = 3aδt2 + (3aδ2 + 2bδ)t + aδ3 + bδ2 + cδ
Reduced to quadratic in t

� Do again to simplify ∆x
∆x = ∆x + ∆(∆x)  =  ∆x + ∆2x
∆2x = ∆x(t+δ) - ∆x(t)
∆2x = 3aδ(t+δ)2 + (3aδ2+2bδ)(t+δ) + k

-3aδt2 - (3aδ2 +2bδ)t - k
where k = aδ3 + bδ2 + cδ

� Result (second forward difference):
∆2x = 6aδ2t + 6aδ3 + 2bδ2

Reduced to linear equation in t
For next step let k1 = 6aδ3 + 2bδ2



� Do again to simplify ∆2x
∆2x = ∆2x + ∆(∆2x) = ∆2x + ∆3x
∆3x = ∆2x(t+δ) - ∆2x(t)
∆3x = 6aδ2(t+δ) + k1 - 6aδ2t - k1

� Result (third forward difference):
∆3x = 6aδ3

Finally a constant result
� Final Results (recurrence relations):

x = x + ∆x
∆x = ∆x + ∆2x
∆2x = ∆2x + ∆3x
Three adds on each iteration

Initial Values
� Need to calculate only once
x0 = a*t03 + b*t02 +c*t0 + d
∆x0 = 3aδ∗ t02 + (3aδ2 + 2bδ)*t0 + aδ3 + bδ2 + cδ
∆2x0 = 6aδ2*t0 + 6aδ3 + 2bδ2

∆3x0 = 6aδ3



Example Using Forward 
Difference Calculations

x = t3 + 2t2 +3t + 1,  0<=t<=10
To illustrate, take δ = 1
And a=1, b=2, c=3, d=1
t0=0
x0 = 1
∆x0 = 1 + 2 + 3 = 6
∆2x0 = 6 + 2*2 = 10
∆3x0 = 6

x0 = a*t03 + b*t02 +c*t0 + d
∆x0 = 3aδ∗ t02 + (3aδ2 + 2bδ)*t0    

+ aδ3 + bδ2 + cδ
∆2x0 = 6aδ2*t0 + 6aδ3 + 2bδ2

∆3x0 = 6aδ3

Example Forward Difference 
Calculations



Higher Degree Bezier Curves
� Cubic (n=3) ==> 4 control points
� 4th degree ==> 5 control points
� nth degree ==> n+1 control points
� In general:

n

P(t) = Σ B ni (t) * P i
i=0

B ni (t) = C(n,i) * t i * ( 1- t) n-i

� Higher Degree Bezier curves:
– Can represent complex shapes
– But moving any control point affects entire

curve
– Want  local control

• Moving a control point affects only one section of 
the curve

– One way: use segmented Bezier curves



A Segmented Cubic Bezier Curve

Conditions at Knots
� Curves PA and PB 

– Determined by Control Points
• PA0, PA1, PA2, PA3;   PB0, PB1, PB2, PB3

� Level-0 continuity at knot:
PA(at t=1) = PB(at t=0), i.e. at knot
So PA3 = PB0 (Same control point)

� Level-1 continuity:
dPA/dt(at t=1) = dPB/dt(at t=0)
– So segments  PA2-PA3 and PB0-PB1 must be colinear
– (Recall Bezier Boundary Conditions)


