Raster Methods for 2-D
Geometric Translations

= See CS-460/560 Notes:
http://www.cs.binghamton.edu/~reckert/460/bitmaps.htm
= Can translate image in frame buffer by:
— Embed it in a rectangle

— Copy color of each pixel in rectangle to a
destination rectangle
* A simple double loop

= Assume coordinates of opposite corners
of embedding rectangle are (x1,yl) and
(x2,y2)

= \Want to translate enclosed image by (tx,ty)

& Following pseudocode will do the job:
for (x=x1 to x2)
for (y=y1 to y2)
{
color = GetPixel(x,y); /I get pixel color
SetPixel(x+tx, y+ty, color); // paint pixel
}

= Known as a Bit Block Transfer (BiTBLT,
or "blitting")

= Can also be used to move offscreen
Images to screen

« Can be very fast if we have direct access
to the frame buffer

= Windows API uses Device Dependent
Bitmaps to achieve effect of Bit Blitting
— Also provides functions to stretch bitmaps

Introduction to Windows
Bitmaps

= See CS-360, CS-460/560 Notes &

Programs:

http://www.cs.binghamton.edu/~reckert/460/bitmaps. htm
http://www.cs.binghamton.edu/~reckert/360/class4a.htm
http://www.cs.binghamton.edu/~reckert/360/bitmapl_cpp.htm
http://www.cs.binghamton.edu/~reckert/360/bitmap3_cpp.htm

Bitmap: An Off-screen Canvas

« Rectangular image, can be created with a paint
program

= Data structure that stores a matrix of pixel values
in memory
— Pixel value stored determines color of pixel

= Windows supports 4-bit, 8-bit (indirect) & 24-bit
(direct) pixel values

=« Can be stored as .bmp file (static resource data)

=« Can be edited; can save any picture

= Takes up lots of space

=« GDI object, must be selected into a DC to be useq
« A “resource” (like menus, dialog boxes, etc.)

« Think of it as the canvas of a DC upon which
drawing takes place

= Must be compatible with the display device

=« Can be manipulated invisibly and apart from
physical display device

« Fast transfer to/from physical device ==> flicker
free animation

=« Does not store information on drawing commands
— Windows Metafiles do that

Using Device Dependent
Bitmaps
A. Create and save bitmap using a paint editor -->
image.bmp file
Add to program'’s resource script file
—e.g.. IDB_IMG BITMAP image.bmp
— easier to: “Project | Add Resource | Bitmap”
B. Instantiate a CBitmap object
CBitmap bmp1;
C. Load bitmap from the program's resources:
bmpl.LoadBitmap(IDB_IMG);

D. Display the bitmap
0. Get a ptr to the screen DC (as usual): pDC

1. Create a memory device context compatible
with the screen DC
CDC dcMem;
dcMem.CreateCompatibleDC(pDC);

2. Select bitmap into the memory DC
CBitmap* pbmpold = dcMem.SelectObject(&bmp1l);

3. Copy bitmap from memory DC to device DC
using pDC'’s BitBIt() or StretchBlt()

4. Select bitmap out of memory DC

Using Bitmaps

Bitmwap
in
@ / memory @
LpatBIrmapiy Selectlbject () CreateConpatibleDC ()
i e [msmien [e
regsources @
i
{0)GetDoi)
|
0. hDhC=GetDC [(hind) ; Joreen
1. hMDC=CreateCompatibleDC (hDC) ; windaw
2. hEM=LoadBEitmap (hlnst, "bmp'™) ; zlient
3. Selectchject (hMDC, hEH) ; ares
4, BitBlt (hDC, ..., hHMDC, ...} !
A Memory DC

« Like a DC for a physical device, but not
tied to device

= Used to access a bitmap

= Bitmap must be selected into a memory
DC before displayable on physical device

= CreateCompatibleDC(pDC) --> memory
DC with same attributes as device DC
= SelectObject() selects bitmap into DC

— copying from memory DC is fast since data
sequence is same as on the device

Blitting in Windows

= pDC->BitBIt (X, y, w, h, &dcMem,
Xsrc, ysrc, dwRop)

— Copies pixels from bitmap in source DC
(dcMem) to destination DC (pDC)

— X,y: upper left hand corner of destination
rectangle

—w,h: width, height of rectangle to be copied

— Xsrc, ysrc -- upper left hand corner of source
bitmap
— dwRop -- raster operation for copy

Raster Ops

= How source pixel colors combine with
current pixel colors

« Boolean logic combinations (AND, NOT,
OR, XOR, etc.)

— Currently-selected brush pattern also can
be combined

— S0 256 different possible combinations
— 15 are named

« Useful for special effects

Named Raster Ops

=« (S=source bitmap, D=destination, P=currently-
selected brush, i.e., the current Pattern)

BLACKNESS O (all black) DSTI NVERT ~D

MERGECOPY P & S MERGEPAINT ~S | D
NOTSRCCOPY ~S NOTSRCERASE ~(S | D)
PATCOPY P PATINVERT P A D
PATPAINT (~S | P) | D SRCAND S&D
SRCCOPY S SRCERASE S & ~D
SRCINVERT S A D SRCPAINT S| D

WHI TENESS 1 (all white)

Raster Ops (first time)

i+ Bitmap 3 Program H=] E3

Show Gt

T
T
T

SRCCOPY IS R CE RAS FIr s R CINVE R TEere S RCPAIN T HI TE NE S 570

Raster Ops (second time)

' Bitmap 2 Program Hi=] E3
Show Gt

SRCCOPY IS R CE RAS FIra s R CINYVE R TEee S RCPAIN T HI TE NE S 550

StretchBlt()

= Same as BitBIt() except size of copied
bitmap can be changed

= Source & destination width/height given

pDC->StretchBlt (x,y,w,h,&dcMem,
Xsrc,ysrc,wsrc,hsrc,RasterOp);

Examples of BitBIt & StretchBlt

CBitmap bmpHouse; CDC dcMem;

BITMAP bm; int w,h;

bmpHouse.LoadBitmap(IDB_HOUSE);
bmpHouse.GetObject(sizeof(BITMAP), &bm);

w = bm.bmWidth; h = bm.bmHeight;
dcMem.CreateCompatibleDC(pDC);

CBitmap* pbmpOld = dcMem.SelectObject(&bmpHouse);
pDC->BitBIt(0, 0, w/2, h/2, &dcMem, 0, 0, SRCCOPY);
pDC->BitBIt(50, 0, w, h, &dcMem, 0, 0, SRCCOPY);
pDC->BitBIt(150, 0, w/2, h/2, &dcMem, w/2, h/2, SRCCOPY);
pDC->StretchBIt(0,100,w/2,h/2,&dcMem,0,0,w,h,SRCCOPY);
pDC->StretchBIt(50,100,w,h,&dcMem,0,0,w,h,SRCCOPY);
pDC->StretchBIt(150,100,2*w,2*h,&dcMem,0,0,w/2,h/2, SRCCOPY);
dcMem.SelectObject(pbmpOld);

i Bitmap1 Program M=l
Shaw Quit

Loading and Displaying Image
Files in Windows

= Clmage Class
— In the Active Template Liabrary (ATL)
 Primarily used to build components & services

— Before .NET, MFC and ATL could not be used
together

— Under .NET there is a set of shared classes that
can be used in both

— Clmage is one of the shared classes

» Encapsulates functionality to read/draw/save JPEG, GIF,
BMP, and PNG images

» To use it: #include <atlimage.h> at top of stdafx.h file

Some Useful CImage Member Functions

BOOL Create(int w, int h, int nBPP, DWORD dwFlags);

— Creates a Cimage bitmap and attaches it to a previously
constructed Cimage object

« w = width of image, h = height of image
» NBPP: number of bitts per pixel
» DwFlags: 0 or creqateAlphaChannel (32 only)
Load(LPCTSTR strFileName);
— strFileName can be a CString
Save(LPCTSTR strFileName, REFGUID guidFileType);
— guidFileType:
* GUID_NULL: determined from file extension
* GUID_JPEGFILE: JPEG image
e GUID_GIFFILE: GIF image
» Same idea for BMP and PNG images

Easy Image Conversion using
Clmage

Clmage m_image,;

/l Read in GIF Image
m_image.Load(‘myimage.qgif”);

/' Write out image as a JPEG
m_image.Save(‘myimage.jpg”, GUID_NULL);

Drawing an image with Clmage

=« Clmage::Draw(...) member function

— Draw(HDC, int xdest, int ydest, int wdest, int
hdest, int xsrc, int ysrc, int wsrc, int hsrc);

— Lot's of other possible arguments
» See online help

= Clmage::BitBlt(...)
« Clmage::StretchBIt(...);

Clmage Enquire Functions

= Int w = GetWidth();
« int h = GetHeight();

Example of Using Cimage with a
Common File Dialog Box

Clmage m_image;

CString m_strimage;

CDC* pDC;

CFileDialog dIgFile(TRUE);

if (digFile.DoModal() == IDOK)

{
m_strimage = digFile.GetPathName();
m_image.Load(m_strimage);
int w = m_image.GetWidth();
int h = m_image.GetHeight();
pDC=GetDC();
m_image.Draw(pDC->m_hDC,10,10,w,h,0,0,w,h);

Bitmaps in OpenGL
=« Define a binary array pattern with:
— gIBitmap(w,h,x0,y0,xoffset,yoffset,array)

* w,h: # of columns and rows

« X0,y0: position of origin in array
— Relative to lower left corner of array

« xoffset,yoffset: new current raster position after bitmap is

displayed
 array: binary array that defines the bitmap

— 1: pixel to be set to current color
— 0: pixel unaffected

= Use glRasterPos2i(x,y) first to set position in
frame buffer of lower left hand corner of
destination

= See example on page 144 of Hearn & Baker

Pixmaps in OpenGL

« Fundamental Pixel-writing function is:
alDrawPixels(width, height, dataFormat,
dataType, pixMap);

« First define an RGB image as, for
example, in:

GLuByte image[ROWS][COLS][3];

« Then display at current raster position
as, for example, with:

glDrawPixels(ROWS, COLS, GL_RGB,
GL_UNSIGNED_BYTE, image);

BitBlitting in OpenGL
glReadPixels(x0, yO, w, h, GL_RGB,
GL_UNSIGNED_BYTE, array);
— Retrieves pixels from frame buffer
* X0,y0: lower left corner
* w,h: number of columns and rows
« array: Destination array in memory
glCopyPixels(x0, y0, w, h, pixelValues);

— Copies the block of w x h pixels starting at (x0,y0)
« destination location starts at current raster position

» Source & destination buffers chosen w/ glReadBuffer(buf) &
glDrawBuffer(buf) — buf: GL_FRONT, GL_BACK, etc.

=« Image file support in OpenGL — Not Much!

— Must write your own functions to load/save standard
image file formats in OpenGL

Animated Graphics

Notes from CS-360 Web Pages

Course Notes:
Class 4 -- Windows Bitmaps,Animation, and Timers
http://www.cs.binghamton.edu/~reckert/360/class4a.htm

Sample Programs:

Example 4-3: Bouncing Ball Animation using
PeekMessage() (ball.cpp)
http://www.cs.binghamton.edu/~reckert/360/ball_cpp.htm
Example 4-4: Bouncing Ball Animation with Bitblt() to
Preserve Background (ballblt.cpp)
http://www.cs.binghamton.edu/~reckert/360/ballblt_cpp.htm
Example 4-5: Bouncing Ball Animation using a Timer

(balltime.cpp)
http://www.cs.binghamton.edu/~reckert/360/balltime_cpp.htm

Animated Graphics

=« Creating a moving picture
— Give illusion of motion by continual
draw / erase / redraw
— If done fast, eye perceives moving image

& In a single-user (e.g., DOS) application, we
could do the following:
Do Forever{
[* compute new location of object */
/* erase old object image */
[* draw object at new location */ }

& In Windows, other programs can’t run while
this loop is executing

« Need to keep giving control back to
Windows so other programs can operate

= One method:
— Use a Windows Timer

Windows Timers

=« An input device that notifies an application
when a time interval has elapsed
— Application tells Windows the interval

— Windows sends WM_TIMER message each
time interval elapses

Using a Timer

« Allocate and set a timer with:

CWnd::SetTimer(timerID, interval, NULL);
* Interval in milliseconds

=« From that point on, timer repeatedly generates
WM_TIMER messages and resets itself each
time it times out
— Could be used to signal drawing the next frame of an
animation!!!
= WM_TIMER handler: OnTimer(timerID)

= When app is done using a timer, stop timer
messages and remove it with:
KillTimer(timerID);

« Example: Balltime

— See CS-360, Example Programs: Example 4-6 for
.NET

Drawing on a Memory Bitmap
(Improving an Animation)

« |f many objects are drawn during each
frame of an animation, we get flicker

— Because of multiple accesses to frame buffer
during each frame

= Best way to eliminate flicker:
— Have just one access to frame buffer per frame
— Windows: use off-screen memory bitmaps

Drawing on Off-screen
Bitmaps
« Use GDI functions to "draw" on a

bitmap selected into a memory DC

« Just like using a "real" DC

— So we can do many drawing operations
“offscreen’

= When finished, BitBLt() result to real DC
— Fast, so no flicker in animations

& This technique is called double buffering

Getting a Bitmap to Draw on

=« Create a blank bitmap in memory with:

CBitmap::CreateCompatibleBitmap (pDC, w, h);
— An alternative to LoadBitmap()

« After it's selected into a memory DC, use GDI
graphics functions to draw on it without
affecting real device screen

— All the GDI drawing operations are now
invisible to the user

= When drawing is all done, BitBLt() it to

real device
- So jUS'[one screen access
— No flicker
* (drawing directly to screen device context ==>
many accesses to screen
— produces flicker for complex images
= Process is an example of double buffering
— Draw next frame on an offscreen canvas
— while current frame is displayed on real screen

— OpenGL provides for Double Buffering

+ glutSwapBuffers(); // Replaces glFlush();
* First: glutinitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

Animation of moving objects

over a stationary background

= Set up an offscreen image bitmap and select it

into a memory DC
= Set up an offscreen background bitmap

=« For each frame (each timer timeout):
— Calculate new positions of objects
— BitBLt() background bitmap to the offscreen image

bitmap

— Redraw objects (in new positions) on the offscreen
image bitmap

— BitBLt() entire offscreen image bitmap to screen

Desired Animation Sequence

-

Computed Objects New Positions Offscreen Background Bitmap

2. Draw ohjects in \ % BitBlt Background Bitmap

new positions on to offscreen image bitmap

offscreen image

bitmap
3. BitBlt to
Offscreen Image Bitmap Screen

Screen

=« For a large image field, this BitBLt()
covers a large area
— could be too slow
=« Better method: compute affected area
— (rectangle encompassing old and new object
positions)
= BitBLt() to that area only

Sprites
« Little bitmaps that move on screen
= Frequently used in game programs

=« Could restore background and just BitBLt() the
sprite over it
= But there's a problem

— sprite consists of desired image enclosed in a
rectangle

— so when blitting is done, background color inside
enclosing rectangle will wipe out the background area
on destination bitmap

— moving object will have a "halo" around it
— will also always have a rectangular shape

Solution (Sprite Animation)

1. Set up a "mask bitmap" in which sprite pixels are black
and the rest of the enclosing rectangle is white
2. BitBLt() this over background using SRCAND (AND)
raster op
3. Use the "image bitmap" in which the sprite pixels are set
to the image colors they should be (whatever colors are
in the sprite object) and the rest of enclosing rectangle
pixels (the “halo”) are black
4. BitBLt() this to the result of step 2 using the SRCINVERT
(XOR) raster op
Result will make sprite move to its new location with
the background around it intact

Image Bitmap
0000

Background Undesired Result

Wani:
0000

Mask Bitmap

1111
0000

Image Bitmap

0000

Background

Desired Result

