Viewing Transformation

Clipping

2-D ViewinQ
Transformation

2-D Viewing Transformation

= Convert from Window Coordinates to
Viewport Coordinates

& (XW, W) --> (XV, yV)

= Maps a world coordinate window to a
screen coordinate viewport

= Window defined by: (xwl,ywl), (xw2,yw2)
= Viewport defined by: (xvl,yvl), (xv2,yv2)
=« Basic idea is to maintain proportionality

Window to Viewport Transformation
Window Viewport
Wl yvz
B D
W
A ¥ -
ywl vl |
wl xw xwl xvl xv xvl
AB =CD E/F=GH
aw-xwl N xv-xvl ywywl _ yv-yvl
aw2awl | xv2-avl ywl-ywl yv2-yvl
[0= (Wv/Ww) *xow + xv]-(Wv/Ww) *xwl | | yv=(Hv/Hiw) *yw+ yv1-(Hv/Hw) *ywl |
where: where:
Ww=xw2-xwl (window width) Hw=yw2-ywl (window height)
| — Wy=xv2-xv] (viewport width) Hy=yv2-yvl (viewport height) —

Viewing Transformation in
Windows: Mapping Modes

Windows Viewing Transformation:
Mapping Modes

= Create logical coordinate system
— Define direction of axes
— Define units
— Can also move the origin
= Windows maps output to real device
— e.g., plot at 100,100 "logical millimeters”
— Windows figures out where on screen
— Not exact, but close
« It's Windows way of implementing the viewing
transformation

Windows Mapping Modes

MAPPI NG MODE LOG CAL UNI'T X- AXI S Y_AXI S
MM _TEXT Pi xel Ri ght Down
MM HI ENGLI SH . 001 inch Ri ght Up

MM LCENGLI SH .01 inch Ri ght Up
MM H METRIC .01 mMm Ri ght Up

MM LOMETRIC .1 mm Ri ght Up

MM TWPS 1/ 20 point=1/1440" Ri ght Up

MM | SOTROPIC Arbitrary (x==y) Sel ectable
MM_ANI SOTROPI C Arbitrary (x!=y) Selectable

Changing the Mapping Mode
= pDC->SetMapMode(MAP_MODE);

= Maps logical coordinates to device coordinates

— Device Coordinate (physical)
* units: pixels
e +X: right, +y: down
— Converts logical ("window") to device ("viewport")

coordinates as follows

XV = (XVEXt/XWEXxt) * (XW - xXWOrg) + xVOrg
yV = (YVExt/'yWext) * (yW - ywOrg) + yVOrg

= (XWOrg,yWOrg) and (xVOrg,yVOrg) are the origins of
the window and viewport

=« Both are (0,0) in the default device context

Moving Origins

= pDC->SetWindowOrg(x,y); // logical units
— For x,y positive, think of this as moving the upper left-
hand corner of the physical device viewport (screen)
up and right by (x,y) logical units
= pDC->SetVieportOrg(x,y); // device units--pixels
— For x,y positive, think of this as moving the lower left-
hand corner of the logical window down and right by
(x,y) device units
=« Both move the coordinate system origin to (x,y),
but units of x,y are different

Variable Unit Mapping Modes

= Coordinate axes can have any
size/orientation

= MM_ISOTROPIC-- x & y units must be same size

= MM_ANISOTROPIC -- different x and y units

= Setthe X and Y scaling factors with:
pDC->SetWindowExt (XWEXxt, yWEXt);
pDC->SetViewportExt (XVEXxt, yVEXt);

=« X scaling factor in going from Logical Coordinates to
Device Coordinates = XVEXt/XWEXxt

& Y scaling factor = yVExt/yWExt

Example 1

=« Create coordinate system where each
logical unit is two pixels:
— twice the default device unit coordinates
pDC->SetMapMode (MM_ISOTROPIC);
pDC->SetWindowExt (1, 1);
pDC->SetViewportExt (2, 2);

Example 2

« Create coordinate system with y-axis up,
each y-unit = 1/4 pixel; x-axis unchanged:
pDC->SetMapMode (MM_ANISOTROPIC);
pDC->SetWindowExt (1, -4);
pDC->SetViewportExt (1, 1);

Example 3

=« Create coord system where client area is
always 1000 units high & wide, y-axis up:

CSize size;

size = pDC->GetWindowEXxt (); // get client area size
I returns size in default device units--here pixels

pDC->SetMapMode (MM_ANISOTROPIC);

pDC->SetWindowExt (1000, -1000);

pDC->SetViewportExt (size.cx, size.cy);

= Now (1000,1000) will always be at upper right
edge of client area

OpenGL Viewing Transformation

= OpenGL designed for 3D graphics

= Must project onto 2D window

=« Also do window to viewport transformation
— with clipping

= For 2D graphics, use an orthographic projection
— gluOrtho2D(xmin,xmax,ymin,ymax)

» Equivalent to taking z=0 & setting a “window’ with
clipping boundaries: xmin<=x<=xmakx,
ymin<=y<=ymax -- logical units used

— Will be mapped to entire client area of physical window
— Client area determined by:

— glutinitWindowSize(width,height)

— Device units used

OpenGL Viewport

& gluOrtho2d(left,right,bottom,top) and
glutlnitWindowSize(w,h) map the
“window” to the entire w X h client area

= glViewport(x,y,w,h) maps the “window”
to the specified viewport within the client
area
— Device units used

Clipping

Clipping

= Elimination of parts of scene outside a
window or viewport

« Clipping with respect to a window
(Given: xwmin, ywmin, xwmax, ywmax)

— Clip at this level ==> fewer points go
through viewing transformation

« Clipping with respect to a viewport
(Given: xvmin, yvmin, xvmax, yvmax)

Clipping
&« Points
«Lines
— Cohen-Sutherland Line Clipper
« Polygons

— Sutherland-Hodgeman Polygon Clipper
— Weiler-Atherton Polygon Clipper

« Other Curves
= lext

Point Clipping

=« Given:
— point (x,y)
— clipping rectangle (window or viewport)
(xmin,ymin,xmax,ymax)
= Point test:
if (x<=xmax) && (x>=xmin)
&& (y<=ymax) && (y>=ymin)
the point x,y lies inside the clip area
— so keep it!

Line Clipping

= Could apply point test to all points on

the line
— Too much work

«Need a simple test involving the line's

endpoint coordinates

Cohen-Sutherland Line Clipper

=« Observation-- All lines fall into one of three
categories

1. Both endpoints inside clip rectangle
o (Trivially accept entire line)

2. Both endpoints outside clip rectangle on the
same side of one of its borders
* (Trivially reject entire line)

3. Neither 1 nor 2

* (Chop off part of line outside one of borders and
repeat)

Region Code

« A tool in assigning lines to Category 1 or 2

« 4-bit region code number assigned to an
endpoint (x,y)

=« Any set bit means endpoint is outside of
one of the 4 borders of the clip rectangle

=« Each bit position corresponds to a
different border

Region Code RC =LRBT

= L=left (if x<xmin, L=1, else L=0)

= R=Right (if x>xmax, R=1, else R=0)
= B=Bottom (if y<ymin, B=1, else B=0)
= T=Top (if y>ymax, T=1, else B=0)

= The Region Code Divides the entire x-y
plane 9 regions

Region Codes (LRBT)

I I
1001 | 0001 | 0101

Category 1 Lines

= Assume region codes for the line’s
endpoints are RC1 and RC2

=« Take Boolean OR of two region codes
if (RC1|RC2==0)
both RCs are 0000
both endpoints are inside
so it's Category 1 (trivial accept)

Category 2 Lines

= Both endpoints are outside same border
— (Category 2 line)
=« Then both region codes will have the same
bit set in one of the four bit positions
— Boolean AND will give a non-zero result:
if (RC1 & RC2 = 0)

* both endpoints are outside same border
* S0 it's Category 2 (trivial reject)

Category 3 Lines

= \Want to chop off outside part of line
= May have both endpoints (P1 & P2)
outside different borders of clip region

— So it’s not important which end is chopped off
first

=« But if one endpoint’s in and other’s out:
— Want to chop off the outside end

— So Arrange things so P1 is the outside point
* (swap P1 & P2 if necessary)

How to do the Chopping

= \Want to determine the new endpoint

= Endpoint coordinates (x1,yl), (x2,y2) are
known

= Slope m can be computed from them
= S0y =m*(X-x2) + y2 (point slope form)
= Or x = (y-y2)/m + x2

=« Look at P1's region code (RC1)

= Four possible cases:

If RC1 == 1xxx (P1 to left of xmin)

= New endpoint should be on the left
boundary:
X1 <-- xmin
y1l <-- m*(xmin-x2) + y2
Reset RC's L bit —

If RC1 == x1xx (P1 right of xmax)

= New endpoint should be on the right
boundary:
X1 <---xmax
y1l <---m*(xmax-x2) +y2
Reset RC's R bit

If RC1 == xx1x (P1 below ymin)

= New endpoint should be on the bottom
boundary:
y1l <---ymin
x1 <---(ymin-y2)/m + x2
Reset RC's B bit

If RC == xxx1 (P1 above ymax)

= New endpoint should be on the top
boundary:
—Yy1 <---ymax

— X1 <---(ymax-y2)/m + y2 /
—Reset RC's T bit %

ya

« Horizontal and vertical lines are special
cases

— Horizontal:
» y doesn't change and x = xboundary

— Vertical:
» x doexn’t change and y = yboundary

The C-S Line Clipping Algorithm

& Input:

— Original endpoints (x1,y1,x2,y2)

— Clip region boundaries (xmin,ymin,xmax,ymax)
= Output:

— Accept Code (AC)
* AC==TRUE ==> some part of line was inside
e AC==FALSE ==> no part of line was inside
— Clipped Line endpoints (x1,y1,x2,y2)
* only if AC==TRUE

C-S Algorithm Pseudo-code:

CS _Lined ip(xmn,ym n, xmax, ymax, x1,y1, x2,y2, AC)
done = FALSE
VWil e (!done)
Cal cul at e endpoi nt codes rcl, rc2
If ((rcl | rc2) ==0) /1l Category 1
done = TRUE
AC = TRUE
El se
If ((rcl &rc2) '=0) /] Category 2
done = TRUE
AC = FALSE
El se
If (Pl is inside)
Swap (x1,yl), (x2,y2); and rcl,rc2

If (L-bit of rcl is set) /1 1xxx
x1 = xmn
y1l = n¥(xmn-x2) + y2
El se
If (Rbit of rcl is set) /1 x1xx
X1 = xmax
yl = mf(xmax-x2) + y2
El se
If (B-bit of rcl is set) // xx1x
yl = ymn
x1 = (ymin-y2)/m+ x2
El se [l xxx1
yl = ymax
x1 = (ymax-y2)/m+ x2

Cohen-Sutherland Clipping Example

P Stepl py Step2 /Pg
1001 | o001 /0101 1001 0001 0101 1001 0001 0101
oo
1000 000 0100 1000 oog 0100 1000 0100
|
1uly o010 o110 1010 Pfruuw 0110 1010 0010 0110
F1
RC1=1010, RC2=0101 RC1=0010, RC2=0101 RC1=0000, RC2=0101
SWAP Pl Step 3 py Stepd
1001 ool 0101 1001 0001 0101 1001 0001 0101
1000 o 0100 1000 000 0100 1000 00ODPI g9
<12 o2 v}
1010 no1o o110 1010 0010 0110 1010 0010 0110
RC1=0101, RC2=0000 RC1=0001, RC2=0000 RC1=0000, RC2=0000
Step S: Accept
DONE!

Polygon Clipping

Polygon Clipping

= Clip a polygon to a rectangular clip area

& Input
— Ordered list of polygon vertices (nin, vin[])
— Clip rectangle boundary coordinates (xmin, ymin,
Xmax, ymax).
« Output:

— An ordered list of clipped polygon vertices (nout,
vout[]).

— vin[] and vout[] could be arrays of POINTs

Approaches to Polygon Clipping

= Use a line clipper on each polygon edge???

=« But we usually won't get back a polygon

— Parts of the clip rectangle will be edges of the
clipped polygon that line clipper won't get

= Really need new list of edges (or vertices)

N N

Original Clipped
Polygon Polygon

Sutherland-Hodgeman Polygon

Clipper
= Approach: PP
— Clip all polygon edges with respect to each
clipping boundary

— Do four passes; on each pass:
* Traverse current polygon and clip with respect to
one of the four boundaries
» Assemble output polygon edges as you go
e vin[] -->| Clip Left l-> vtempl[] -->| Clip Right |-->
vtemp2[] --> | Clip Bottom |--> vtemp3[] -->
ClipTop |-->vout]]

= On any polygon traversal the clip boundary
divides plane into "in" side and "out" side
« For any given edge (vertices i and i+1),
— during traversal, there are four possibilities:

— (Assume vertex i has already been processed)
VERTEX i VERTEX i +1 ACTI ON

in in Add Vertex i+1 to output |ist
out out Add no vertex to output Iist
in out Add intersection point with
edge to output |ist
out in Add intersection point with edge

and vertex i+1 to output Iist

Sample Traversal

Out | In
Side | Side
d . .
4 K——Clip Region
¥
3
1 Input Polygon:
¥ abcd
c 2 ’
Output Polygon:
<~ Current Clip Boundary bxya
Traversal Type Action
1 a—=b in-in Add point b
2 b—>e in-out Add intersection point x
3 ¢c—=>1d out-out Add nothing
4 d—>a out-in Add intersection point ¥ and point a

Implementation

& Function sh_clip()
— Will clip an input polygon (ni, vi[])
— With respect to a given boundary (bndry)
— Generating an output polygon (no, vo[])
= Enumerate the boundaries as:

— LEFT, RIGHT, BOTTOM, and TOP
sh_clip(ni, vi[], no, vo[], xmin, ymin, xmax, ymax, bndry);

vi[] and vo[]: could be arrays of POINTs

ni, no: number of points in each array

Xmin, ymin, xmax, ymax: clip region boundaries

Using sh_clip() to clip a
polygon

« Make four calls to sh_clip():

sh_clip(nin, vin[], ntemp1, vtempl[], xmin, ymin,
xmax, ymax, LEFT);

sh_clip(ntempl, vtempl][], ntemp2, vtemp2][], xmin,
ymin, xmax, ymax, RIGHT);

sh_clip(ntemp2, vtemp2[], ntemp3, vtemp3[], xmin,
ymin, xmax, ymax, BOTTOM);

sh_clip(ntemp3, vtemp3[], nout, vout[], xmin, ymin,
xmax, ymax, TOP);

Three Helper Functions

BOOL inside(V, xmin, ymin, xmax, ymax, Bndry)

— Returns TRUE if vertex point V is on the "in" side of
boundary Bndry

intersect(V1, V2, xmin, ymin, xmax, ymax, Bndry, Vnew)

— Computes intersection point of edge whose
endpoints are V1 and V2 with boundary Bndry

— Returns the resulting point in Vnew
output(V, n, vout[])
— Adds vertex point V to the polygon (n, v[])
* n will be incremented by 1
« vertex V added to end of polygon's vertex list v[|

sh_clip (ni, vi[], no, vo[], bndry)

no =0 /1 output list begins enpty

First_V = vi[0] /1 first vertex (i)

For (j=0 to ni-1) /1 traverse pol ygon
Second_V = v[(j+1) %ni] /'l second vertex (i+1)

If (inside(First_V, bndry)

If (inside(Second_V, bndry) // "in-in" case
out put (Second_V, no, vo)

El se /1l "in-out" case
intersect(First_V, Second_V, bndry, Vtenp)
output (Vtenp, no, vo)

El se

If (inside(Second_V, bndry) // "out-in" case
intersect (First_V, Second_V, bndry, Vtenp)
out put (Vtenp, no, vo)
out put (Second_V, no, vo) /! no "out-out" case

First_V = Second_V /'l prepare for next edge

Example of SH Clipping

out |in FIRST TRAVERSAL Injout SECOND TRAVERSAL
€ b
a
//’b e g
In polygon: abed he In polvgon: ebfc
a-b {o-i)— e,b e-b (i-o)— g
d b-¢ (i-i)— ¢ b-¢ (0-i)— h,c
c-d (i-o)— £ c-f (i-i)— £
f \/ d-a (o-o)—> none f.\/ f-e (i-i)— e
c out polygon: ebcf C out polygon: ghcfe
out
THIRD TRAVERSAL n
e 2 In polygon: ghcfe e g] FOURTH TRAVERSAL
he O he In polygon: hijeg
gh (b= hei (i-i) = i
-¢ {i-o0)—> i imq (i-i) = §
R . R c¢-f (o0o-0) — none - . J L J
g1, [N fe (0-i) > 9,e 1g—1i J-e (i-1) —e
¢ out _” (i_i)_):" ¢ e-g {i-i)—>g
r g 9 g-h (i-i) = h
c out polygon: hijeg

Final Qut polygon:
ijegh

Sutherland-Hodgeman Problems
= Works fine with convex polygons

= But some concave polygons problematic

— Extraneous edges along a clip boundary may be
generated as part of the output polygon

— Could cause problems with polygon filling

47 —>

>

i w N\ Ec
ot
[

Output Polygon: 0,1,2,3,4.5
Extraneous Edge: 2-3

Solutions to S-H Problems
= Add a postprocessing step

— Check output vertex list for multiple (>2)
vertex points along any clip boundary

— Correctly join pairs of vertices

7N
=
(=]
17N
=
(=]

L ; L

L
Polygon: 0,1,2,3,4,5 So break into two polygons:
0,2,3,5 are vertices 0,1,2 and 3,4,5

along the left boundary

Other Solutions

= Add a preprocessing step
— Split concave polygon into convex
polygons
« Or use a more general clipping
algorithm

— For example, the Weiler-Atherton polygon
clipper

Splitting Concave Polygons

& Split into convex polygons
= Use edge vector cross products

Vector Product of Two Vectors

B
~V=AXB
| @0 |
<V = |A] |B| sin(?) A

= Direction: RH Rule ~ #*B
& In terms of components

I O

AXB = | AX Ay Az |

| Bx By Bz |

i, J, ki unit vectors in x, y, z directiong

Splitting Concave Polygons

« Process edges in clockwise order
« [Form successive edge vectors

= Compute vector cross product between
successive edge vectors

« If all cross products are not negative
& Polygon is concave

& Split it along line of first edge vector in the cross-
product pair:
& Compute intersections of this line with other edges
& This splits polygon into two pieces

= Repeat this until no other edge cross
products are positive

Splitting Concave Polygons

abcd --> aed & ebc

E0XEl-> Kk
E1XE2 > K
E2 X E3 > +Kk ==> find Int. pt.
E3IXEl->Kk

i j K|
E0XE1= |Dx0 Dy0 0 |
|Dx1 Dyl 0 |

Dx0 = xh-xa
D¥y0 = yb-¥a

Splitting Convex Polygon into

Triangles

= Often convenient since triangles are
the simplest polygon

1. Define a sequence of three consecutive
vertices to be a new polygon (triangle)

2. Delete middle vertex from original vertex

list

3. Continue to form triangles until original
polygon has only three vertices

Weller-Atherton Polygon

Clipper

« Clips a "Subject Polygon" to a "Clip
Polygon’

=« Both polygons can be of any shape

« Result: one or more output polygons that
lie entirely inside the clip polygon

« Basic idea:

— Follow a path that may be a subject polygon edge or
a clip polygon boundary

The Weiler-Atherton Algorithm

1. Set up vertex lists for subject and clip polygons

Ordering: as you move down each list, inside of
polygon is always on the right side (clockwise)

2. Compute all intersection points between subject
polygon and clip polygon edges

Insert them into each polygon's list

Mark as intersection points

Mark “out-in” intersection points
(subject polygon edge moving from outside
to inside of clip polygon edge)

Intersection Points & out-in Marking (General)

B clip p ab:
X =xa + (xb-xajt
y =ya + (yb-yayt

subject

AB:
X=XA + (XB-xA)S
¥ =¥A + (¥B-yA)s

Solve for s and t
0<=t<=1 and 0<=8<=1 ==>
Intersection Point

Vector cross product:
‘ab X AB = +k === Out-In
¢d X AB = -k ==> In-Out

Intersection Points and Out-In
Marking (Simple)
« If clip polygon is a rectangle:

— Use point in/out test

— e.g., for intersection with left boundary:
X<Xmin means outside, x>=xmin means inside

& Intersections also easy

— Use Cohen-Sutherland ideas
* e.g., for intersection with left boundary:

X = Xmin
y = m*(xmin-x1) +y1 —]

/

Weiler-Atherton Algorithm,
continued

3. Do until all intersection points have been visited:

— Traverse subject polygon list until a non-visited
out-in intersection point is found;

— Output it to new output polygon list
— Make subject polygon list be the active list
— Do until a vertex is revisited:
» Get next vertex from active list & output
* If vertex is an intersection point,
—make the other list active
— End current output polygon list

Subject Polygon: a-b-c-d-e-f

Clip Polygon: A-B-C-D

c
D Int. Pts.: 1,2,3,4,5,6

1st Iteration:
'

Subject: a—1—>2 b 3954, ¢ 5 d e 6 £
\l/ ./‘ \

clip: A B 2—3Y ¢ D & 5 T4—o1

1 revisited so
Qutput: 1 2 3 4 stop out poly

2nd Iteration:

subject: a @) @ b @) @ c—s53d—e—6 ¢

clip: A B 2—03 ¢ D 6= 4 1
5 revisited so stop out poly

5 d e 6
aAll intersection points wvisited —> Done!

output:

Clipping Other Curves

= Must compute intersection points
between curve and clip boundaries

& In general solve nonlinear equations

« Many times approximation methods
must be used

&« Time consuming

Clipping Text

«<Use successively more expensive
tests
1. Clip string

Embed string in rectangle

Clip rectangle (4 point tests)

* entirely in ==> keep string

* entirely out==>reject string

* neither==>next test

2. Clip each Character
Embed character in rectangle
Clip rectangle (4 point tests)
e entirely in ==> keep character
* entirely out==>reject character
* neither==>next test
3. Two possibilities for Character Clipping
— Bitmapped: look at each pixel
— Stroked: Apply line clipper to each stroke

