
Viewing Transformation

Clipping

2-D Viewing
Transformation

2-D Viewing Transformation
?Convert from Window Coordinates to

Viewport Coordinates
? (xw, yw) --> (xv, yv)
?Maps a world coordinate window to a

screen coordinate viewport
?Window defined by: (xw1,yw1), (xw2,yw2)
?Viewport defined by: (xv1,yv1), (xv2,yv2)
?Basic idea is to maintain proportionality

Window to Viewport Transformation

Viewing Transformation in
Windows: Mapping Modes

Windows Viewing Transformation:
Mapping Modes

? Create logical coordinate system
– Define direction of axes
– Define units
– Can also move the origin

? Windows maps output to real device
– e.g., plot at 100,100 "logical millimeters”
– Windows figures out where on screen
– Not exact, but close

? It’s Windows way of implementing the viewing
transformation

MAPPING MODE LOGICAL UNIT X-AXIS Y_AXIS
--
MM_TEXT Pixel Right Down
MM_HIENGLISH .001 inch Right Up
MM_LOENGLISH .01 inch Right Up
MM_HIMETRIC .01 mm Right Up
MM_LOMETRIC .1 mm Right Up
MM_TWIPS 1/20 point=1/1440” Right Up
MM_ISOTROPIC Arbitrary (x==y) Selectable
MM_ANISOTROPIC Arbitrary (x!=y) Selectable

Windows Mapping Modes

Changing the Mapping Mode
? pDC->SetMapMode(MAP_MODE);
? Maps logical coordinates to device coordinates

– Device Coordinate (physical)
• units: pixels
• +x: right, +y: down

– Converts logical ("window") to device ("viewport")
coordinates as follows

xV = (xVExt/xWExt) * (xW - xWOrg) + xVOrg
yV = (yVExt/yWext) * (yW - yWOrg) + yVOrg

? (xWOrg,yWOrg) and (xVOrg,yVOrg) are the origins of
the window and viewport

? Both are (0,0) in the default device context

Moving Origins
? pDC->SetWindowOrg(x,y); // logical units

– For x,y positive, think of this as moving the upper left-
hand corner of the physical device viewport (screen)
up and right by (x,y) logical units

? pDC->SetVieportOrg(x,y); // device units--pixels
– For x,y positive, think of this as moving the lower left-

hand corner of the logical window down and right by
(x,y) device units

? Both move the coordinate system origin to (x,y),
but units of x,y are different

Variable Unit Mapping Modes
? Coordinate axes can have any

size/orientation
? MM_ISOTROPIC-- x & y units must be same size
? MM_ANISOTROPIC-- different x and y units
? Set the X and Y scaling factors with:

pDC->SetWindowExt (xWExt, yWExt);
pDC->SetViewportExt (xVExt, yVExt);

? X scaling factor in going from Logical Coordinates to
Device Coordinates = xVExt/xWExt

? Y scaling factor = yVExt/yWExt

Example 1

?Create coordinate system where each
logical unit is two pixels:
– twice the default device unit coordinates
pDC->SetMapMode (MM_ISOTROPIC);
pDC->SetWindowExt (1, 1);
pDC->SetViewportExt (2, 2);

Example 2
?Create coordinate system with y-axis up,

each y-unit = 1/4 pixel; x-axis unchanged:
pDC->SetMapMode (MM_ANISOTROPIC);
pDC->SetWindowExt (1, -4);
pDC->SetViewportExt (1, 1);

Example 3
?Create coord system where client area is

always 1000 units high & wide, y-axis up:
CSize size;
size = pDC->GetWindowExt (); // get client area size

// returns size in default device units--here pixels
pDC->SetMapMode (MM_ANISOTROPIC);
pDC->SetWindowExt (1000, -1000);
pDC->SetViewportExt (size.cx, size.cy);

? Now (1000,1000) will always be at upper right
edge of client area

OpenGL Viewing Transformation
? OpenGL designed for 3D graphics
? Must project onto 2D window
? Also do window to viewport transformation

– with clipping
? For 2D graphics, use an orthographic projection

– gluOrtho2D(xmin,xmax,ymin,ymax)
• Equivalent to taking z=0 & setting a “window” with

clipping boundaries: xmin<=x<=xmax,
ymin<=y<=ymax -- logical units used

– Will be mapped to entire client area of physical window
– Client area determined by:

– glutInitWindowSize(width,height)
– Device units used

OpenGL Viewport

?gluOrtho2d(left,right,bottom,top) and
glutInitWindowSize(w,h) map the
“window” to the entire w X h client area

?glViewport(x,y,w,h) maps the “window”
to the specified viewport within the client
area
– Device units used

Clipping

Clipping
?Elimination of parts of scene outside a

window or viewport
?Clipping with respect to a window

(Given: xwmin, ywmin, xwmax, ywmax)
– Clip at this level ==> fewer points go

through viewing transformation
?Clipping with respect to a viewport

(Given: xvmin, yvmin, xvmax, yvmax)

Clipping

?Points
?Lines

– Cohen-Sutherland Line Clipper
?Polygons

– Sutherland-Hodgeman Polygon Clipper
– Weiler-Atherton Polygon Clipper

?Other Curves
?Text

Point Clipping
? Given:

– point (x,y)
– clipping rectangle (window or viewport)

(xmin,ymin,xmax,ymax)

? Point test:
if ((x<=xmax) && (x>=xmin)

&& (y<=ymax) && (y>=ymin)
the point x,y lies inside the clip area

– so keep it!

Line Clipping

?Could apply point test to all points on
the line
– Too much work

?Need a simple test involving the line's
endpoint coordinates

Cohen-Sutherland Line Clipper
?Observation-- All lines fall into one of three

categories
1. Both endpoints inside clip rectangle

• (Trivially accept entire line)

2. Both endpoints outside clip rectangle on the
same side of one of its borders

• (Trivially reject entire line)

3. Neither 1 nor 2
• (Chop off part of line outside one of borders and

repeat)

Region Code
?A tool in assigning lines to Category 1 or 2
?4-bit region code number assigned to an

endpoint (x,y)
?Any set bit means endpoint is outside of

one of the 4 borders of the clip rectangle
?Each bit position corresponds to a

different border

Region Code RC = LRBT

?L=left (if x<xmin, L=1, else L=0)
?R=Right (if x>xmax, R=1, else R=0)
?B=Bottom (if y<ymin, B=1, else B=0)
?T=Top (if y>ymax, T=1, else B=0)
?The Region Code Divides the entire x-y

plane 9 regions

Region Codes (LRBT)
| |

1001 | 0001 | 0101
| |

| |

1000 | 0000 | 0100
| |

| |

1010 | 0010 | 0110
| |

0000

Category 1 Lines

?Assume region codes for the line’s
endpoints are RC1 and RC2

?Take Boolean OR of two region codes
if (RC1 | RC2 == 0)

both RCs are 0000
both endpoints are inside
so it’s Category 1 (trivial accept)

Category 2 Lines
?Both endpoints are outside same border

– (Category 2 line)
?Then both region codes will have the same

bit set in one of the four bit positions
– Boolean AND will give a non-zero result:

if (RC1 & RC2 != 0)
• both endpoints are outside same border
• so it’s Category 2 (trivial reject)

Category 3 Lines
?Want to chop off outside part of line
?May have both endpoints (P1 & P2)

outside different borders of clip region
– So it’s not important which end is chopped off

first

? But if one endpoint’s in and other’s out:
– Want to chop off the outside end
– So Arrange things so P1 is the outside point

• (swap P1 & P2 if necessary)

How to do the Chopping

? Want to determine the new endpoint
? Endpoint coordinates (x1,y1), (x2,y2) are

known
? Slope m can be computed from them
? So y = m*(x-x2) + y2 (point slope form)
? Or x = (y-y2)/m + x2
? Look at P1’s region code (RC1)
? Four possible cases:

If RC1 == 1xxx (P1 to left of xmin)

?New endpoint should be on the left
boundary:
x1 <-- xmin
y1 <-- m*(xmin-x2) + y2
Reset RC's L bit

If RC1 == x1xx (P1 right of xmax)

?New endpoint should be on the right
boundary:
x1 <---xmax
y1 <---m*(xmax-x2) +y2
Reset RC's R bit

If RC1 == xx1x (P1 below ymin)

?New endpoint should be on the bottom
boundary:
y1 <---ymin
x1 <---(ymin-y2)/m + x2
Reset RC's B bit

If RC == xxx1 (P1 above ymax)

?New endpoint should be on the top
boundary:
– y1 <---ymax
– x1 <---(ymax-y2)/m + y2
– Reset RC's T bit

?Horizontal and vertical lines are special
cases
– Horizontal:

• y doesn’t change and x = xboundary

– Vertical:
• x doexn’t change and y = yboundary

The C-S Line Clipping Algorithm
? Input:

– Original endpoints (x1,y1,x2,y2)
– Clip region boundaries (xmin,ymin,xmax,ymax)

?Output:
– Accept Code (AC)

• AC==TRUE ==> some part of line was inside
• AC==FALSE ==> no part of line was inside

– Clipped Line endpoints (x1,y1,x2,y2)
• only if AC==TRUE

C-S Algorithm Pseudo-code:
CS_LineClip(xmin,ymin,xmax,ymax,x1,y1,x2,y2,AC)

done = FALSE
While (!done)

Calculate endpoint codes rc1, rc2
If ((rc1 | rc2) == 0) // Category 1

done = TRUE
AC = TRUE

Else
If ((rc1 & rc2) != 0) // Category 2

done = TRUE
AC = FALSE

Else
If (P1 is inside)

Swap (x1,y1), (x2,y2); and rc1,rc2

If (L-bit of rc1 is set) // 1xxx
x1 = xmin
y1 = m*(xmin-x2) + y2

Else
If (R-bit of rc1 is set) // x1xx

x1 = xmax
y1 = m*(xmax-x2) + y2

Else
If (B-bit of rc1 is set) // xx1x

y1 = ymin
x1 = (ymin-y2)/m + x2

Else // xxx1
y1 = ymax
x1 = (ymax-y2)/m + x2

Cohen-Sutherland Clipping Example

Polygon Clipping

Polygon Clipping
? Clip a polygon to a rectangular clip area
? Input

– Ordered list of polygon vertices (nin, vin[])
– Clip rectangle boundary coordinates (xmin, ymin,

xmax, ymax).

? Output:
– An ordered list of clipped polygon vertices (nout,

vout[]).
– vin[] and vout[] could be arrays of POINTs

Approaches to Polygon Clipping
?Use a line clipper on each polygon edge???
?But we usually won’t get back a polygon

– Parts of the clip rectangle will be edges of the
clipped polygon that line clipper won’t get

?Really need new list of edges (or vertices)

Sutherland-Hodgeman Polygon
Clipper

?Approach:
– Clip all polygon edges with respect to each

clipping boundary
– Do four passes; on each pass:

• Traverse current polygon and clip with respect to
one of the four boundaries

• Assemble output polygon edges as you go
• vin[] --> --> vtemp1[] --> -->

vtemp2[] --> --> vtemp3[] -->
--> vout[]

Clip Left Clip Right
Clip Bottom

Clip Top

?On any polygon traversal the clip boundary
divides plane into "in" side and "out" side

?For any given edge (vertices i and i+1),
– during traversal, there are four possibilities:
– (Assume vertex i has already been processed)

VERTEX i VERTEX i+1 ACTION
in in Add Vertex i+1 to output list
out out Add no vertex to output list
in out Add intersection point with

edge to output list
out in Add intersection point with edge

and vertex i+1 to output list

Sample Traversal

Implementation
?Function sh_clip()

– Will clip an input polygon (ni, vi[])
– With respect to a given boundary (bndry)
– Generating an output polygon (no, vo[])

?Enumerate the boundaries as:
– LEFT, RIGHT, BOTTOM, and TOP

sh_clip(ni, vi[], no, vo[], xmin, ymin, xmax, ymax, bndry);
vi[] and vo[]: could be arrays of POINTs
ni, no: number of points in each array
xmin, ymin, xmax, ymax: clip region boundaries

Using sh_clip() to clip a
polygon

?Make four calls to sh_clip():
sh_clip(nin, vin[], ntemp1, vtemp1[], xmin, ymin,

xmax, ymax, LEFT);
sh_clip(ntemp1, vtemp1[], ntemp2, vtemp2[], xmin,

ymin, xmax, ymax, RIGHT);
sh_clip(ntemp2, vtemp2[], ntemp3, vtemp3[], xmin,

ymin, xmax, ymax, BOTTOM);
sh_clip(ntemp3, vtemp3[], nout, vout[], xmin, ymin,

xmax, ymax, TOP);

Three Helper Functions
BOOL inside(V, xmin, ymin, xmax, ymax, Bndry)

– Returns TRUE if vertex point V is on the "in" side of
boundary Bndry

intersect(V1, V2, xmin, ymin, xmax, ymax, Bndry, Vnew)
– Computes intersection point of edge whose

endpoints are V1 and V2 with boundary Bndry
– Returns the resulting point in Vnew

output(V, n, vout[])
– Adds vertex point V to the polygon (n, v[])

• n will be incremented by 1
• vertex V added to end of polygon's vertex list v[]

sh_clip (ni, vi[], no, vo[], bndry)
no = 0 // output list begins empty
First_V = vi[0] // first vertex (i)
For (j=0 to ni-1) // traverse polygon
Second_V = v[(j+1) % ni] // second vertex (i+1)
If (inside(First_V, bndry)
If (inside(Second_V, bndry) // "in-in" case

output(Second_V, no, vo)
Else // "in-out" case

intersect(First_V, Second_V, bndry, Vtemp)
output (Vtemp, no, vo)

Else
If (inside(Second_V, bndry) // "out-in" case

intersect(First_V, Second_V, bndry, Vtemp)
output(Vtemp, no, vo)
output(Second_V, no, vo) // no "out-out" case

First_V = Second_V // prepare for next edge

Example of S-H Clipping

Sutherland-Hodgeman Problems
? Works fine with convex polygons
? But some concave polygons problematic

– Extraneous edges along a clip boundary may be
generated as part of the output polygon

– Could cause problems with polygon filling

Solutions to S-H Problems
?Add a postprocessing step

– Check output vertex list for multiple (>2)
vertex points along any clip boundary

– Correctly join pairs of vertices

Other Solutions

?Add a preprocessing step
– Split concave polygon into convex

polygons

?Or use a more general clipping
algorithm
– For example, the Weiler-Atherton polygon

clipper

Splitting Concave Polygons

?Split into convex polygons
?Use edge vector cross products

Vector Product of Two Vectors

?V = A X B
? |V| = |A| |B| sin(?)
?Direction: RH Rule
? In terms of components

| i j k |
A X B = | Ax Ay Az |

| Bx By Bz |
i, j, k: unit vectors in x, y, z directions

Splitting Concave Polygons
? Process edges in clockwise order
? Form successive edge vectors
? Compute vector cross product between

successive edge vectors
? If all cross products are not negative

? Polygon is concave
? Split it along line of first edge vector in the cross-

product pair:
? Compute intersections of this line with other edges
? This splits polygon into two pieces

? Repeat this until no other edge cross
products are positive

Splitting Concave Polygons

Splitting Convex Polygon into
Triangles

? Often convenient since triangles are
the simplest polygon

1. Define a sequence of three consecutive
vertices to be a new polygon (triangle)

2. Delete middle vertex from original vertex
list

3. Continue to form triangles until original
polygon has only three vertices

Weiler-Atherton Polygon
Clipper

?Clips a "Subject Polygon" to a "Clip
Polygon”

?Both polygons can be of any shape
?Result: one or more output polygons that

lie entirely inside the clip polygon
?Basic idea:

– Follow a path that may be a subject polygon edge or
a clip polygon boundary

1. Set up vertex lists for subject and clip polygons
Ordering: as you move down each list, inside of
polygon is always on the right side (clockwise)

2. Compute all intersection points between subject
polygon and clip polygon edges

Insert them into each polygon's list
Mark as intersection points
Mark “out-in” intersection points

(subject polygon edge moving from outside
to inside of clip polygon edge)

The Weiler-Atherton Algorithm

Intersection Points & out-in Marking (General)

? If clip polygon is a rectangle:
– Use point in/out test
– e.g., for intersection with left boundary:

x<xmin means outside, x>=xmin means inside

? Intersections also easy
– Use Cohen-Sutherland ideas

• e.g., for intersection with left boundary:
x = xmin
y = m*(xmin-x1) + y1

Intersection Points and Out-In
Marking (Simple)

Weiler-Atherton Algorithm,
continued

3. Do until all intersection points have been visited:
– Traverse subject polygon list until a non-visited

out-in intersection point is found;
– Output it to new output polygon list
– Make subject polygon list be the active list
– Do until a vertex is revisited:

• Get next vertex from active list & output
• If vertex is an intersection point,

– make the other list active
– End current output polygon list

Clipping Other Curves

?Must compute intersection points
between curve and clip boundaries

? In general solve nonlinear equations
?Many times approximation methods

must be used
?Time consuming

Clipping Text

?Use successively more expensive
tests
1. Clip string

Embed string in rectangle
Clip rectangle (4 point tests)
• entirely in ==> keep string
• entirely out==>reject string
• neither==>next test

2. Clip each Character
Embed character in rectangle
Clip rectangle (4 point tests)

• entirely in ==> keep character
• entirely out==>reject character
• neither==>next test

3. Two possibilities for Character Clipping
– Bitmapped: look at each pixel
– Stroked: Apply line clipper to each stroke

