
Text in Windows

Computer Graphics
Attributes

Using Windows Stock Fonts

� Like stock pens, brushes
� Accessed with:

GetStockObject(font_name);
• Returns a handle to a font
• Use by selecting into DC with

SelectObject():
Or --

CDC::SelectStockObject(font_name);

Using Windows Logical Fonts
� Instantiate a CFont object
� Use CFont::CreateFont(14 params!!)

• Specify characteristics
• Interpolates data from font file
• --> new sizes, bold, rotated, etc.

� Select CFont object into the DC
� Called logical since determined by program

logic not just file contents
� See online help

Windows Text Metrics

� CreateFont() may not give you exactly
what you ask for

� Can use CDC::GetTextMetrics() to find out
font details
– Gives lots of information in a TEXTMETRIC

structure
– Commonly used to determine font size

• can be used to set line spacing, caret size, sizes of
buttons, etc.

Windows Text Metrics

Computer Graphics
Attributes

– Line and Text Attributes
• Fonts in Windows

– Area Fill
• Boundary/Flood Fill Algorithms
• Scanline Polygon Fill Algorithm

Attributes

� How primitives are to be displayed
� Most systems use modal attributes

– Values in effect until changed

Text Attributes
� Font (typeface)

– Character set with particular design style
� Display style

– underlined, italic, boldface, outlined,
strikeout, spacing, etc.

� Color
� Size (width, height)--specified in points

– Point = 1/72 inch

Text Attributes, continued
� Orientation--how much character is rotated
� Escapement--orientation of line between first &

last character in a string

Line Attributes
� Color
� Width
� Style--solid, dotted, dashed, etc.

Can be specified by giving a pattern array
e.g., pat[]={1,1,1,1,1,1,0,0}
Repeat this pattern on entire line:

ith pixel along line:
if (pat[i%8]==1) SetPixel(x,y)

� In Windows, use a pen (CPen)

Area Fill

� Important for any closed output primitive
– Polygons, Circles, Ellipses, etc.

� Attributes:
– fill color
– fill pattern

� 2 Types of area fill algorithms:
– Boundary/Flood Fill Algorithms
– Scanline Algorithms

Area Fill Algorithms

� See CS-460/560 Notes Web Page
� Link to:

– Week 5-BC: Area Fill Algorithms
� URL:

– http://www.cs.binghamton.edu/~reckert/460
/fillalgs.htm

Boundary/Flood Fill Algorithms
� Determine which points are inside from pixel

color information
– e.g., interior color, boundary color, fill color, current

pixel color
– Color the ones that are inside.

Scanline Algorithms
� Examine horizontal scanlines spanning area
� Find intersection points between current

scanline and borders
� Color pixels along the scanline between

alternate pairs of intersection points
� Especially useful for filling polygons

– polygon intersection point calculations are very
simple and fast

– Use vertical and horizontal coherence to get new
intersection points from old

Boundary/Flood Fill Algorithms
� Determine which points are inside from pixel

color information
– e.g., interior color, boundary color, fill color, current

pixel color
– Color the ones that are inside.

Connected Area Boundary Fill
Algorithm

� For arbitrary closed areas
� Input:

– Boundary Color (BC), Fill Color (FC)
– (x,y) coordinates of seed point known to be

inside
� Define a recursive BndFill(x,y,BC,FC)

function:
If pixel(x,y) not set to BC or FC, then set to FC
Call BndFill() recursively for neighboring points

� To be able to implement this, need an
inquire function

� e.g., Windows GetPixel(x,y)
– returns color of pixel at (x,y)

The BndFill() Function
BndFill(x,y,BC,FC)
{

color = GetPixel(x,y)
if ((color != BC) && (color != FC))
{

SetPixel(x,y,FC);
BndFill(x+1,y,BC,FC); BndFill(x,y+1,BC,FC);
BndFill(x-1,y,BC,FC); BndFill(x,y-1,BC,FC);

}
}

� This would be called by code like:
BndFill(50,100,5,8); // 5,8 are colors
– Windows GDI: colors are COLORREFs
– RGB() macro could be used

� As given, only works with 4-connected regions
� Boundary must be of a single color

– Could have multiple interior colors

Flood Fill Algorithm

� A variation Boundary Fill
� Fill area identified by the interior color

– instead of boundary color
� Good for single colored area with

multicolor border

Ups & Downs of
Boundary / Flood Fill

� Big Up: Can be used for arbitrary areas!
� BUT-- Deep Recursion so:

– Uses enormous amounts of stack space
• (Adjust stack size before building in Windows!)

� Also very slow since:
– Extensive pushing/popping of stack
– Pixels may be visited more than once
– GetPixel() & SetPixel() called for each pixel

• 2 accesses to frame buffer for each pixel plotted

Adjusting Stack Size in VC++

� ‘Project’ on Main Menu
– Properties

• Configuration Properties
– Linker

System
Stack Reserve Size:

perhaps 10000000
Stack Commit Size:

perhaps 8000000

Scanline Polygon Fill
Algorithm

� Look at individual scan lines
� Compute intersection points with polygon

edges
� Fill between alternate pairs of intersection

points

More specifically:
� For each scanline spanning the polygon:

– Find intersection points with all edges the
current scanline cuts

– Sort intersection points by increasing x
– Turn on all pixels between alternate pairs of

intersection points
� But--

– There may be a problem with intersection
points that are polygon vertices

Vertex intersection points that are not local
max or min must be preprocessed!

Preprocessing non-max/min
intersection points

� Move lower endpoint of upper edge up by
one pixel

� i.e., y <-- y + 1
� What about x?

m = ∆y/∆x, so ∆x = (1/m) * ∆y
But ∆y = 1, so:
x <-- x + 1/m

Preprocessing

Active Edge
� A polygon edge intersected by the current

scanline
� As polygon is scanned, edges will become

active and inactive.
� Criterion for activating an edge:

ysl = ymin of the edge
(Here ysl = y of current scanline)

� Criterion for deactivating an edge:
� ysl = ymax of the edge

Vertical & Horizontal
Coherence

� Moving from one scanline to next:
� y = y + 1
� If edge remains active, new intersection

point coordinates will be:
ynew = yold + 1
xnew = xold + 1/m

(1/m = inverse slope of edge)

Scanline Polygon Fill
Algorithm Input

� List of polygon vertices (xi,yi)

Scanline Polygon Fill Algorithm
Data Structures

1. Edge table:
– For each edge: edge #, ymin, ymax, x, 1/m

2. Activation Table:
– (y, edge number activated at y)

• Provides edge(s) activated for each new scanline
• Constructed by doing a "bin" or "bucket" sort

3. Active Edge List (AEL):
– Active edge numbers sorted on x

• A dynamic data structure

Bin Sort for Activation Table

0
0

1
2
2

3
4

1. Set up edge table from vertex list; determine range of
scanlines spanning polygon (miny, maxy)

2. Preprocess edges with nonlocal max/min endpoints
3. Set up activation table (bin sort)
4. For each scanline spanned by polygon:

– Add new active edges to AEL using activation table
– Sort active edge list on x
– Fill between alternate pairs of points (x,y) in order of

sorted active edges
– For each edge e in active edge list:

If (y != ymax[e]) Compute & store new x (x+=1/m)
Else Delete edge e from the active edge list

Scanline Polygon Fill Algorithm

Scanline Polygon Fill Algorithm Example

Scanline Poly Fill Alg. (with example Data)

