Modeling Complex
Shapes

Bezier Curves

Modeling Complex Shapes

e Can use line/polygon primitives to
approximate

e But complex objects-->huge number of
primitives

e Better to use more complex primitives

e Use curves (2-D) or surfaces (3-D)

Curves in Space

e Three forms:
— Explicit
— Implicit
— Parametric

Explicit Form (2-D)

oy =1f(x)
e example--line:
y=m*x+Db
But this is not a finite line segment
e Not all curves can be put into this form

Implicit Form (2-D)

e f(x,y)=0
e Example--circle:
(x-h)? + (y-k)>- R#=0
e Indicates if a point X,y is on the curve

e Can be difficult to plot
— May need to use approximation methods
» Marching Squares
e In some cases can be cast into explicit
form

Parametric Form
e X and y expressed as explicit functions of
a parameter, t

x = f(t)
y =9(t)

e Range of parameter is also given
— Delimits the extent of the curve

e To plot, let t vary over its range
— Points on curve are generated

e Easily extended to curves in 3-D
z = h(t)

Parametric Equations for a

Line Segment in 2-D

e Given endpoints P1(x1,yl), P2(x2,y2)

e Assume:
t=0: endpoint P1

t=1: endpoint P2
e Linear equation ==> /

Xx=a*t+b

y=c*t+d
e Need to get constants a,b,c,d

X=a*t+b, y=ct+d
e Apply boundary conditions:
t=0 ==> x=x1, y=y1l
x1l=a*0+b, so b=x1
yl=c*0+d, so d=yl
t=1 ==> x=x2, y=y2
x2=a*l+b, so a=x2-b, or a=x2-x1
y2=c*1+d, so c=y2-d, or c=y2-yl
e Resulting Parametric equations:
X = (x2-x1)*t + x1
y=(y2-ylyt+yl
e Easy to extend to 3-D
Z=(z2-z1)*t+z1

0<=t <=1

Polynomials

e Explicit Form of n-degree polynomial:
Yy =a,+a X+ a,*x? + ... a,*x"

e Assume we have a set of n+1 known
control points: (xi,yi)

e Get polynomial coefficients a, from the
control points

e Two Methods:
— Interpolation
— Approximation

Interpolating Polynomial,

degree n
e Curve passes through all n+1 control

points (X;Y;)

[] leen (Xo,yo), (leyl)v (X21y2) (Xn’yn):
yO =ay+ al*XO + 612"‘X02 an*xo“
yl=a, + a;*X; + a,"x,2 ... a,*x;"

yn = ag + a;*x, + ay* X2 ... a,* X"
e n+1 equations in n+1 unknown constants:
ag, a4, Ay, ... A,

May not be good in graphics
e Many control points==>high degree
polynomial

e Many calculations
e Polynomial “wiggle”

n=3

Segmented Interpolating Polynomials

e Break curve into segments

e Each with different low-degree polynomial
e Easier computations

Joining Segmented Curves

e Join points called knots
e kth knot at x=x,
e Level-0 continuity: P(x,)=Q(X,)
— Continuous, but not smooth (kinks)
e Level-1 continuity: P’(x,)=Q’(x,)
— First derivative-->smoother curve
e Level-2 continuity: P”(x,)=Q"(X,)
— Second derivative-->still smoother

Approximating Polynomials

e Curve determined by control points

e But does NOT go through all of them
e Control Points act as magnets

e Better for many graphics applications

e Most commonly used:
Bezier curves
B-spline curves

Bezier Curves

e Bezier Curves
— See CS-460/560 Notes:
— Bezier Polynomial Curves
http://www.cs.binghamton.edu/~reckert/460/bezier.htm
e B-Spline Curves
— See CS-460/560 Notes:

— B-spline Polynomial Curves
http://www.cs.binghamton.edu/~reckert/460/bspline.htm

Bezier Polynomial Curves

e Parametric equations for a 2-D cubic
polynomial curve:
X = ax*t3 + bx*t2 + cx*t + dx
y = ay*t3 + by*t2 + cy*t + dy
0<=t<=1
e Shape of curve determined by constant
polynomial coefficients:
— (ax,bx,cx,dx, ay,by,cy,dy)

Easily extended to 3-D

e Just add a third parametric equation:
z = az*t® + bz*t2 + cz*t + dz

Control Points

e Want to easily determine shape of curve

e Specify four control points:
PO (x0,y0,z0), P1(x1,y1,z1), P2(x2,y2,z2),
P3(x3,y3,z3)
e Could use interpolating polynomial
e More useful: approximating polynomial
— Doesn't interpolate all control points
— Many ways to do the approximating

Uniform Cubic Bezier Polynomial
e Important kind of approximating polynomial

e Assume a generic parametric cubic
polynomial:
P=za*®+b*2+c*t+d, O<=t<=1
e Determined by control points PO, P1, P2, P3
—Pcould bex,y, or z
—a could be ax, ay, or az
» same with b, c, d
— PO could be x0, yO0, z0
* same with P1, P2, P3

Uniform Bezier Polynomial
P=a*t*+b*?+c*t+d, O<=t<=1

e Control points uniformly separated in t
PO at t=0, P1 att=1/3, P2 att=2/3, P3 att=1

P

Pl

P3
PO

1/3 2/3 1

Boundary conditions:

P=za*t®+b*?+c*t+d, O<=t<=1
1. Curve must interpolate control point PO

P=P0O when t=0
So PO=d

2. Curve must interpolate control point P3
P=P3 when t=1
so P3=a+b+c+d

Uniform Cubic Bezier Curve

Pl

P3

PO

p2

1/3 2/3 1

P=a*t®*+b**+c*t+d, O<=t<=1
3. Slope of curve at t=0 must be equal to that of
the line that joins control points PO and P1
dP/dt(at t=0) = slope of PO-P1 . N
dP/dt = 3*a*t? + 2*b*t + c e
slope of PO-P1 = (P1-P0)/(1/3-0) -
So: ¢ =3*(P1-P0) A o .
4. Slope of curve at t=1 must be equal to that of
the line that joins control points P2 and P3
dP/dt(at t=1) = slope of P2-P3
3*a + 2*b + ¢ = (P3-P2)/(1 - 2/3)
3*a + 2*b + ¢ = 3*(P3-P2)

Solving for Polynomial
Coefficients

e Equations:
0 + 0 + 0 + d = PO
a + b + C + d = P3
O + 0 + ¢ + 0 = 3*(P1-PO)
3*a + 2*b + ¢ + 0 = 3*(P3-P2)

This can be expressed in matrix form:

0 0 0 1		a		PO
1 1 1 1] *	b	=	P3	
0 0 1 0		¢		3*(P1-PO)
3 2 1 0		d_		3*(P3-P2)_
A * C = V
In other words:
A*C=V

C =[a, b, c, d], the coefficient vector — the unknowns
V = [P0, P3, 3*(P1-P0), 3*(P3-P2)]
A = the above 4X4 matrix

e To solve, multiply by A-inverse
AL*A*C=Al*V
C=Al*V

e Use Gauss-Jordan elimination or other
techniques to get A-inverse

e Result: _
|2 2 1 1|
Al = |-3 3 -2 -1|
| 0 0 1 0]
|1 0 0 0
So: C=Al*YV
| a| | 2-2 1 1| | PO |
cC=|b|] =]-3 3-2-1]*]| P3 |
| ¢ | | 0 0O 1 0| | 3(P1-PO) |
| _d_| |1 0 0 0| | _3(P3-P2)_|
Final Result (after rearranging):
lal |-1 3 -3 1| | PO |
| b] =13 -6 3 0] *] P1]|
| ¢ | |[-3 3 0 0] | P2 |
| _d_| |1 0 0 O] | _P3_|

Uniform Cubic Bezier Result

e Polynomial Coefficients:

— A constant 4 X 4 matrix multiplied by a vector
whose components are the control points

— Constant matrix called the Bezier geometry
matrix

— Other kinds of polynomial curves will have
their polynomial coefficients given by a similar
equation

» Matrix elements of the constant 4 X 4 geometry
matrix will change

Writing Bezier Result in
Compact Form

e Points P on curve are given by:
P=a*tt+b*2+c*t+d, O<=t<=1

e Can be written in a more compact form:
P=T*Bg*Pc
T: row vector of parameter powers [t3 t2 t 1]
Bg: the constant 4 X 4 Bezier Geometry matrix
Pc: column vector of the control points

Blending Function
Representation
e Multiply matrix equation & rearrange:
P = (1-t)3*P0 + 3t(1-t)2*P1 + 3t2(1-t)*P2 + t3*P3

3
P= 2P *Bt)

i=0
e P the control points (PO, P1, P2, P3)
e B(t): "Bernstein Blending Functions”

e Blending Function form:
— A weighted sum of the control points
— Weighting factors: the Blending Functions

— Value of Blending function gives "pull" of
corresponding control point on curve at any
point t

e The blending functions are given by:
B;(t) = C(3,i) * ti * (1-t)G-)

* C(3,i) is the number of combinations of 3 things
taken i at a time:

e C(3,i) = 3!/ (it * (3-)!)

The Berstein Blending

Functions

e For the cubic Bezier polynomial:
Bo(t) = (1-1)°
B,(t) = 3*t* (1-1)2
B,(t) = 3 * 12 * (1-1)
By(t) = t3

The Berstein Blending
Functions

1 BO =(1-t)3

BO B3 £=0 --> 1, t=1 --> 0
Bl B2 Bl = 3%t*(1-t)2

Maximum at t=1/3

B2 = 3%t2 % (1-t)
Maximum at t=2/3

0 1/3 2/3 1 B3 = t*
t=0 --> 0, t=1 --> 1

e BO has maximum value of 1 (100%) at t=0

— All other blending functions give 0 there
 Control point PO pulls with 100% "force" at t=0
* None of the other control points pulls at all
» So curve must go through PO (as we know)

e B3 has maximum value of 1 (100%) at t=1
— All other blending functions give O there
— So curve must go through P3

BO =(1-t)3
£=0 --> 1, t=1 --> 0

Bl = 3%t*(1-t)2
Maximum at t=1/3

B2 = 3%t2 *(1-t)
Maximum at t=2/3

0 1/3 2/3 1 B=t3
£20 --> 0, t=1 --> 1

e B1 has its maximum value at t=1/3
—Value is less than 1 (<100% pull)

— Other Blending functions are non-zero but
with values < B1

— S0 curve cannot pass through P1
— Curve pulled hardest by P1

e Similarly, at t=2/3, P2 pulls hardest

1 BO =(1-t)3
BO B3 t=0 -=> 1, t=1 --> 0

BL = 3%t* (1-t)2
Maximum at t=1/3

B2 = 3%t2 ¥ (1-t)
Maximum at t=2/3

= 3
0 1/3 2/3 1 B3 =t
t=0 --> 0, t=1 --> 1

Properties of Bezier Curves
e Bk <=1, so:
— Control points lie outside curve
* curve lies inside “Convex Hull” of control points
— Important for clipping

E Pl Convex Hull

P3

PO

1/3 2/3 1

More Bezier Curve Properties

e “Pull” of a control point is proportional to
“distance” (in t) from the control point

e Bezier Curves are invariant under affine
transformations
— So to transform a Bezier curve, just

transform the control points and redraw the
curve

Plotting Bezier Curves

e Brute Force Method:
1. Get control points P0O=(x0,y0), P1=(x1,y1),
P2=(x2,y2), P3=(x3,y3).
» Could use interactive locator device (mouse)
2. Compute values of a, b, c, d from control
points
» Really ax,bx,cx,dx and ay,by,cy,dy
» Use matrix equations
* (Alternative: use blending functions)

3. for (t=0; t<=1; t+=delta)
Compute P (x & y) from polynomial equations
if (t==0)
MoveTo(x,y)
else
LineTo(x,y)

e delta: a small increment (e.g. 0.05)

e Would give an approximation to the curve
consisting of straight-line segments

Improving Performance

e Brute force is much too much work (too
slow)
P=a*t3+Db*2+c*t+d
— Each iteration: 5 floating point multiplies
CH, t*, bX(t*t), th(t*t), a*(t*(t*t))
—and 3 floating point adds
e Using Horner's rule for polynomial
evaluation:
P = ((@*t+b)*t+c)*t
— 3 multiplies and 3 adds

e Can do much better
— Use technique of Forward Differences

— Will improve performance
* only 3 floating point adds during each iteration!

Forward Differences
e Get new x,y values from old while stepping
Xisg = X+ OX
e Look at x equation:
X = at3 + bt? +ct + d
e Assume equal increments int, ot=0
i =4 +0, AX =Xy - X

Ax = a(t+0)3 + b(t+6)2 + c(t+0) +d - (at®+ bt2+ ct + d)

e Result (first forward difference):
Ax = 3adt? + (3ad? + 2bo)t + ad® + b + cd
Reduced to quadratic in t

e Do again to simplify Ax
AX = AX + A(AX) = AX + A2
A2x = AX(t+0) - AX(1)
A2x = 3ad(t+d)? + (3ad?+2bd)(t+0) + k
-3adt2 - (3ad? +2bd)t - k
where k = ad®+ bd? + cd
e Result (second forward difference):
A?x = 6ad’t + 6ad® + 2bé?
Reduced to linear equation in t
For next step let k1 = 6ad® + 2bd?

e Do again to simplify A%x
A2X = A2X + A(A2X) = A% + A3x
A3X = A2X(t+) - A2X(t)
A3x = 6ad?(t+0) + k1 - 6ad’t - k1
e Result (third forward difference):
A3x = 6ad®
Finally a constant result
e Final Results (recurrence relations):
X =X+ Ax
Ax = AX + A%X
A?x = A2 + A3X
Three adds on each iteration

Initial Values

e Need to calculate only once

X0 = a*t03 + b*t0% +c*t0 + d

Ax0 = 3ad[102 + (3ad? + 2bd)*t0 + ad® + bd? + ¢d
A?x0 = 6a0%'t0 + 6ad3 + 2bd?

A3x0 = 6ad3

Example Using Forward
Difference Calculations
X=t3+2t2+3t + 1, 0<=t<=10
To illustrate, take d=1
And a=1, b=2, c=3, d=1

t0=0
x0=1 X0 = a*t03 + b*t02 +c*t0 + d
— — AX0 = 3ad(102 + (3ad? + 2b3)*t0
AX0=1+2+3=6 800 (Ba2 4
A2x0=6+2*2 =10 A2x0 = 6ad2't0 + 6a5® + 2bd?
A3 0 6 A3X0 = 6ad®
XU =

Example Forward Difference
Calculations

t 0 1 2 3 4 5

x 1 7 23 109 181

e
\\ﬁh
"

Higher Degree Bezier Curves

e Cubic (n=3) ==> 4 control points
e 4th degree ==> 5 control points

e nth degree ==> n+1 control points
e In general:

n

PH)=2 BN (1) *Pi
i=0

BN ()= C(n,i)*ti*(1-t)™

e Higher Degree Bezier curves:
— Can represent complex shapes

— But moving any control point affects entire
curve

— Want local control

* Moving a control point affects only one section of
the curve

— One way: use segmented Bezier curves

A Segmented Cubic Bezier Curve

PA? PB2
n n
| PB3
PAL PR , u
n " PA3 PB ' pco
' pPC?
\PBO n
I PC
u u
PAQ PC1
uPpPB1 Upcs

Conditions at Knots

e Curves PA and PB
— Determined by Control Points
« PAO, PA1, PA2, PA3; PBO, PB1, PB2, PB3
e Level-0 continuity at knot:
PA(at t=1) = PB(at t=0), i.e. at knot
So PA3 = PBO (Same control point)
e Level-1 continuity:
dPA/dt(at t=1) = dPB/dt(at t=0)
— So segments PA2-PA3 and PB0O-PB1 must be colinear
— (Recall Bezier Boundary Conditions)

