

Modeling Complex Shapes

Bezier Curves

Modeling Complex Shapes

- Can use line/polygon primitives to approximate
- But complex objects-->huge number of primitives
- Better to use more complex primitives
- Use curves (2-D) or surfaces (3-D)

Curves in Space

- Three forms:
 - Explicit
 - Implicit
 - Parametric

Explicit Form (2-D)

- $y = f(x)$
- example--line:
 $y = m*x + b$
But this is not a finite line segment
- Not all curves can be put into this form

Implicit Form (2-D)

- $f(x,y)=0$
- Example--circle:
$$(x-h)^2 + (y-k)^2 - R^2 = 0$$
- Indicates if a point x,y is on the curve
- Can be difficult to plot
 - May need to use approximation methods
 - Marching Squares
- In some cases can be cast into explicit form

Parametric Form

- x and y expressed as explicit functions of a parameter, t
$$x = f(t)$$

$$y = g(t)$$
- Range of parameter is also given
 - Delimits the extent of the curve
- To plot, let t vary over its range
 - Points on curve are generated
- Easily extended to curves in 3-D
$$z = h(t)$$

Parametric Equations for a Line Segment in 2-D

- Given endpoints $P1(x_1, y_1)$, $P2(x_2, y_2)$
- Assume:
 - $t=0$: endpoint $P1$
 - $t=1$: endpoint $P2$
- Linear equation ==>
$$x = a*t + b$$
$$y = c*t + d$$
- Need to get constants a, b, c, d

$$x = a*t + b, \quad y = c*t + d$$

- Apply boundary conditions:

$$t=0 ==> x=x_1, y=y_1$$

$$x_1 = a*0 + b, \text{ so } b=x_1$$

$$y_1 = c*0 + d, \text{ so } d=y_1$$

$$t=1 ==> x=x_2, y=y_2$$

$$x_2 = a*1 + b, \text{ so } a = x_2 - b, \text{ or } a = x_2 - x_1$$

$$y_2 = c*1 + d, \text{ so } c = y_2 - d, \text{ or } c = y_2 - y_1$$

- Resulting Parametric equations:

$$x = (x_2 - x_1)*t + x_1 \quad 0 \leq t \leq 1$$

$$y = (y_2 - y_1)*t + y_1$$

- Easy to extend to 3-D

$$z = (z_2 - z_1)*t + z_1$$

Polynomials

- Explicit Form of n-degree polynomial:
$$y = a_0 + a_1 * x + a_2 * x^2 + \dots a_n * x^n$$
- Assume we have a set of n+1 known control points: (x_i, y_i)
- Get polynomial coefficients a_i from the control points
- Two Methods:
 - Interpolation
 - Approximation

Interpolating Polynomial, degree n

- Curve passes through all n+1 control points (x_i, y_i)
- Given $(x_0, y_0), (x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$:
$$y_0 = a_0 + a_1 * x_0 + a_2 * x_0^2 \dots a_n * x_0^n$$
$$y_1 = a_0 + a_1 * x_1 + a_2 * x_1^2 \dots a_n * x_1^n$$

...
$$y_n = a_0 + a_1 * x_n + a_2 * x_n^2 \dots a_n * x_n^n$$
- n+1 equations in n+1 unknown constants:
 $a_0, a_1, a_2, \dots a_n$

May not be good in graphics

- Many control points==>high degree polynomial
- Many calculations
- Polynomial “wiggle”

Segmented Interpolating Polynomials

- Break curve into segments
- Each with different low-degree polynomial
- Easier computations

Joining Segmented Curves

- Join points called knots
- k th knot at $x=x_k$
- Level-0 continuity: $P(x_k)=Q(x_k)$
 - Continuous, but not smooth (kinks)
- Level-1 continuity: $P'(x_k)=Q'(x_k)$
 - First derivative-->smoother curve
- Level-2 continuity: $P''(x_k)=Q''(x_k)$
 - Second derivative-->still smoother

Approximating Polynomials

- Curve determined by control points
- But does NOT go through all of them
- Control Points act as magnets
- Better for many graphics applications
- Most commonly used:
 - Bezier curves
 - B-spline curves

Bezier Curves

- Bezier Curves

- See CS-460/560 Notes:
- [Bezier Polynomial Curves](#)

<http://www.cs.binghamton.edu/~reckert/460/bezier.htm>

- B-Spline Curves

- See CS-460/560 Notes:
- [B-spline Polynomial Curves](#)

<http://www.cs.binghamton.edu/~reckert/460/bspline.htm>

Bezier Polynomial Curves

- Parametric equations for a 2-D cubic polynomial curve:

$$x = ax*t^3 + bx*t^2 + cx*t + dx$$

$$y = ay*t^3 + by*t^2 + cy*t + dy$$

$$0 \leq t \leq 1$$

- Shape of curve determined by constant polynomial coefficients:

- (ax, bx, cx, dx, ay, by, cy, dy)

Easily extended to 3-D

- Just add a third parametric equation:

$$z = az*t^3 + bz*t^2 + cz*t + dz$$

Control Points

- Want to easily determine shape of curve
- Specify four control points:
 $P_0(x_0, y_0, z_0)$, $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$,
 $P_3(x_3, y_3, z_3)$
- Could use interpolating polynomial
- More useful: approximating polynomial
 - Doesn't interpolate all control points
 - Many ways to do the approximating

Uniform Cubic Bezier Polynomial

- Important kind of approximating polynomial
- Assume a generic parametric cubic polynomial:
$$P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1$$
- Determined by control points P_0, P_1, P_2, P_3
 - P could be x, y, or z
 - a could be ax, ay, or az
 - same with b, c, d
 - P_0 could be x_0, y_0, z_0
 - same with P_1, P_2, P_3

Uniform Bezier Polynomial

$$P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1$$

- Control points uniformly separated in t
 P_0 at $t=0$, P_1 at $t=1/3$, P_2 at $t=2/3$, P_3 at $t=1$

Boundary conditions:

$$P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1$$

1. Curve must interpolate control point P_0

$$P=P_0 \text{ when } t=0$$

$$\text{So } P_0 = d$$

2. Curve must interpolate control point P_3

$$P=P_3 \text{ when } t=1$$

$$\text{so } P_3 = a + b + c + d$$

Uniform Cubic Bezier Curve

$$P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1$$

3. Slope of curve at $t=0$ must be equal to that of the line that joins control points P_0 and P_1

$$dP/dt(\text{at } t=0) = \text{slope of } P_0-P_1$$

$$dP/dt = 3*a*t^2 + 2*b*t + c$$

$$\text{slope of } P_0-P_1 = (P_1-P_0)/(1/3-0)$$

$$\text{So: } c = 3*(P_1-P_0)$$

4. Slope of curve at $t=1$ must be equal to that of the line that joins control points P_2 and P_3

$$dP/dt(\text{at } t=1) = \text{slope of } P_2-P_3$$

$$3*a + 2*b + c = (P_3-P_2)/(1 - 2/3)$$

$$3*a + 2*b + c = 3*(P_3-P_2)$$

Solving for Polynomial Coefficients

- Equations:

$$\begin{aligned} 0 &+ 0 &+ 0 &+ d &= P0 \\ a &+ b &+ c &+ d &= P3 \\ 0 &+ 0 &+ c &+ 0 &= 3*(P1-P0) \\ 3*a &+ 2*b &+ c &+ 0 &= 3*(P3-P2) \end{aligned}$$

This can be expressed in matrix form:

$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{vmatrix} \begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix} = \begin{vmatrix} P0 \\ P3 \\ 3*(P1-P0) \\ 3*(P3-P2) \end{vmatrix}$$
$$A * C = V$$

In other words:

$$A * C = V$$

$C = [a, b, c, d]$, the coefficient vector – the unknowns

$V = [P0, P3, 3*(P1-P0), 3*(P3-P2)]$

A = the above 4X4 matrix

- To solve, multiply by A-inverse

$$A^{-1} * A * C = A^{-1} * V$$

$$C = A^{-1} * V$$

- Use Gauss-Jordan elimination or other techniques to get A-inverse

- Result: $\begin{array}{|cccc|} \hline & 2 & -2 & 1 & 1 \\ \hline A^{-1} = & -3 & 3 & -2 & -1 \\ & 0 & 0 & 1 & 0 \\ & 1 & 0 & 0 & 0 \\ \hline \end{array}$

$$\text{So: } C = A^{-1} * V$$

$$C = \begin{array}{|c|} \hline a \\ \hline b \\ \hline c \\ \hline d \\ \hline \end{array} = \begin{array}{|cccc|} \hline & 2 & -2 & 1 & 1 \\ \hline -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ \hline \end{array} * \begin{array}{|c|} \hline p_0 \\ \hline p_3 \\ \hline 3(p_1-p_0) \\ \hline -3(p_3-p_2) \\ \hline \end{array}$$

Final Result (after rearranging):

$$\begin{array}{|c|} \hline a \\ \hline b \\ \hline c \\ \hline d \\ \hline \end{array} = \begin{array}{|cccc|} \hline -1 & 3 & -3 & 1 \\ \hline 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \hline \end{array} * \begin{array}{|c|} \hline p_0 \\ \hline p_1 \\ \hline p_2 \\ \hline p_3 \\ \hline \end{array}$$

Uniform Cubic Bezier Result

- Polynomial Coefficients:
 - A constant 4 X 4 matrix multiplied by a vector whose components are the control points
 - Constant matrix called the Bezier geometry matrix
 - Other kinds of polynomial curves will have their polynomial coefficients given by a similar equation
 - Matrix elements of the constant 4 X 4 geometry matrix will change

Writing Bezier Result in Compact Form

- Points P on curve are given by:
$$P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1$$
- Can be written in a more compact form:
$$P = T * Bg * P_c$$

T: row vector of parameter powers $[t^3 \ t^2 \ t \ 1]$
Bg: the constant 4 X 4 Bezier Geometry matrix
Pc: column vector of the control points

Blending Function Representation

- Multiply matrix equation & rearrange:

$$P = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t) P_2 + t^3 P_3$$

$$P = \sum_{i=0}^3 P_i * B_i(t)$$

- P_i : the control points (P_0, P_1, P_2, P_3)
- $B_i(t)$: "Bernstein Blending Functions"

- Blending Function form:

- A weighted sum of the control points
- Weighting factors: the Blending Functions
- Value of Blending function gives "pull" of corresponding control point on curve at any point t

- The blending functions are given by:

$$B_i(t) = C(3,i) * t^i * (1-t)^{(3-i)}$$

- $C(3,i)$ is the number of combinations of 3 things taken i at a time:
- $C(3,i) = 3! / (i! * (3-i)!)$

The Bernstein Blending Functions

- For the cubic Bezier polynomial:

$$B_0(t) = (1-t)^3$$

$$B_1(t) = 3 * t * (1-t)^2$$

$$B_2(t) = 3 * t^2 * (1-t)$$

$$B_3(t) = t^3$$

The Bernstein Blending Functions

- B_0 has maximum value of 1 (100%) at $t=0$
 - All other blending functions give 0 there
 - Control point P_0 pulls with 100% "force" at $t=0$
 - None of the other control points pulls at all
 - So curve must go through P_0 (as we know)
- B_3 has maximum value of 1 (100%) at $t=1$
 - All other blending functions give 0 there
 - So curve must go through P_3

- B_1 has its maximum value at $t=1/3$
 - Value is less than 1 (<100% pull)
 - Other Blending functions are non-zero but with values < B_1
 - So curve cannot pass through P_1
 - Curve pulled hardest by P_1
- Similarly, at $t=2/3$, P_2 pulls hardest

Properties of Bezier Curves

- $B_k \leq 1$, so:
 - Control points lie outside curve
 - curve lies inside “Convex Hull” of control points
 - Important for clipping

More Bezier Curve Properties

- “Pull” of a control point is proportional to “distance” (in t) from the control point
- Bezier Curves are invariant under affine transformations
 - So to transform a Bezier curve, just transform the control points and redraw the curve

Plotting Bezier Curves

- Brute Force Method:

1. Get control points $P_0=(x_0,y_0)$, $P_1=(x_1,y_1)$,
 $P_2=(x_2,y_2)$, $P_3=(x_3,y_3)$.
 - Could use interactive locator device (mouse)
2. Compute values of a, b, c, d from control points
 - Really ax, bx, cx, dx and ay, by, cy, dy
 - Use matrix equations
 - (Alternative: use blending functions)

3. for ($t=0; t \leq 1; t+=\text{delta}$)

 Compute P (x & y) from polynomial equations

 if ($t==0$)

 MoveTo(x, y)

 else

 LineTo(x, y)

- delta : a small increment (e.g. 0.05)
- Would give an approximation to the curve consisting of straight-line segments

Improving Performance

- Brute force is much too much work (too slow)

$$P = a*t^3 + b*t^2 + c*t + d$$

- Each iteration: 5 floating point multiplies
 $c*t$, $t*t$, $b*(t*t)$, $t*(t*t)$, $a*(t*(t*t))$
– and 3 floating point adds

- Using Horner's rule for polynomial evaluation:

$$P = ((a*t+b)*t+c)*t$$

- 3 multiplies and 3 adds

- Can do much better

- Use technique of Forward Differences
- Will improve performance
 - only 3 floating point adds during each iteration!

Forward Differences

- Get new x,y values from old while stepping

$$x_{i+1} = x_i + \Delta x$$

- Look at x equation:

$$x = at^3 + bt^2 + ct + d$$

- Assume equal increments in t, $\delta t = \delta$

$$t_{i+1} = t_i + \delta, \quad \Delta x = x_{i+1} - x_i$$

$$\Delta x = a(t+\delta)^3 + b(t+\delta)^2 + c(t+\delta) + d - (at^3 + bt^2 + ct + d)$$

- Result (first forward difference):

$$\Delta x = 3a\delta t^2 + (3a\delta^2 + 2b\delta)t + a\delta^3 + b\delta^2 + c\delta$$

Reduced to quadratic in t

- Do again to simplify Δx

$$\Delta x = \Delta x + \Delta(\Delta x) = \Delta x + \Delta^2 x$$

$$\Delta^2 x = \Delta x(t+\delta) - \Delta x(t)$$

$$\Delta^2 x = 3a\delta(t+\delta)^2 + (3a\delta^2 + 2b\delta)(t+\delta) + k$$

$$-3a\delta t^2 - (3a\delta^2 + 2b\delta)t - k$$

$$\text{where } k = a\delta^3 + b\delta^2 + c\delta$$

- Result (second forward difference):

$$\Delta^2 x = 6a\delta^2 t + 6a\delta^3 + 2b\delta^2$$

Reduced to linear equation in t

For next step let $k_1 = 6a\delta^3 + 2b\delta^2$

- Do again to simplify Δ^2x

$$\Delta^2x = \Delta^2x + \Delta(\Delta^2x) = \Delta^2x + \Delta^3x$$

$$\Delta^3x = \Delta^2x(t+\delta) - \Delta^2x(t)$$

$$\Delta^3x = 6a\delta^2(t+\delta) + k1 - 6a\delta^2t - k1$$
- Result (third forward difference):

$$\Delta^3x = 6a\delta^3$$
 Finally a constant result
- Final Results (recurrence relations):

$$x = x + \Delta x$$

$$\Delta x = \Delta x + \Delta^2 x$$

$$\Delta^2 x = \Delta^2 x + \Delta^3 x$$
 Three adds on each iteration

Initial Values

- Need to calculate only once

$$x_0 = a*t_0^3 + b*t_0^2 + c*t_0 + d$$

$$\Delta x_0 = 3a\delta*t_0^2 + (3a\delta^2 + 2b\delta)*t_0 + a\delta^3 + b\delta^2 + c\delta$$

$$\Delta^2 x_0 = 6a\delta^2*t_0 + 6a\delta^3 + 2b\delta^2$$

$$\Delta^3 x_0 = 6a\delta^3$$

Example Using Forward Difference Calculations

$$x = t^3 + 2t^2 + 3t + 1, \quad 0 \leq t \leq 10$$

To illustrate, take $\delta = 1$

And $a=1, b=2, c=3, d=1$

$t_0=0$

$$x_0 = 1$$

$$x_0 = a*t_0^3 + b*t_0^2 + c*t_0 + d$$

$$\Delta x_0 = 1 + 2 + 3 = 6$$

$$\Delta x_0 = 3a\delta*t_0^2 + (3a\delta^2 + 2b\delta)*t_0 + a\delta^3 + b\delta^2 + c\delta$$

$$\Delta^2 x_0 = 6 + 2*2 = 10$$

$$\Delta^2 x_0 = 6a\delta^2*t_0 + 6a\delta^3 + 2b\delta^2$$

$$\Delta^3 x_0 = 6$$

$$\Delta^3 x_0 = 6a\delta^3$$

Example Forward Difference Calculations

t	0	1	2	3	4	5
x	1	7	23	55	109	191
Δx	6	16	32	54	82	116
$\Delta^2 x$	10	16	22	28	34	40
$\Delta^3 x$	6	6	6	6	6	6

Higher Degree Bezier Curves

- Cubic (n=3) ==> 4 control points
- 4th degree ==> 5 control points
- nth degree ==> n+1 control points
- In general:

$$P(t) = \sum_{i=0}^n B^n_i(t) * P_i$$
$$B^n_i(t) = C(n,i) * t^i * (1-t)^{n-i}$$

- Higher Degree Bezier curves:

- Can represent complex shapes
- But moving any control point affects entire curve
- Want local control
 - Moving a control point affects only one section of the curve
- One way: use segmented Bezier curves

A Segmented Cubic Bezier Curve

Conditions at Knots

- Curves PA and PB
 - Determined by Control Points
 - PA0, PA1, PA2, PA3; PB0, PB1, PB2, PB3
- Level-0 continuity at knot:
 $PA(\text{at } t=1) = PB(\text{at } t=0)$, i.e. at knot
So $PA3 = PB0$ (Same control point)
- Level-1 continuity:
 $dPA/dt(\text{at } t=1) = dPB/dt(\text{at } t=0)$
 - So segments PA2-PA3 and PB0-PB1 must be colinear
 - (Recall Bezier Boundary Conditions)